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Abstract

Gut microbiota, specifically gut bacteria, are critical for effective immune checkpoint blockade 

therapy (ICT) for cancer. The mechanisms by which gut microbiota augment extraintestinal 

anti-cancer immune responses, however, are largely unknown. Here, we find that ICT induces 

the translocation of specific endogenous gut bacteria into secondary lymphoid organs and 

subcutaneous melanoma tumors. Mechanistically, ICT induces lymph node remodeling and 

dendritic cell (DC) activation, which facilitates the translocation of a selective subset of gut 

bacteria to extraintestinal tissues to promote optimal anti-tumor T cell responses in both the tumor-

draining lymph nodes (TDLN) and the primary tumor. Antibiotic treatment results in decreased 

gut microbiota translocation into MLN and TDLN, diminished DC and effector CD8+ T cell 

responses, and attenuated response to ICT. Our findings illuminate a key mechanism by which gut 

microbiota promote extraintestinal anti-cancer immunity.

One sentence summary:

Immune checkpoint blockade therapy induces gut bacteria translocation into secondary lymphoid 

organs and promotes extraintestinal anti-tumor immunity

Gut Microbiota and Immune Checkpoint Blockade

Recent studies have suggested that the gut microbiome influences responses to immune 

checkpoint therapy (ICT) for cancer, but the mechanisms driving these responses are not clear. 

Choi et al. analyzed the translocation of specific endogenous bacteria from the gut to secondary 

lymphoid organs or melanoma tumors in a murine model. They observed translocation of some 

bacterial species during ICT enhanced dendritic cell activation and lymph node remodeling. 

These enhanced responses promoted anti-tumor T cell responses in tumor draining lymph nodes 

and subcutaneous tumors. In contrast, antibiotic treatment diminished gut microbe translocation 

to draining lymph nodes and attenuated anti-tumor responses mediated by ICT. These findings 

provide critical insight into the role of gut microbe translocation in enhancing effects of ICT.

INTRODUCTION

Immune checkpoint inhibitor therapy (ICT), targeting cytotoxic T-lymphocyte–associated-

antigen-4 (CTLA-4) and/or programmed cell death protein 1 (PD-1), results in durable 

remissions in patients with previously incurable cancers (1). Yet up to 50% of cancer 

patients remain unresponsive to ICT (2). A variety of host-associated factors have been 

implicated as a potential cause of this therapeutic discrepancy, and one of the most 

intriguing is the gut microbiome. Growing evidence suggests that the gut microbiome 

plays an instructive role in modulating cancer immunotherapy (3–14). Mice that lack gut 

microbiota or those pre-treated with antibiotics have a dramatically diminished response to 
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ICT (9, 13, 14). Our group (7) and others (4, 8, 12) have identified specific, yet distinct, 

gut bacteria associated with clinical response to cancer immunotherapy. Recent reports 

also suggest that fecal microbiota transplantation is both safe and potentially effective in 

augmenting anti-cancer immune responses in cancer patients previously unresponsive to 

immunotherapy (15, 16).

There is no consensus on which gut microbiota are required for optimal host anti-cancer 

immune responses. A variety of gut bacteria species have been shown to correlate 

with positive clinical responses to immunotherapy and/or can augment ICT responses in 

preclinical cancer models: Bifidobacterium spp. (10, 13), Akkermansia muciniphila (12), 

Enterococcus spp. (5, 17), and Faecalibacterium prausnitzii (4, 7, 8). To further confound 

matters, Bacteroides species have been shown to have both potentially beneficial (7, 14) and 

negative effects (16, 18) on cancer immunotherapy responses. Thus, it is unclear as to what 

generalizable “rules” can be ascertained from these data.

Gut bacteria can augment cancer immunotherapy responses through a variety of 

mechanisms. Bacteria have long been known to be potent activators of the innate immune 

system, which can then prime T cells and induce anti-cancer immune responses (e.g. Coley’s 

Toxin) (19). Gut bacteria-derived metabolites (e.g. inosine (9), c-di-AMP (20) or short-chain 

fatty acids (3, 21)) or pathogen-associated molecular patterns (e.g. muramyl peptide (22)) 

can enhance anti-cancer T cell responses. Finally, in some instances, specific endogenous 

gut bacteria may harbor antigens that cross-react with tumor antigens/neoantigens and may 

increase T cell mediated anti-cancer immune responses via molecular mimicry (23).

Despite these recent findings, a major unanswered question is how do gut bacteria dictate 

or shape extraintestinal immune responses that promote tumor killing in distant sites. 

The potential immunologic influence or impact of gut bacteria on cancers that arise in 

the gastrointestinal tract (e.g. colorectal, pancreatic, and liver cancer) appears to be more 

obvious, given the close proximity of gut bacteria, immune cells, and the tumor. How gut 

bacteria modulate immune responses against extraintestinal tumors, such as melanoma or 

lung cancer, is unclear.

Here, we used a preclinical melanoma model and anti-PD-1/CTLA-4 therapy to show 

that ICT induces translocation of specific gut bacteria into secondary lymphoid organs 

and tumors, which activates dendritic cells (DC) and primes anti-tumor T cell responses. 

Gut bacteria translocation into mesenteric lymph nodes (MLN) is essential for optimal 

anti-tumor T cell responses in the tumor draining lymph node (TDLN) and tumor. DCs 

are critical not only for the gut bacteria-dependent immune augmentation of ICT but 

also for facilitating gut bacteria translocation into MLN. Furthermore, we find that ICT 

induces MLN remodeling, which can facilitate further dissemination of bacteria beyond the 

intestinal mucosal firewall. Finally, antibiotic depletion of endogenous gut bacteria results 

in decreased gut bacteria translocation into MLN and TDLN, diminished DC activation 

and effector T cell responses, thus causing attenuated ICT efficacy. Together, our studies 

reveal a critical mechanism in which ICT aided by DCs causes gut bacteria translocation of 

specific immunogenic taxa into secondary lymphoid organs, resulting in optimal priming of 

anti-tumor immune responses effective against extraintestinal tumors.
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RESULTS

Immune checkpoint inhibitor therapy induces gut bacteria translocation into secondary 
lymphoid organs and tumor

We first sought to determine whether ICT, in the absence or presence of tumor, could induce 

gut bacteria translocation into secondary lymphoid organs. We administered ICT (combined 

anti-PD-1 and anti-CTLA-4 monoclonal antibody treatment) to mice with or without B16-

F10 melanoma tumors and assessed bacterial translocation by culturing mesenteric lymph 

node (MLN) homogenates on various selective media under anaerobic conditions (fig. 

S1A). Indeed, mice receiving ICT had a greater number of cultured bacteria from MLNs 

(fig. S1B), including taxa previously reported to be associated with positive ICT response 

or implicated in host immune-anti cancer responses: Bifidobacterium pseudolongum 
(9), Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium adolescentis (13), 

Bacteroidetes thetaiotamicron (7, 24), Enterococcus faecalis (22, 24), and Lactobacillus 
spp. (24) (fig. S1C). Interestingly, the presence of melanoma tumor alone did not result 

in a dramatic increase of cultured bacteria from MLNs whereas the administration of ICT, 

regardless of tumor presence, resulted in a significant increase in the number of bacteria 

cultured from MLN tissue on YCFA and CME0151 agar (YCFA, p=0.0037; CME0151, 

p=0.0006; fig. S1B).

We then asked whether there was a distinct temporal pattern of bacterial translocation 

throughout the course of ICT treatment. To address this question, we implanted B16-F10 

tumors in a cohort of mice simultaneously and then proceeded with ICT treatment (fig. 

1A). On each day, we selected mice (n=6–8) from different cages and harvested MLN, 

spleen, TDLN (defined as the right inguinal lymph node as tumors were implanted in 

the right flank), and tumor. Tissue microbiomes were assessed by both culturing of tissue 

homogenates and 16S rRNA sequencing of tissue gDNA. Notably, bacterial translocation 

was present but limited (< mean of 65 CFU/mg tissue) for all tissue types before the first 

dose of ICT (day 4) (fig. 1B). After initiation of ICT, bacterial translocation was readily 

detected in each tissue type (but to the greatest magnitude in MLN) and persisted throughout 

the course of ICT (fig. 1B). These data suggest that ICT induces gut bacteria translocation 

into secondary lymphoid tissues and tumor.

Upon taxonomic identification of cultured bacteria, two dominant taxa, Enterococcus 
faecalis and Lactobacillus johnsonii, and distinct temporal pattern of gut microbiota 

translocation were noted (fig. 1C). E. faecalis was the most abundant gut microbiota 

translocator during the early phases of ICT treatment (between doses 1 and 2) while L. 
johnsonii exhibited dominance after the second dose of ICT (fig. 1C). Other notable cultured 

taxa include Akkermansia muciniphila (12) and Bacteroides thetaiotaomicron (14), both of 

which have been shown to augment ICT responses in preclinical models (fig. S1 and S2).

The ability to successfully culture gut microbiota is highly variable, thus we sought to 

further characterize the secondary lymphoid organ and tumor microbiomes using 16S rRNA 

gene sequencing (fig. 1D–F, fig. S3–5). Using multidimensional scaling of the 16S rRNA 

data and factoring both tissue type and the time of sample collection, we noted that the gut 

microbiome taxonomic composition remained steady over the course of ICT (exhibited by 
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the tight clustering of gut microbiome samples, diamonds, in the lower left-hand corner and 

demarcated with an ellipse, fig. S3). In contrast, while lymphoid tissue and tumor samples 

collected prior to the first dose of ICT (days 0–4) also grouped together regardless of tissue 

type (fig. 1F and S3, right side, various tissue type samples all in yellow), notable taxonomic 

shifts occur after ICT initiation (fig. 1F and S3). By using singular value decomposition 

interpreted visually as a linear biplot (25), we identified six taxa as key drivers of taxonomic 

compositional changes in secondary lymphoid organs and tumor at later time points (days 

5–15): Enterococcus, Lachnospiraceae, and Escherichia/Shigella accounting for the majority 

of change, with Lactobacillus, Muribaculaceae, and Turibacter contributing as well (fig 

S3, demarcated as labeled arrows). When utilizing another well-established microbiome 

taxonomic differential abundance analysis tool (linear discriminant analysis effect size, 

LEfSe), we confirmed that Enterococcus, Lachnospiraceae (Blautia spp.), and Shigella were 

significantly enriched in tumor and secondary lymphoid organ tissues compared to the 

gut (>2 log-fold increase in linear discriminate analysis, LDA, score and P<0.05, fig. S4). 

Interestingly, bacterial taxa abundant in the gut (e.g. Bacteroidetes) were not necessarily 

highly abundant in the secondary lymphoid organs or tumors and vice versa (e.g. low 

abundance of Enterobacteriaceae in the gut, but high relative abundance in tissues) (fig. 

1D and E). Finally, overall levels of bacteria (as determined by bacterial group qPCR of 

the same gDNA samples used for 16S rRNA sequencing shown in fig. 1D) showed a 

comparable variation over time to that observed with the cultured microbiota abundance 

(fig 1B), with an initial increase followed by sustained bacterial levels throughout ICT 

administration (fig. S5). Taken together, these results suggest that ICT induces translocation 

of specific gut bacteria, which are not necessarily abundant in the gut, into secondary 

lymphoid organs and tumor.

Highly abundant bacterial translocators into secondary lymphoid organs activate DCs and 
induce anti-tumor effector T cell responses

We then asked whether the most abundant translocated bacteria identified by culturing and 

sequencing (specifically Enterococcus spp., Lactobacillus johnsonii, and Enterobacteriaceae 

(fig. 1)) induce distinct immune responses to facilitate anti-cancer immunity. Translocated 

bacteria or bacterial components can provide a diverse array of pathogen-associated 

molecular patterns (PAMPs) capable of agonizing various pattern recognition receptors 

(PRRs) and thus activating innate immune responses (26, 27). Thus, we hypothesized 

that translocated gut bacterial components activate dendritic cells (DCs) that consequently 

drive tailored T cell immunity (28). Indeed, mouse DCs stimulated with Enterococcus 
faecalis, Lactobacillus johnsonii, and Enterobacteriaceae member Escherichia coli (fig. 

2A) showed a marked increase in the surface expression of MHCII and co-stimulatory 

receptors, CD40, CD80 and CD86 (fig. 2B and C, fig. S6), whereas stimulation with 

Lactobacillus acidophilus, a common gut microbiota commensal and over-the-counter 

probiotic constituent, did not significantly activate DCs. The decreased immunogenic 

activity of Lactobacillus acidophilus has been previously described and may be due to 

immunomodulatory CpG motifs (29). We then investigated whether these gut microbiota 

translocators had a differential capacity to prime naïve T cells. We used an antigen-restricted 

DC-T cell priming system, MHC class-I-restricted, ovalbumin-specific, CD8+ T cells from 

OT-I TCR transgenic mice, and measured the activation and functional phenotypes of T cells 
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after the co-culture with DCs (fig. 2D) (28). While OT-I CD8+ T cells primed with DCs 

pulsed with all bacteria showed significantly higher activation (p<0.0001, fig. 2E), only DCs 

pulsed with highly abundant microbiota translocators E. faecalis, L. johnsonii, and E. coli 
induced significantly greater interferon-γ (IFN-γ) production in CD8+ T cells compared to 

the non-stimulated and L. acidophilus groups (p<0.0001, fig. 2F). These data are consistent 

with prior published studies highlighting the importance of DCs in anti-tumor immunity in 

the setting of ICT (30–33), and also are concordant with our prior work highlighting the 

differential capacity of specific gut bacteria in driving specific T cell immune responses (e.g. 

Th1 vs Th17, etc.) (28).

Mesenteric lymph nodes modulate gut bacteria-dependent anti-tumor priming responses 
in the tumor-draining lymph node and tumor

We hypothesized that gut bacteria translocation into secondary lymphoid organs, particularly 

the mesenteric lymph nodes (MLN), is critical for shaping extra-intestinal anti-tumor 

responses in the tumor draining lymph node (TDLN) and the tumor. As a first step, 

we implanted melanoma tumors into lymphotoxin-〈 knockout mice (LTA KO) that lack 

secondary lymphoid organs, including MLN, inguinal lymph nodes, and Peyer’s patches 

(34) followed by ICT administration. Indeed, LTA KO mice had a diminished response 

to ICT, despite having intact gut microbiota, compared to co-housed wild-type controls 

(fig. S7). Of note, while LTA KO mice have normal quantitative and qualitative immune 

functions in general (34), a number of immune defects such as lack of follicular dendritic 

cells, altered splenic morphology accompanied by changes in T and B cell content, and 

increased peripheral B cell numbers may have directly affected the ICT efficacy observed 

here. To further investigate the importance of secondary lymphoid organs in modulating gut 

bacteria dependent anti-tumor immune responses, we administered FTY-720 (fingolimod), 

a sphingosine-1-phosphate receptor modulator that sequesters lymphocytes in lymph nodes, 

to mice bearing melanoma tumors and receiving ICT. Mice receiving FTY-720 and ICT had 

larger tumor volumes compared to ICT only controls, despite having intact gut microbiota 

and intact lymph nodes (fig. S8). These data suggest that secondary lymphoid organs and 

lymphocyte egress from these lymphoid tissues are critical for optimal gut bacteria-induced 

anti-cancer responses in the setting of ICT.

We then asked whether specific secondary lymphoid organs had a differential capacity 

to modulate extra-intestinal anti-tumor responses. Hence, we surgically resected different 

secondary lymphoid organs (MLN, TDLN, or spleen) from mice bearing melanoma tumors 

with intact gut microbiota and then administered ICT (fig. 3A). Interestingly, only mice with 

MLN resection had significantly larger tumor volumes compared to control mice (receiving 

sham surgery) (p= 0.0144, fig. 3B). Similarly, while all surgical groups exhibited decreased 

survival time, only mice lacking MLN had significantly decreased survival compared to 

sham surgery control mice (p= 0.025, log-rank test, fig 3C). Further, MLN removal led to 

a significant decrease in bacterial load in TDLN (p=0.0101, fig. 3D) and tumor (p=0.0177, 

fig 3E), suggesting that MLN may play a role as a conduit of intact bacteria or gut bacteria-

derived components from the gut to extra-intestinal sites, such as TDLN and/or tumor.
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As surgical resection of MLN attenuated response to ICT, we further investigated the impact 

of MLN removal on anti-cancer immune responses (fig. 3F). The number of immune cells 

(CD45+ cells) in TDLNs was significantly lower in mice lacking MLN (p=0.0058, fig. 

S9A). MLN resection resulted in a significant decrease in CD11c+ dendritic cells (p=0.0009, 

fig. S9B; fig. S9C) as well as activated effector CD4+ and CD8+ T cell subsets (CD69+ 

and CD62L-) in TDLNs (fig. 3G–J, fig. S10). Indeed, the proportion of TDLN CD8+ T 

cells producing IFN-γ (fig. 3K, fig. S11) and Granzyme B (fig. 3L, fig. S11) was markedly 

decreased in mice lacking MLN. Further, MLN resection resulted in significantly lower 

leukocyte cell infiltration into the tumor (p=0.039, fig. S12) and a concomitant reduction in 

the proportion of tumor CD8+ T cells producing IFN-γ (fig. 3M, fig. S13) and Granzyme 

B (fig. 3N, fig. S13). These data suggest that MLNs likely play a critical role in mediating 

the gut bacteria-dependent extra-intestinal anti-tumor immune effects observed with ICT, 

perhaps by functioning as a gateway by which gut bacteria-induced immunogenic signals are 

delivered to more distal body niches.

Dendritic cells facilitate gut bacteria translocation into secondary lymphoid organs

We then investigated potential mechanisms by which gut microbiota translocation into 

secondary lymphoid organs was facilitated in the context of ICT. While combination 

anti-PD-1 and anti-CTLA-4 therapy has been shown to be clinically effective against 

various tumor types, the high incidence of developing immune-related adverse events, 

such as colitis, limits widespread use, particularly in older patients with multiple medical 

comorbidities (18). Thus, we explored the possibility that ICT-induced gut inflammation 

could lead to a disruption of intestinal epithelial barrier function thus promoting gut 

microbiota translocation (35). We orally administered fluorescein isothiocyanate (FITC)–

dextran to measure gut permeability in tumor-bearing mice treated with or without ICT 

(fig. S14A). ICT did not increase the serum FITC-dextran levels during the course of ICT 

(fig. S14B). Further, ICT did not alter the mRNA expression of ZO-1, an epithelial tight 

junction protein, in the intestine of mice (fig. S14C). These data suggest that increased gut 

permeability may not be a major mechanism of ICT-induced gut bacteria translocation in 

this preclinical model.

We leveraged the knowledge that DCs can retain live commensal gut bacteria for several 

days and carry or traffic microbiota to MLNs (36) and hypothesized that the ICT-induced 

gut bacteria translocation could be a DC-dependent phenomenon. To test this hypothesis, 

we utilized CD11c-dtr transgenic mice, in which the CD11c promoter (ltgax) directs the 

expression of a diphtheria toxin receptor (dtr), and administration of diphtheria toxin allows 

for the depletion of DC populations (37). Indeed, a single dose of intraperitoneal diphtheria 

toxin (DT) injection (100ng) efficiently depleted CD11c+ DC populations from MLNs (fig. 

4A and B). We then measured the total bacterial load in MLNs of wild-type and CD11c-dtr 

mice (as determined by quantifying genomic copies of 16s ribosomal RNA gene within the 

total genomic DNA extracted from MLNs of mice treated with or without ICT and DT). We 

observed that ICT induces bacterial translocation into MLNs in wild-type mice but not in 

CD11c-dtr mice treated with DT (fig. 4C). This result suggests a potential key role for DCs 

in ICT-induced bacterial translocation into secondary lymphoid organs.
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CCR7 has been shown to be important for the entry of lymphocytes and DCs into secondary 

lymphoid organs (38, 39). Hence, we next assessed the role of CCR7 in ICT-induced gut 

microbiota translocation into secondary lymphoid organs. Wild-type C57BL/6J and Ccr7−/− 

mice were implanted with melanoma tumors and treated with ICT. Consistent with our 

previous results, the increase in ICT-induced bacterial translocation into the MLNs and 

TDLNs was not observed in Ccr7−/− mice (fig. 4D and E). Prior studies have reported 

similar findings that augmenting inflammation in the gastrointestinal tract (e.g. Rnf5−/− mice 

(40) or Salmonella infection (39)) increases DC mobilization into MLNs and TDLNs in a 

CCR7-dependent manner.

Anti-PD-1 and/or anti-CTLA-4 blockade therapy promotes DC activation and migration 

in a T cell dependent manner (41–43). Thus, we hypothesized that ICT promotes pro-

inflammatory cytokine secretion by T cells within the GI tract, thereby further inducing 

activation and migration of mucosal DCs. To test this hypothesis, we first tested the direct 

stimulatory impact of ICT-induced pro-inflammatory cytokines or anti-PD-1/CTLA-4 mAbs 

on CD11c+ DCs ex vivo. Consistent with prior published reports (44–46), pro-inflammatory 

cytokines such as TNF-α, IFN-γ, and IL-1β, but not ICT monoclonal antibodies, induced 

significant upregulation of surface expression of costimulatory receptors (CD80 and CD86) 

and a chemokine receptor (CCR7) on DCs (p < 0.0001, fig. S15). We then tested whether 

ICT induces production of pro-inflammatory cytokines and activation of different DC 

subsets in the murine GI tract. Indeed, we observed that mice treated with ICT had increased 

expression of the pro-inflammatory genes Tnfa and Il1b in the small intestine and colon 

(p= 0.0262, fig. S16). Further, the number of DCs present in the lamina propria (LP) and 

the DC surface expression of MHC II were higher in ICT-treated mice compared to isotype 

treated controls (fig. S17A). The number of conventional DC1 (CD103+CD11b-CD11c+) 

and conventional DC2 (CD103-CD11b+CD11c+) cells expressing high levels of CD80 and 

MHC II molecules was also higher in ICT treated mice compared to isotype controls (fig. 

S17B and C) (47). These collective results suggest that ICT induced gut inflammation may 

play a role in promoting DC mobilization, and thus trafficking of gut bacteria into secondary 

lymphoid organs in a CCR7-dependent fashion.

Finally, to further confirm the ability of gut bacteria to reside within DCs (36), we isolated 

CD11c+ DCs from the MLN of wild-type mice treated with or without ICT and measured 

total bacterial load. Not only was the total number of CD11c+ cells higher in MLNs of 

mice treated with ICT (fig. 4F), but the total bacterial load was significantly higher within 

the DCs isolated from MLNs in mice treated with ICT as well (p= 0.0186, fig. 4G). 

Even when normalizing to the number of DCs recovered, the total bacterial load per DC 

was higher in mice treated with ICT (fig. 4H). To determine the identity of the bacteria 

trafficked by DCs, we performed 16S rRNA sequencing on gDNA extracted from MLN 

DCs in melanoma-bearing mice treated with or without ICT. The identified taxa in DCs 

(fig. 4I) were commensurate with the tissue and tumor microbiomes shown previously 

(fig. 1D). Interestingly, Enterobacteriaceae were significantly enriched in MLN DCs in 

mice treated with ICT (p= 0.049, fig. S18), findings which may partially explain our 

prior observation that Enterobacteriaceae (Shigella) was significantly enriched in tumor and 

secondary lymphoid organ tissues of mice treated with ICT despite low relative abundance 
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in the gut (fig. 1E and S3). Collectively, these results suggest DCs play an integral role in 

ICT-induced gut bacteria translocation mediated anti-tumor immune effects.

ICT induces lymphangiogenesis and dilation of high endothelial venules in MLN

Tumor development has been associated with distinct anatomical changes in the TDLN, 

a phenomenon termed ‘lymph node remodeling,’ characterized by 1) the expansion of 

lymphatic sinuses and proliferation of lymphatic endothelial cells (lymphangiogenesis) 

and 2) dilation of high endothelial venules (HEVs), and these changes facilitate the 

dissemination of cancer cells from draining lymph nodes to distal locations (48, 49). 

Further, lymph node remodeling has also been reported as a common feature of inflamed 

or immune-reactive lymph nodes (50–52). Thus, we investigated whether ICT-induced 

inflammation could induce MLN remodeling by treating mice with ICT or isotype controls 

and measuring key features of lymph node remodeling, (lymphangiogenesis and HEV 

dilation) via immunohistochemistry and microscopy. Indeed, ICT-treated animals showed a 

significant enlargement of HEVs in the MLN compared to isotype-treated counterparts (p < 

0.001, fig. 5A and B). Further, we observed an increase in the number of blood vessels (~2.6 

fold increase) and expansion of the medullary sinus within the MLN of ICT-treated animals 

compared to isotype controls, suggesting that ICT promotes a significant lymphangiogenesis 

within the ICT-treated MLN (p < 0.001, fig. 5C and D). These results are consistent with 

prior data showing that endothelial cell expansion in lymph nodes is induced by DCs 

(53) and our data showing that ICT induces DC recruitment into MLN (fig. 4F). In sum, 

ICT induces remodeling of MLN, dramatically increasing lymphangiogenesis and the HEV 

dilation within the MLN.

We then asked whether the ICT-induced remodeling affects the antigen restricting capacity 

of MLN, a concept commonly referred to as “the mucosal firewall” (36, 54). We performed 

intra-MLN injections of green fluorescent protein-expressing bacteria (GFP+ E. coli) 
following preconditioning with ICT and enumerated GFP+ E. coli colonies cultured from 

tumor, TDLN and blood 24 h after bacterial injection. We detected significantly higher 

GFP+ E. coli burden in the tumor (p=0.0176), TDLN (p=0.0017), and blood (p=0.0012) 

from mice treated with ICT compared to isotype-treated controls (fig. 5E–H). Finally, in 

order to determine if this observed phenomenon is DC-dependent, we measured the degree 

of bacterial dissemination from MLN to tumor in wild type C57BL/6 or DC depleted mice 

(CD11c-dtr mice treated with diphtheria toxin). There was no significant difference in the 

number of GFP+ bacteria in the tumors of wild type and DC-depleted mice suggesting 

that bacterial dissemination from MLN to tumor may not be dependent on DCs (Fig. S19). 

Together, these results suggest that ICT-induced lymphangiogenesis and dilation of HEVs in 

MLN may facilitate bacterial translocation from the MLN to distal locations such as tumor 

and TDLN.

Antibiotic treatment results in decreased gut bacteria translocation into MLN, decreased 
polyfunctional CD8+ T cell effector responses, and diminished ICT efficacy

Antibiotic exposure has been associated with inferior clinical outcomes in cancer patients 

receiving ICT (6, 12, 55–57). Germ-free mice and mice pre-treated with antibiotics are 

less responsive to ICT (13, 14). Yet, the mechanisms by which antibiotic treatment 
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attenuates effectiveness of ICT are unclear. We posited that antibiotic treatment would 

reduce overall levels of gut bacteria, thus reducing gut bacteria translocation into secondary 

lymphoid organs and tumor, thereby mitigating gut microbiota-induced immune activation 

and ultimately attenuating ICT efficacy.

We treated mice with or without antibiotics one week before tumor implantation and 

then proceeded with ICT (fig. 6A). Consistent with prior reports (12–14), antibiotic 

treatment induced an ICT hyporesponsive state in our preclinical cancer model (fig. 

6A). Further, antibiotic exposure significantly reduced gut microbiota translocation into 

MLNs (p=0.0006, fig. 6B). To further investigate the immunological impact of antibiotic-

induced gut microbiota depletion, we isolated CD8+ T cells from MLNs and TDLNs of 

control or antibiotic-treated mice and performed single-cell multiplex cytokine profiling 

(Isoplexis IsoSpark; 28-plex mouse adaptive immune IsoCode chip panel). Overall, the 

MLN and TDLN CD8+ T cell cytokine secretion profile was markedly distinct between the 

antibiotic-treated mice versus untreated controls (fig. 6C and D). Specifically, the number 

of CD8+ effector T cells (defined as T cells secreting IFN-γ, granzyme-B, MIP-1α (CCL3) 

and/or TNF-〈) was markedly reduced in antibiotic-treated mice (fig. 6E–F, fig. S20–21). 

Interestingly, T cell polyfunctionality, the ability of T cells to secrete two or more cytokines 

per cell, has been associated with positive clinical response to cancer immunotherapies 

(including ICT and CAR-T therapy) in mice and humans (58–61). Indeed, MLN and 

TDLN CD8+ T cells recovered from mice without antibiotic exposure and treated with 

ICT exhibited higher T cell polyfunctionality (fig. S22). Accordingly, the number of MLN 

and TDLN CD8+ T cells secreting interferon-γ (IFN-γ) or granzyme-B (GZMB) was lower 

in antibiotic-treated mice compared to untreated controls (fig. 6G and H).

We also measured the cytokine profiles of TDLN DCs. TDLN DCs isolated from antibiotic-

treated mice secreted markedly lower levels of GM-CSF, IL-1β, IL-4, and IL-6 upon PMA 

and Ionomycin stimulation compared to TDLN DCs recovered from untreated controls (fig. 

S23). Of note, secretion of IL-12, a cytokine crucial for Th1 T cell differentiation and 

anti-cancer immunity, was also higher in TDLN DCs from untreated controls (~7 fold higher 

in signal intensity, p=0.073, fig. S23). These results suggest that antibiotic-induced depletion 

of endogenous gut bacteria and a subsequent decrease in bacterial translocation results in 

reduced ICT efficacy via altering DC activation and CD8+ T cell effector responses in 

secondary lymphoid organs.

Finally, we sought to determine whether the antibiotic-induced ICT-hyporesponsiveness 

observed above could be reversed by administering probiotic therapy with translocator 

species E. faecalis and E. coli versus a control probiotic L. acidophilus (fig. S24). Treatment 

with L. acidophilus mitigated ICT efficacy, resulting in no significant difference in tumor 

volume when compared to isotype treated controls (fig. S24A). In contrast, mice treated with 

translocators E. coli and E. faecalis showed improved ICT efficacy (as measured by tumor 

volume) when compared to mice treated with isotype control (fig. S24A), and smaller (albeit 

not significant) tumor volumes when compared to ICT alone (fig. S24A). Furthermore, mice 

treated with translocator species exhibited higher bacterial load within the tumor (fig. S24B). 

Of note, in the E. coli/E. faecalis translocator treated group, the majority of cultured tumor 
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bacteria were identified as E. faecalis, further highlighting the translocation capacity of E. 
faecalis in this model.

DISCUSSION

In this study, we have identified gut bacteria translocation into secondary lymphoid organs 

as a general mechanism by which resident bacteria in the gut can shape and dictate extra-

intestinal anti-tumor immune responses in the setting of ICT. ICT enhances the ability of 

DCs to facilitate gut bacteria translocation into secondary lymphoid organs and also induces 

MLN remodeling. And specific gut bacteria taxa have a greater predilection or capacity to 

translocate, with a notable differential ability of some taxa to induce anti-cancer immune 

responses (fig. S25).

Numerous mechanisms are being posited by which gut bacteria can enhance anti-tumor 

responses in the setting of ICT: gut bacteria expressing peptide sequences homologous 

to tumor antigens/neoantigens (molecular mimicry) (23); gut bacteria-derived metabolites 

(SCFA (3), c-di-AMP (20), and inosine (9)); or direct activation of innate/adaptive immune 

cells to drive anti-tumor responses (22, 62). All of the aforementioned mechanisms 

require gut bacteria or gut bacteria-derived product engagement with host innate and/or 

adaptive immune effectors. The emerging concept of the tumor microbiome (63, 64) 

provides one possible explanation: resident bacteria or bacteria-derived metabolites within 

the tumor inducing anti-tumor effects. Of note, the relative abundance of Bacteroides 

(10–15%) and Firmicutes (40–70%) in our murine melanoma tumors are comparable 

to those observed in tumor microbiomes in human melanoma patients, 15% and 40% 

respectively (63). In addition, the highly abundant translocator taxa that we identified in 

our study, (Enterococcaceae, Lactobacillaceae, and Enterobacteriaceae) were also detected 

in melanoma tumors in humans (63). More intriguingly, these taxa identified in both murine 

and human specimens originate from the gut, as opposed to from adjacent tissues such as the 

skin. But an unanswered question is how do gut bacteria end up in such distal sites as the 

skin or lung?

One potential explanation is gut microbiota translocation. The ability of gut bacteria to 

translocate into secondary lymphoid organs, particularly MLN, has been well-described 

in infectious (65–68) and inflammatory diseases (69–71). Further, a seminal prior study 

highlighted the importance of gut bacteria translocation into secondary lymphoid organs 

for optimal cyclophosphamide immune-mediated anti-cancer responses, identifying a novel 

mechanism by which this commonly used alkylating chemotherapeutic agent induces host 

immune anti-cancer effects (24, 72). Our data suggest that an analogous process may be 

one mechanism by which ICT promote gut bacteria translocation into secondary lymphoid 

organs: ICT-induced gut inflammation creating an environment in which gut bacteria are 

more readily able to translocate into secondary lymphoid organs to engage innate and 

adaptive immune effectors.

Interestingly, while bacteremia, and the development of sepsis, is generally associated with 

increased morbidity and mortality, it has been associated with improved cancer outcomes in 

both preclinical models (73) and in patients (74, 75). And localized infections, proximal to 

Choi et al. Page 11

Sci Immunol. Author manuscript; available in PMC 2023 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



primary tumors, have also been associated with improved clinical outcomes in animals (dogs 

with osteosarcoma (76)) and humans (head and neck cancer (77) and osteosarcoma (78)). 

Yet the development of bacteremia has not been associated with ICT treatment. And our 

data did not identify any appreciable deficit in gut barrier integrity with ICT. In contrast, a 

previous study reported a reduction in transepithelial electrical resistance after anti-CTLA-4 

treatment, suggesting reduced intestinal barrier integrity with anti-CTLA-4 treatment (9). 

Nonetheless, in addition to gut bacteria translocation into secondary lymphoid organs, a low-

grade and subclinical gut bacteria translocation into the systemic circulation (as suggested in 

fig. 5E) could be an additional potential mechanism by which tumor microbiomes develop.

While the role of DCs in anti-cancer immunity is well-established, our data provide an 

additional layer of insight in that gut bacteria-mediated anti-cancer immune effects may also 

be dependent on DCs capacity to carry or traffic gut bacteria. Previous studies have reported 

that gut inflammation increases DC mobilization into MLNs and TDLNs in a CCR7 

dependent manner (39, 40). Our data corroborate these findings and also add that the degree 

of gut bacteria translocation (bacterial burden) into secondary lymphoid organs, especially 

MLN, is DC dependent. Additionally, a recent study reported the frequent intracellular 

localization of microbes in cancer and immune cells (63), thus further supporting the role of 

DCs in bacterial translocation.

MLN serves as an “intestinal mucosal firewall,” restricting gut-derived antigens within 

the MLN (36, 54). Interestingly, tumor development and inflammation (49–52) lead to 

distinct remodeling of lymph node architecture characterized by lymphangiogenesis and 

HEV dilation/dedifferentiation. Here, we report a similar MLN remodeling process which is 

induced by ICT. A potential mechanism for this process is that ICT induces DC recruitment 

into MLN (fig 4F), and lymph node endothelial expansion is induced by DCs (53). It was, 

however, surprising that gut bacteria traffic to the MLN appears to be DC dependent, but 

translocation from MLN and beyond was not. These results raise an intriguing possibility 

of whether ICT-induced MLN remodeling may result in a breach of the mucosal firewall 

and lead to increased dissemination of bacteria from MLN to extraintestinal sites, including 

the TDLN and tumor, via hematogenous spread. Thus, ICT may also provide a previously 

unappreciated innate immune activation effect, lymph node remodeling, leading to increased 

bacterial translocation into TDLN and tumors, in addition to the well-studied T cell specific 

effects.

A limitation of this study is that these phenomena were observed in a melanoma preclinical 

model, and it is unclear whether our findings are generalizable to other tumor models. 

Further, while combination ICT (anti-PD-1 and anti-CTLA-4) has been shown to be more 

effective than single agent ICT in melanoma (1, 2), combination therapy is also associated 

with a higher incidence of immune-related adverse events, including colitis, in cancer 

patients (79). Thus, the magnitude of gut microbiota translocation observed with single 

agent ICT could be quite different.

In summary, by illuminating a general mechanism by which gut bacteria shape or influence 

extraintestinal anti-cancer immune responses, our results could provide insight as to why 

different gut microbiota taxa or mechanisms are being espoused as critical for ICT efficacy. 
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Ultimately, multiple gut bacteria taxa and/or mechanisms have the potential to drive host 

anti-cancer immune responses, but one common prerequisite is that these microbes or 

microbe-derived metabolites must engage with key components of the innate and adaptive 

immune systems. As such, ICT and DC-mediated gut bacteria translocation into secondary 

lymphoid organs could serve as a fundamental mechanism by which these processes 

transpire. The general insights gained by this study are unlikely to be specific a particular 

immunotherapy or tumor. In the future, these principles could also apply to understanding if 

and how gut microbiota modulate the efficacy of other cancer immunotherapies.

MATERIALS AND METHODS

Study design

The goal of this study was to evaluate if and how gut bacteria translocation into secondary 

lymphoid organs modulates ICT efficacy in a preclinical melanoma model. Mice of different 

genotypes were used for tumor response experiments, with approved humane end points to 

terminate in vivo experiments, and for harvesting of mouse tissue (tumor and immune cells) 

for histopathology and ex vivo immune functional profiling assays. The number of samples 

combined and the number of independent experiments are included in the figure legends.

Mice.—C57BL/6J (Stock No: 000664), B6.FVB-1700016L21RikTg (Itgax-DTR/

EGFP)57Lan/J) (CD11c-DTR, Stock No: 004509) (37), C57BL/6-Tg(TcraTcrb)1100Mjb/J 

(OT-1, Stock No: 003831) (80), and B6.129P2(C)-Ccr7tm1Rfor/J (CCR7−/−, Stock No: 

006621) (81) mice were obtained from Jackson Laboratories and bred and maintained in 

the barrier facility at the University of Texas Southwestern Medical Center. All animals 

were kept on a 12-hour light-dark cycle and were fed standard mouse chow (Teklad 2916, 

irradiated). Sex-matched, 6–8 week old mice were used for all experiments and co-housed 

littermates were used as controls. The resource equation method was used for sample size 

determination (82, 83). Experiments were performed using protocols (APN 2017–102122) 

approved by the Institutional Animal Care and Use Committees of the UT Southwestern 

Medical Center.

Preclinical model of melanoma and immune checkpoint therapy.—B16-F10 cells 

(ATCC CRL-6475; RRID:CVC_0159) were grown at 37°C under 5% CO2 in DMEM 

medium supplemented with 10% heat-inactivated FBS (Sigma), 100 units/ml penicillin, 

100μg/ml streptomycin sulfate, 2mM L-glutamine, 1mM sodium pyruvate. C57BL/6J mice 

were fed sterile or antibiotic-supplemented (2 mg/ml streptomycin and 1500 U/ml penicillin 

G, Sigma) water. 1 ×105 B16-F10 cells were implanted subcutaneously into the right 

flank of mice. Four days after the tumor inoculation, mice were injected with 200μg 

anti-PD-1 antibody (RMP1–14, CD270, BioXcell) and anti-CTLA-4 antibody (9D9, CD152, 

BioXcell) or isotype control (Rat IgG2a, κ or Mouse IgG2b, respectively) intraperitoneally; 

an additional two treatments were given with 4d intervals. Tumor volumes were calculated 

using measurements from a digital caliper and the following formula: π/6 × length × width × 

height (84). Loss of survival was defined as death (with moribund mice being euthanized) or 

when tumor diameter > 2 cm in any dimension.
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Gut and Tissue Microbiome Profiling

Cultured Microbiota Enumeration.—Mice were euthanized and tissue samples (MLN, 

TDLN, spleen, and tumor) were resected and weighed (2 mL screw-cap microtube with 

500ul sterile reduced PBS and one sterile 5mm borosilicate glass beads (Sigma)). Samples 

were kept in a 2.5L portable anaerobic chamber with anaerobic gas packs (Mitsubishi Gas 

Chemical) during sample collection and transportation. Tissue samples were homogenized 

using TissueLyser II (Qiagen) at 30 Hz for 3 minutes; serially diluted in reduced PBS; and 

plated and incubated on BHI/Blood, YCFA, and CME0151 agar for 24–72 hours at 37°C 

under anaerobic conditions. Colony-forming units (CFUs) were counted.

16S rRNA sequencing and analysis.—gDNA was extracted from fecal and tissue 

samples using the MagAttract Power Microbiome DNA/RNA KF kit (Qiagen) and 

Kingfisher Flex (Thermo Fisher Scientific). 16S rRNA genes (variable region 4, V4) were 

amplified from each sample, sequenced, and analyzed as previously described (85). Please 

see Supplementary Materials for more details.

Quantitative PCR for tissue microbiome analysis.—Bacterial load in tissue was 

quantified by qPCR analysis (SsoAdvanced SYBR Green Supermix, Bio-Rad) of microbial 

gDNA using the universal 16S rRNA gene as previously described (85). Please see 

Supplementary Materials for more details.

Surgical removal of secondary lymphoid organs.—1 × 105 B16-F10 cells were 

implanted subcutaneously into the right flank of mice. On day 7 post tumor implantation, 

mice with tumor volumes of 100 mm3 ± 20 mm3 were randomized to 1) mesenteric lymph 

nodes (MLN) resection; 2) spleen resection; 3) inguinal lymph node (TDLN), defined as the 

right inguinal lymph nodes; or 4) sham, longitudinal abdominal incision only. Mice were 

anesthetized with vaporized isoflurane. Abdominal fur was removed using an electric razor 

followed by hair removal cream (Veet). The abdomen was then cleaned with betadine and 

70% ethanol. Mice were covered with sterile surgical drapes, and a longitudinal abdominal 

incision was then performed. Intestines were gently removed from the peritoneal cavity and 

placed on moistened sterile gauze pads (with sterile normal saline). MLN, TDLN, or spleen 

was carefully resected with surgical scissors and/or a cauterizer (Medline). Large blood 

vessels were cauterized and ligated. The abdominal wall was closed using absorbable sutures 

(5/0 PGA, Covetrus) in individual stitches; skin closed using nonabsorbable sutures (5/0 

Monofilament nylon, Covetrus) and tissue adhesive (veterinary surgical adhesive, Covetrus). 

The incision was then coated with triple antibiotic ointment. Aanalgesic carprofen (5 

mg/kg) was administered intraperitoneally immediately after surgery. Anesthesia was 

discontinued. Mice were initially placed on a heated surgical bed for recovery, but once 

moving transitioned to a heated cage. Mice were monitored closely and evaluated for 

pain and lethargy. Any moribund mouse (e.g. signs of lethargy, cool to touch, etc.) was 

immediately euthanized. At a 4-hour post-surgery check, buprenorphine (0.05 mg/kg SQ) 

was administered as needed for pain. For the first 72 hours, mice were monitored twice daily 

for pain management and infection monitoring. Mice found dead or euthanized for being 

moribund within the first 72 hours after surgery were not included in the final analysis, as 

mortality was attributed to either post-surgical bleeding or infection.
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Intra-MLN injection of GFP expressing Escherichia coli.—Escherichia coli 
expressing GFP (harboring pZe21-RBSmod + sfGFP) were grown in tryptic-soy broth with 

50 ug/mL kanamycin aerobically at 37°C for 24 hours. Bacterial cells were harvested (2000 

× G, 4°C) and washed three times with ice-cold sterile PBS. 1×105 B16-F10 cells were 

implanted subcutaneously into the right flank of C57BL/6J mice. On day 7 post tumor 

implantation, mice with tumor volumes of 100 mm3 ± 20 mm3 were then randomized. 

3 doses of 200μg anti-PD-1 antibody (RMP1–14, CD270, BioXcell) and anti-CTLA-4 

antibody (9D9, CD152, BioXcell) were given i.p. and daily for three consecutive days. 

GFP+ E. coli injection was performed 1 day after the last dose of ICT. Mice underwent 

abdominal surgery as described above. 1 × 107 GFP expressing E. coli were injected directly 

into the one or two nodes of MLN. After 24 hours post injection, mice were sacrificed 

and tumor, TDLN and blood were collected. Tissue homogenates and blood were spread on 

tryptic-soy agar plate with 50 ug/mL kanamycin and cultured aerobically for 24–48 hours at 

37°C. GFP expressing colonies were enumerated.

Single cell suspension preparation from secondary lymphoid organs.—
Dissected MLN and TDLN were stored on ice-cold sterile PBS. Tissue samples were 

mashed (with the plunger of a 10 ml syringe) and filtered (70 μm sterile cell strainer, Fisher) 

over a sterile petri dish. Cell strainer and plunger were washed with additional 15 ml of 

ice-cold PBS. The cell suspension was then collected from the petri dish and transferred to 

15ml conical tube. The cell pellet was harvested (300 G, 4°C for 10 min) and resuspended in 

ice-cold PBS.

Tumor infiltrating lymphocytes isolation.—Single cells from dissected tumor tissue 

were isolated using the Miltenyi Biotec gentleMACS™ Dissociators. Briefly, the tumor 

was cut into 2–4 mm pieces; mechanically dissociated; and then enzymatically digested 

using tumor dissociation kit enzyme D, R and A at 37°C for 40 min. Tumor tissue was 

further mechanically dissociated and filtered (70 μm sterile cell strainer). The single-cell 

suspension (10 ml of RPMI) was then centrifuged at 300 G, 4°C for 10 min. The cell 

pellet was suspended in RBC lysis buffer (Invitrogen) and incubated at RT for 2 min to 

remove erythrocytes. Cells were washed (10ml of PBS) and centrifuged at 300 G, 4°C for 10 

min. Cell pellets were suspended in 40% Percoll solution and carefully transferred to 15ml 

conical tubes containing 80% Percoll solution. Suspensions were centrifuged at 300 G at RT 

for 20 min (ascending rate: 5; descending rate: 0). Cells at the interface between 40% and 

80% Percoll solutions were carefully collected and washed once with PBS.

Flow cytometry analysis.—Single-cell suspensions of cells were transferred to U-

bottom 96 well plate (Corning) and centrifuged at 300 G, 4°C for 10 min. For surface 

staining, cells were incubated with zombie-yellow live/dead dye (Biolegend) diluted in PBS 

(1:500) at RT for 15 minutes. After washing with PBS, cells were incubated with Fcγ 
receptor blocking antibody (clone 2.4G2, BD Biosciences), diluted in FACS buffer, PBS 

supplemented with 2% heat-inactivated fetal bovine serum (FBS) and 2mM EDTA, for 10 

min at 4°C in the dark followed by surface staining for 30 min at 4°C in the dark. Cells were 

then washed with FACS buffer twice and suspended in FACS buffer for flow cytometry. 

For intracellular staining, cells were incubated in 200μl RPMI supplemented with 10% FBS, 
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50 μM 2-mercaptoethanol, 50ng/ml Phorbol 12-Myristate 13-Acetate (PMA), 750ng/ml 

Ionomycin and 10μg/ml Brefeldin-A (all Sigma) at 37°C with 5% CO2 for 4 hours. After the 

incubation, cells were washed with PBS. Cells were then incubated with zombie-yellow live/

dead dye (Biolegend) diluted in PBS (1:500) at RT for 15 minutes. After washing with PBS, 

cells were incubated with Fcγ receptor blocking antibody (clone 2.4G2, BD Biosciences), 

diluted in FACS buffer for 10 min at 4°C in the dark followed by surface staining for 30 min 

at 4°C in the dark. Cells were then fixed and permeabilized using the eBioscience™ Foxp3 

Fixation/Permeabilization kit (eBioscience) according to the manufacturer’s protocol. Cells 

were then stained with antibodies targeting intracellular proteins for 30 min at RT. Prior to 

the acquisition, cells were washed with FACS buffer and flow cytometry was performed on 

a BD FACSLyric. Flow cytometry gating strategy for the various experiments used in this 

study are detailed in fig. S11, S12, and S14. Antibodies used for flow cytometry are listed in 

Table S2.

Expansion of mouse splenic DCs by B16-FLT3L implant.—For the generation of 

spleen-derived dendritic cells (DCs), 5 × 106 B16-FLT3L cells (RRID:CVCL_IJ12) were 

injected subcutaneously into the right flank of C57BL/6J mice. After 10–16 d, spleens were 

harvested. CD11c+ DCs were isolated using CD11c microbeads and magnetic-activated cell 

sorting (Miltenyi). Of note, B16-FLT3L injection did not induce CD11c+ DC maturation, 

as reported previously (28, 86), as evidenced by a lack of proliferation of non-stimulated 

CD11c+DCs.

Ex vivo immune cell priming assay.—For the DC stimulation assays, CD11c+ DCs 

were stimulated with different bacterial lysates for 6 hours at 37°C under 5% CO2 and then 

washed with PBS. The surface expression of DC activation markers was measured by flow 

cytometry as described above. For T cell priming assay, naïve CD8+ T cells were isolated 

from the spleens of OT-I (C57BL/6-Tg(TcraTcrb)1100Mjb/J) mice (female, 6–8 weeks age). 

Cells were maintained in complete RPMI-1640 medium (Sigma) supplemented with 10% 

FBS, 55μm 2-Mercaptoethanol (Sigma), 100 units/ml penicillin and 100 μg/ml streptomycin 

sulfate at 37°C with 5% CO2. CD11c+ DCs were pulsed with different bacterial lysates 

and OVA 257–264 peptide for 6h followed by thorough washing, and then co-cultured with 

naïve OVA 257–264 specific OT-I CD8+ T cells for 7 days. After co-culture, cells were 

washed with PBS. T cell activation and IFN-γ production were measured by flow cytometry 

as described above.

Single-cell multiplex cytokine profiling of murine T cells.—Lymphocytes from 

MLNs and TDLNs of mice (C57BL/6J, female, 6–8 weeks old) treated ± antibiotics in 

the drinking water (2 mg/ml streptomycin and 1500 U/ml penicillin G) and implanted with 

B16-F10 tumors and treated with ICT (anti-PD1 and anti-CTLA-4 antibody treatment) were 

collected at one day after the last ICT and pooled into one sample per experimental group. 

Pooled lymphocytes were then cultured overnight in recombinant murine-IL-2 (1μg/ml, 

Peptrotech)-supplemented RPMI 1640 medium. CD8+ T cells were then isolated using CD8 

microbeads (Miltenyi) and stimulated with immobilized anti-mouse CD3 (Invitrogen) and 

soluble anti-mouse CD28 (Invitrogen) at 37 °C, 5% CO2 for 48 h. Approximately 30,000 

CD8+ T cells were loaded onto an IsoCode chip (IsoPlexis, New Heaven, CN) containing 
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~12,000 microchambers pre-patterned with a 28-plex antibody array, imaged for single cell 

location in microchambers and incubated at 37 °C, 5% CO2 for additional 16 h. Following 

the incubation period, ELISA detection was used to determine which combinations of 

proteins were being secreted by each individual cell. Secreted proteins from single cells 

were captured by antibody-barcoded slides; the polyfunctional profile (2+ proteins per cell) 

of single cells was evaluated by IsoPlexis’ software.

In vivo Dendritic Cell Depletion.—For dendritic cell depletion experiment, CD11c-

DTR mice were intraperitoneally injected with 100ng of diphtheria toxin (Sigma) as 

previously described (37). For confirming the dendritic cell depletion, spleens from the wild-

type mice and CD11c-DTR mice injected with diphtheria toxin or PBS were resected 48 

hours after diphtheria toxin injection and CD11c expression among the splenic lymphocytes 

were determined by flow cytometry.

Histology.—C57BL/6J mice were implanted with subcutaneous B16-F10 tumors and 

treated with 3 doses of ICT (200 ug anti-PD-1 and 200 ug anti-CTLA-4) or IgG Isotype 

control. 24 hours after the third dose of ICT, mice were euthanized and paired MLNs and 

TDLNs from individual mice were collected and placed into individual histology cassettes. 

Histology cassettes were immediately immersed in 4% paraformaldehyde in PBS and placed 

on a laboratory rocker at RT for 48 hours. Samples were transferred to 70% ethanol. The 

fixed lymphoid tissue was dehydrated, cleared, and infiltrated with paraffin. Samples were 

embedded for maximum surface area and sectioned longitudinally to optimize visualization 

of lymphatics running parallel to the plane of section. 5μm serial sections were collected 

for routine hematoxylin and eosin (H&E) and MECA-79 immunohistochemistry. H&E 

regressive staining was performed using Leica-Surgipath Selectech reagents (Hematoxylin 

560, Define Concentrate, Blue Buffer, Alcoholic Eosin Y 515, Deer Park, IL) on a Sakura 

DRS601 x-y-z robotic stainer.

Immunohistochemistry (IHC).—To identify high endothelial venules (HEVs) within 

lymph nodes, serial sections from the same tissue block used for H&E slides were obtained 

for IHC for the HEV-specific marker MECA-79. In detail, slides were deparaffinized in 

xylene and brought to water in graded ethanols prior to heat-mediated antigen-retrieval. 

MECA-79 antigenic epitopes in the lymph-node sections were revealed by 25-minute 

exposure to steam heated pH 6.0 antigen retrieval citra (Biogenex). After cooling, sections 

were buffered in PBS, and endogenous peroxidases quenched in 0.3% H2O2. Slides 

were washed with PBS and blocked against non-specific secondary binding with 2.5% 

normal goat serum for 30 minutes. Sections were then incubated with rat anti-MECA-79 

(SC-19602, Santa Cruz) diluted 1:500 in PBS overnight at 4°C. Following overnight 

incubation, slides were washed in PBS and bound MECA-79 primary was detected with 

Peroxidase Polymer conjugated Goat anti-Rat IgG (MP-7444–15, Vector Laboratories) for 

10 minutes and diaminobenzidine chromagen (SK-4103, Vector Laboratories) for 5 minutes 

with interceding PBS washes. MECA-79 stained sections were counterstained with light 

hematoxylin, dehydrated, cleared, and coverslips affixed with synthetic mounting media.
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Light Microscopy and Image Quantification.—Both H&E and MECA-79 IHC 

slides were imaged using an Aperio CS2 slide scanner (Leica Biosystems) at 40x 

magnification. Images were obtained at 10x and 20x using ImageScope software version 

12.3 (Leica Biosystems). To confirm differences in HEV dilation/dedifferentiation and 

lymphangiogenesis, images were independently reviewed by pathologist Bret M. Evers 

M.D. Ph.D., UTSW Histopathology Core, who was blinded to the treatment groups. For 

HEV diameter quantification, the longest axis of individual MECA-79 positive HEVs were 

measured using the ImageScope measurement tool. For quantification of differences in 

lymphangiogenesis, the total number of blood vessels per MLN were counted on the H&E 

images.

Statistical analysis.—GraphPad Prism v.9.2 was used for statistical analysis. All data 

sets were tested for normality (e.g. Shapiro-Wilk). Data sets with normal distribution were 

analyzed with parametric tests, such as standard student t-test or one-way ANOVA with 

Bonferroni post-test. For non-normal distributions, non-parametric tests, such as Mann 

Whitney U test or Kruskal Wallis with Dunn’s post-test, were applied. Two-way ANOVA 

with Bonferroni post-test was used for tumor growth curves. Survival was analyzed using 

the Mantel-Cox Log-rank test.
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Fig. 1. Immune Checkpoint Inhibitor Therapy (ICT) Induces Gut Microbiota Translocation into 
Secondary Lymphoid Organs and Tumor
(A) Schematic diagram of the strategy used to assess the temporal dynamics of bacterial 

translocation into secondary lymphoid organs and tumor in C57BL/6 mice (female, 6–8 

wks, Jackson) bearing B16-F10 melanoma tumors and receiving ICT (anti-PD-1 and anti-

CTLA-4 mAb, 200μg).

(B) Cultured bacterial levels in MLN, Spleen, TDLN, and Tumor. Tissue homogenates were 

serially diluted, plated on BHI/Blood agar, and cultured at 37°C under anaerobic conditions 

for 24–72 hours. n=3–4 per time point per experiment. Two experiments were performed for 

a final sample size of n=6–8 per group. Points represent values from individual mice. Bars 

represent the mean ± SEM. Green dotted lines represent the limit of detection.

(C) Relative abundance of cultured bacteria from secondary lymphoid organs and tumor, 

as determined by full length (V1-V9) 16S rRNA amplicon sequencing (Sanger). Sequences 

were entered into the NCBI standard nucleotide Basic Local Alignment Search (BLAST) 
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tool utilizing the rRNA/ITS databases. Bacterial species identification was ascertained from 

BLASTN results with the highest Total Score, with percent identity score >95% and E value 

<0.01.

(D-F) 16sRNA gene sequencing (V4 region) of tissue gDNA isolated from mice as detailed 

in fig. 1A. (D) Relative abundance of microbiota in MLN, spleen, TDLN, as determined 

by 16S rRNA sequencing. (E) Relative abundance of microbiota in the gut (feces), as 

determined by 16S rRNA sequencing. (F) Principal coordinate analysis of tissue and gut 16S 

rRNA sequencing data, weighted and normalized by Bray-Curtis distances. The proportion 

of variance accounted by each principal component is indicated
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Figure 2. Highly abundant microbiota translocators into secondary lymphoid organs activate 
DCs and induce anti-tumor effector T cell responses
(A) Schematic overview of the protocol used to assess the dendritic cell (DC)-activating 

potential of various gut bacteria. CD11c+ DCs were isolated from the spleen of C57BL6/J 

mice (female, 6–8 wks, Jackson) bearing B16-FLT3L tumors. Isolated DCs were stimulated 

with vehicle (PBS), Escherichia coli LPS, Enterococcus faecalis (Ef), Lactobacillus 
johnsonii (Lj), Escherichia coli (Ec), or Lactobacillus acidophilus (La) lysates for 6 hours. 

DCs were then analyzed by flow cytometry. Proportion of (B) MHC-II high, CD40+ cells 

and (C) MHC-II high, CD80+ cells among CD11c+ DCs.

(D) Schematic overview of the protocol used to assess T cell activating and priming 

potential of DCs stimulated with different gut bacteria. CD11c+ DCs were pulsed with 

OVA 257–264 peptide and bacterial lysates for 6h. Stimulated DCs were then co-cultured 

with naïve CD8+ T cells isolated from age- and sex-matched OT-I mice for 7d. Surface 

expression of T cell activation marker CD69 and intracellular interferon-γ (IFN-γ) were 
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quantified by flow cytometry. Proportion of (E) CD69+ and (F) IFN-γ+ cells among CD8+ 

T cells. Bars represent the mean ± SEM. All assays were performed in triplicate. Statistical 

analysis by Mann-Whitney test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Figure 3. Mesenteric lymph nodes modulate gut microbiota-dependent anti-tumor priming 
responses in the tumor-draining lymph node and tumor
(A) Schematic overview of the protocol used to assess the impact of surgical resection 

of secondary lymphoid organs or control (sham surgery involving longitudinal abdominal 

incision only) on ICT efficacy. C57BL/6 mice (female, 6–8 wks, Jackson) were inoculated 

with 1 × 105 B16-F10 cells subcutaneously in the right flank. Mice with comparable tumor 

volumes were randomized to receive surgery. 200μg anti-PD-1 and 200μg anti-CTLA-4 

mAb (ICT) were injected intraperitoneally on days 4, 8, and 12 post-surgery. n=8–9 per 

group.

(B) Tumor volume and (C) survival of tumor-bearing mice as detailed in fig 3A. Total 

bacterial load in tumor-draining lymph node (TDLN) (D) and tumor (E) of mice ± MLN 

± ICT, as determined by bacterial group (Eubacteria, all bacteria) quantitative-PCR (qPCR) 

of tissue gDNA collected from mice as detailed in fig. 3A. (D-E) Dotted lines represent the 

limit of detection. n=5–7 per group.
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(F) Schematic overview of the protocol used to assess the impact of MLN removal on the 

CD4+ and CD8+ T cell immune responses in TDLN and tumor of B16-F10 tumor-bearing 

mice receiving ICT. n=4–6 per group (G-L) Quantification of CD4+ and CD8+ T cell 

immune response in the TDLN of mice ± MLN by flow cytometry. The proportion of (G, 
I) activated (CD69+) and (H, J) effector (CD62L-) T cells among CD4+ T cells and CD8+ 

T cells respectively. The proportion of (K) IFN-γ and (L) granzyme B (GzmB) producing 

cells among CD8+ T cells. (M-N) Quantification of CD8+ T cell immune response in the 

tumor of mice ± MLN by flow cytometry. The proportion of (M) IFN-γ and (N) granzyme 

B (GzmB) producing cells among CD8+ T cells. For all experiments, points represent results 

from individual animals. n=4–6 per group. Bars represent the mean ± SEM. Statistical 

analysis by Mann-Whitney test. *P<0.05, **P<0.01, ***P<0.001.
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Figure 4. DCs facilitate ICT-induced gut microbiota translocation into secondary lymphoid 
organs
(A) Schematic overview of the protocol used to assess the impact of dendritic cell (DC) 

depletion on ICT-induced microbial translocation into MLN. CD11c-dtr mice (female, 

6–8 wks, Jackson) were injected with 100 ng diphtheria toxin (DT) intraperitoneally 

on day 3 post tumor implantation to deplete CD11c+ DCs. Wild-type C57BL/6 and DT-

treated CD11c-dtr mice were injected with 200μg anti-PD-1 and 200μg anti-CTLA-4 mAb 

intraperitoneally on days 4 and 8 post tumor implantation.

(B) Representative flow cytometry plot of CD11c+ subsets.

(C) Bacterial load of MLN in wild-type or CD11c-dtr DC-depleted mice ± ICT, as 

determined by bacterial group (Eubacteria, all bacteria) quantitative-PCR of MLN gDNA 

collected from mice as detailed in fig. 4A. n=4 per group. Bacterial load in (D) MLN and 

(E) TDLN recovered from wild-type (C57BL/6J) and Ccr7−/− mice ± ICT. n=10 per group. 

(C-E) Dotted lines represent the limit of detection.
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(F-H) Bacterial load in DCs. CD11c+ DCs were isolated from MLN of C57BL/6 mice 

(female, 6–8 wks, Jackson) bearing B16-F10 melanoma tumors ± ICT. gDNA was isolated 

from DCs (from 5 mice pooled into one sample). Bacteria load was determined by bacterial 

group (Eubacteria, all bacteria) quantitative-PCR of DC gDNA. (F) Number of CD11c+ 

DCs isolated from MLN of wild-type mice ± ICT. (G) Quantification of bacterial load 

within DCs isolated from MLN of mice ± ICT. Dotted line represents the limit of detection. 

(H) Quantification of bacterial load within DCs normalized to the total number of DCs. (I) 

Relative abundance of microbiota in dendritic cells, as determined by 16S rRNA sequencing. 

For (D, E), points represent results from individual animals. For (F-H), each point represents 

a single biological replicate with DCs pooled from 5 mice. Total of n=20 per group. Bars 

represent the mean ± SEM. Statistical analysis by Mann-Whitney test. *P<0.05, **P<0.01, 

***P<0.001.
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Figure 5. ICT induces MLN remodeling
(A-D) C57BL/6 mice (female, 6–8 wks, Jackson) were inoculated with 1 × 105 B16-F10 

cells subcutaneously in the right flank. 200μg anti-PD-1 and 200μg anti-CTLA-4 mAb 

(ICT) or isotype antibodies were injected intraperitoneally × 3. MLN tissue was fixed and 

processed for high endothelial venule marker MECA-79 immunohistochemistry staining (A, 

B) and hematoxylin and eosin (H&E) staining (C, D).

(A) Representative images of MECA-79 staining. Scale bar = 200μm. (B) Quantification of 

high endothelial venules (HEVs) diameter in MLN from mice bearing B16-F10 tumors and 

treated with or without ICT. n=5 mice per group. Statistical analysis by t-test. ***P<0.001

(C) Representative image of H&E staining. Scale bar = 600μm (Left panels), 300μm (Right 

panels). Yellow arrows indicate blood vessels in the medullary space (ms) (D) Quantification 

of total number of blood vessels in the MLN medullary space of mice bearing B16-F10 
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tumors treated with or without ICT. n=5 mice per group. Statistical analysis by t-test. 

***P<0.001

(E-H) C57BL/6 mice (female, 6–8 wks, Jackson) were inoculated with 1 × 105 B16-

F10 cells subcutaneously in the right flank. Mice with comparable tumor volumes 

were randomized before the ICT. 3 doses of ICT or isotype controls were injected 

intraperitoneally (n=6–7 per group). 1 × 107 GFP+ E. coli were injected directly into 

the MLN. Tumor, TDLN and blood was collected 24 hours post E. coli injection. Tissue 

homogenates and blood were spread on TSA-Kanamycin Agar plates. GFP+ colonies were 

enumerated after 24 hours of incubation at 37°C. (E) Representative image of GFP+ 

colonies. Quantification of GFP+ CFUs in (F) tumor, (G) TDLN and (H) Blood. Bars 

represent the mean ± SEM. Statistical analysis by t-test. *P<0.05, **P<0.01, ***P<0.001.
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Figure 6. Antibiotic treatment results in decreased gut microbiota translocation into MLN, 
decreased polyfunctional CD8+ T cell effector responses, and diminished ICT efficacy
Schematic overview of the protocol used to assess the impact of antibiotic-induced gut 

microbiota depletion on ICT efficacy, gut microbiota translocation and effector CD8+ T cell 

response. C57BL/6 mice (female, 6–8 wks, Jackson) were treated ± antibiotics (ABX, 2 

mg/ml streptomycin and 1500 U/ml penicillin G in drinking water) for 7d before B16-F10 

tumor inoculation. Mice were treated with 200μg anti-PD-1 and 200μg anti-CTLA-4 mAb 

intraperitoneally on days 4, 8, and 12 after tumor implantation

(A) Tumor volume of mice ± ABX and ICT. n=5–7 mice per group.

(B) Bacterial load of MLN in mice + ABX and ICT, as determined by bacterial group 

(Eubacteria, all bacteria) quantitative-PCR of MLN gDNA. n=8 per group. Dotted line 

represents the limit of detection.

Three-dimensional t-distributed stochastic neighbor embedding (t-SNE) plot of secretory 

cytokine profiles of CD8+ T cells isolated from (C) MLN (n=3 per group) and (D) TDLN 
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(n=10 per group) of mice ± ABX + ICT, as determined by using Isoplexis IsoSpark; 28-plex 

mouse adaptive immune panel. Only CD8+ T cells secreting at least one cytokine are 

represented.

tSNE plot displaying immune functional categories of CD8+ T cells from (E) MLN and (F) 

TDLN, defined as

Effector: Granzyme B, IFN-γ, MIP-1α, TNF-α
Stimulatory: GM-CSF, IL-12p70, IL-15, IL-18, IL-2, IL-21, IL-5, IL-7

Chemoattractive: BCA-1, CCL-11, IP-10, RANTES, CXCL1, CXCL13

Regulatory: FAS, IL-10, IL-13, IL-27, IL-4, sCD137

Inflammatory: IL-17A, IL-1β, IL-6, MCP-1

Absolute quantification of IFN-γ and Granzyme B secreting CD8+ T cells isolated from (G) 

MLN and (H) TDLN of mice ± ABX + ICT.

For (B), each point represents individual animal. For (C, D, E, F), each point represents 

individual CD8+ T cells isolated from MLN and TDLN of mice ± ABX + ICT. Bars 

represent the mean ± SEM. Statistical analysis by Mann-Whitney test. *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001.
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