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Tighter bound of quantum 
randomness certification for 
independent-devices scenario
Xin-Wei Fei1,2, Zhen-Qiang Yin1,2,3, Wei Huang2, Bing-Jie Xu2, Shuang Wang1,3, Wei Chen1,3, 
Yun-Guang Han1,3, Guang-Can Guo1,3 & Zheng-Fu Han1,3

Quantum random number generation attracts considerable attention, since its randomness inherently 
originates in quantum mechanics, but not mathematical assumptions. Randomness certification, 
e.g. entropy estimation, becomes a key issue in the context of quantum random number generation 
protocol. We study a self-testing protocol based on dimension witness, with the assumption of 
independent devices. It addresses the random number extraction problem in a practical prepare-and-
measure scenario with uncharacterized devices. However, the lower bound of min-entropy as a function 
of dimension witness is not tight in existing works. We present a tighter bound of analytic form, by 
introducing the Lagrangian multiplier method to closely analyze the optimization problem on average 
guessing probability. Through simulation, it turns out that a significantly higher random number 
generation rate can be achieved in practice.

Random numbers are widely used in modern science and technology, or even everyone’s daily life. Whether 
random numbers are of high quality or not depend on what kind of application we use them in. Some appli-
cations only require the random sequence to perform well in statistical tests, such as Monte Carlo simulation. 
Knuth has presented the most commonly used statistical test methods in his famous book “The Art of Computing 
Programming”, and standard testing suit has been developed by NIST1. However, random numbers used in cryp-
tography not only require good statistical properties, but also require security, or unpredictability2,3. That is, an 
attacker who knows part of the random sequence still have no information on other bits, he can only guess with 
a probability no more than one-half. Both classical cryptography and quantum cryptography require a secure 
random source4–6. A common and convenient way is to generate random sequence by a computer algorithm 
starting from a seed string, which is reffered to as pseudorandom number generator (PRNG). PRNG cannot be 
truly random, while security based on algorithm complexity make it not real unpredictable3. True random num-
ber generator (TRNG) collects unpredictable data from physical process. Specifically, this paper only concerns 
the quantum random number generation (QRNG)7, in which entropy gathering proceeds essentially based on the 
inherent randomness of quantum mechanics.

Many established methods of quantum optics may be used in QRNG3,8, where inherent randomness can 
be gathered by different quantum parameters of light, such as branching path9, time of arrival10–12, attenuated 
pulse13, photon counting14,15, vacuum fluctuations16–18, phase noise19–21, and amplified spontaneous emission22,23. 
Randomness certification of these methods may be foiled when the devices are untrusted or far from the theo-
retical model. It turns out that the device-independent (DI) QRNG24–28 offers a solution to the aforementioned 
problem. By exploiting the quantum violation of Bell inequalities, certified randomness can be achieved with-
out any assumption about the physical implementation. Unfortunately, the observation of a Bell inequality 
violation without loophole may be extremely challenging, since it requires an unrealistically high detection 
efficiency to eliminate the detection loophole28. Under such a circumstance, compromise solutions termed 
semi-device-independent QRNG29,30 were proposed to explore the tradeoff between loophole-free and imple-
mentation. These schemes outperform DI-QRNG by easier implementation and higher performance, with gen-
eral assumptions such as trusted preparation or measurement devices31–33, and a bounded dimension34–38.
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This paper addresses a semi-device-independent randomness certification problem in the prepare-and-measure 
scenario. Bowles et al.34 proposed the so-called dimension witness to bound the quantumness of a 
prepare-and-measure scenario could behave, with the assumption that the state preparation and measurement 
devices share no correlations. Based on the aforementioned witness, Lunghi et al.35 proposed a self-testing QRNG 
protocol (BQB14 for short)36 with a bounded dimension constraint, in which devices had no need to be character-
ized. The BQB14 derived a lower bound of the min-entropy as a function of dimension witness, and was capable 
of monitoring the randomness in real time. However, this min-entropy bound was not tight due to the relaxation 
in derivation procedures, with the domain of dimension witness. As a result, the extracted rate of random bits had 
a certain gap with the optimal one. We introduce the Lagrangian multiplier method to closely analyze the optimi-
zation problem on average guessing probability, and thus a tighter bound of analytic form is presented. As a result, 
lower guessing probability bound and higher min-entropy can be achieved. We compare the certified randomness 
between this paper and BQB14 by simulation analysis, it turns out that set-up with the proposed tighter bound 
achieves a significantly higher certified randomness rate in a practical self-testing QRNG.

Results
The prepare-and-measure scenario of QRNG is illustrated in Fig. 1, where a self-testing protocol is performed 
with uncharacterized devices on both sides. This paper follows the assumptions in BQB1435, where imperfection 
of preparation and measurement devices are modeled by internal random variable λ and μ. Specifically, it is 
assumed that devices share no correlations, where p(λ, μ) = qλ ⋅ rμ and ∑λqλ = ∑μrμ = 1. The random inputs of 
preparations and measurements are denoted by x ∈ {0, 1, 2, 3} and y ∈ {0, 1}, and a binary outcome is b =±1. In 
each round of the experiment, a qubit state ρλ

x  is prepared according to random input x and internal random 
variable λ, and a similar measurement μMy  is performed then.

In the stage of data collection, events {x, y, b} are collected to evaluate the observed probabilities p(b|x, y). 
Since the observer has no information on the variables λ and μ, he will observe
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Figure 1.  Self-testing QRNG protocol consists of three stages. Data collection: prepare-and-measure 
experiments are performed with uncharacterized devices, and events {x, y, b} are collected to evaluate the 
observed probabilities p(b|x, y). Entropy monitoring: dimension witness W is evaluated by the table of p(b|x, y), 
then the min-entropy can be bounded by an analytic function of variable W. Randomness extraction: random 
numbers are extracted according to the min-entropy in postprocessing.
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In the stage of entropy monitoring, dimension witness W is evaluated by the table of p(b|x, y)34,

W
p p p p
p p p p
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=
| − | | − |
| − | | − |

.

The witness W indicates that how quantum is the combination of preparations and measurements, while clas-
sical events yield W = 0 and quantum events give 0 ≤ |W| ≤ 134. To certify the randomness, we derive an upper 
bound f ′ (W) of the guessing probability pg as an analytic function of W, where 0 ≤ W ≤ 1. Assuming the choices 
of preparations and measurements are uniformly distributed, we have the average guessing probability
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where f ′ (W) is tighter than the previous result f (W)35, and the derivation process will be given in next section. 
Thus, the min-entropy has a tighter lower bound as an analytic function of W
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In the stage of randomness extraction, random numbers are extracted from the raw data. The lower bound 
f Wlog ( )2− ′  of Hmin is the parameter to determine how many random bits can be extracted in postprocessing.

Derivation of tighter bound
For given inputs x, y and local randomness λ, μ, the guessing probability is given by
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To certify the randomness, we need to derive an upper bound of the average guessing probability pg in (7). 
Instead of relaxation by inequalities in precious work35, we closely maximize the guessing probability with the 
witness constraint, which is considered to be the reason for the advantage of this paper. Assuming uniformly 
distributed x and y, we have
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where p(b = 1|x, y) are denoted in (1), (4) and (5).
It is hard to directly derive an analytic solution of the initial problem in (10). Thus, we first focus on a 

sub-problem of (10) and derive an upper bound on the average guessing probability over the inputs only, where 

λμp g  is maximized with the witness constraint Wλμ:
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As presented in previous work34, we have S S S( )/2xx x x
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The inequality in (15) holds due to − ≤ + −λμ λμW W2 1 1 (1 ) and 0 ≤ Wλμ ≤ 1. The convexity of the witness 
has been proved in the supplemental material of previous work35
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To summarize, we first present an analytic solution of the sub-problem in (11), then derive an upper bound of 
the average guessing probability problem in (10) using the convexity and decrement of the function f ′ (W). As an 
analytic function of W, the bound f ′ (W) is tighter than f (W) in previous work35.

Simulations
In this section, we perform numerical simulations to compare the proposed method and the original one.
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Figure 2(a) gives the comparison of theoretical bounds on average guessing probability. Curve I & II denote the 
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in (15) as a solution of the sub-problem in (11). Curve II is derived from Curve III & IV according to the relationship 
between the initial guessing probability problem in (10) and the sub-problem in (11). As Fig. 2(a) shows, Curve II 
proposed by this paper is tighter than Curve I in BQB14.

Figure  2(b) presents the comparison of the certified randomness in a practical QRNG with a 
prepare-and-measure set-up like BB8440. Off-the-shelf experimental parameters are set as follows: detection effi-
ciency ηd = 10%, dark count rate pd = 10 −5, detector misalignment de = 1%. Thus the overall QBER e = (0.5(1 − 
10− d/10)pd + ηdde)/(10−d/10 + (1 − 10−d/10)pd). The observed probabilities are assumed as follows: p(1|0,0) = 1 − e, 
p(1|1,0) = e,p(1|2,0) = p(1|3,0) = 1/2,p(1|0,1) = p(1|1,1) = 1/2,p(1|2,1) = 1 − e,p(1|3,1) = e. In Fig. 2(b), Orange & 
Blue lines denote the min-entropy using the bound f (W) in BQB14 and f′ (W) in this paper, respectively. Note 
that the dimension witness W = 0.996 when loss is zero due to detector misalignment, and the certified random-
ness has a gap between BQB14 and this paper, even when W is close to 1.

Conclusion
We have presented an analytic bound as a function of dimension witness to estimate the certified randomness, 
in the prepare-and-measure QRNG with independent devices. Compared with previous works, our work enjoys 
the advantage of a tighter bound of min-entropy. Simulations have demonstrated that self-testing QRNG with the 
proposed tighter bound achieves a significantly higher random number generation rate. Benefiting from the bet-
ter performance of this bound, the self-testing QRNG with similar assumption will accomplish a better balance 
between security and practicality. There are several issues to be addressed in future. First, the effects of finite-size 
random number and sampling should be considered. Second, how to guarantee the two-dimensional Hilbert 
space and independent devices assumptions are essential in practice.
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