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Simple Summary: Pancreatic cancer is a highly aggressive disease that is often diagnosed
too late for effective treatment. This study focuses on a group of epithelial cells that appear
to undergo a key transition during early tumor development. By closely examining these
cells, we identified specific gene patterns that can be used to assess disease severity and
predict patient outcomes. The findings also highlight how certain fibroblasts in the tumor
environment may contribute to cancer progression by influencing these transitional cells.
Moreover, differences in immune cell presence, especially natural killer cells, were observed
in patients with higher risk levels. Together, these insights may support earlier diagnosis,
more accurate risk assessment, and the development of tailored treatment approaches for
pancreatic cancer.

Abstract: Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive
cancer with poor prognosis, and its progression is driven by epithelial plasticity and tumor
microenvironment remodeling. Finding biomarkers that are responsible for the turning
point from the early stage to the aggressive phase would facilitate clinical management.
Method: In this study, we employed single-cell RNA sequencing to characterize a distinct
subpopulation of highly proliferative epithelial cells undergoing a transitional phase during
PDAC progression. By linking to cell cycle dysregulation, epithelial differentiation, and
clinical staging, we constructed a gene-based risk score model using Lasso Cox regression.
The expression of selected genes within the model was further validated using qPCR.
Results: The model demonstrated robust predictive power for patient prognosis, TNM
staging, and chemotherapy sensitivity. Further analysis of the tumor microenvironment
revealed intensified crosstalk between a specific fibroblast subpopulation and transitional
epithelial cells, mediated largely by collagen signaling. This stromal–epithelial interaction
was found to contribute to the fibrotic barrier characteristic of PDAC. Additionally, immune
profiling uncovered altered infiltration patterns, particularly involving natural killer (NK)
cells in high-risk patients, suggesting mechanisms of immune tolerance and inhibition.
Conclusions: These findings offer potential avenues for early detection, risk stratification,
and targeted therapeutic strategies in PDAC.

Keywords: pancreatic ductal adenocarcinoma progression; transitional epithelial cells; risk
stratification model; tumor microenvironment remodeling; immune infiltration
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1. Introduction
Pancreatic cancer (PCa) is one of the most aggressive cancers, characterized by ex-

tremely high mortality rates with a dismal 5-year survival rate of around 12% [1]. As
the predominant form of pancreatic neoplasms, PDAC accounts for more than 90% of all
diagnosed PCa cases [2]. A major challenge in treating PDAC is the lack of early diagnosis
and the limited efficacy of current therapeutic strategies [3]. Only 20% of patients with stage
I–II PCa are diagnosed at an earlier, resectable stage, while a majority of cases are identified
at advanced stages (III–IV), where therapeutic options are significantly constrained [4].
Currently, surgery remains the curative treatment option for PDAC, but it is only applicable
to patients diagnosed at the I–II stages.

Early-stage PDACs are often asymptomatic or present with nonspecific symptoms,
making timely diagnosis particularly difficult in clinical practice [5]. In response, substantial
efforts have been directed toward improving early detection through advances in imaging
techniques, molecular biomarker identification, and integrated diagnostic strategies [6,7].
Despite these advances, the lack of effective early diagnostic tools remains a critical barrier
to timely intervention and improved clinical outcomes.

During PDAC progression, tumor cells undergo increasing degrees of dedifferenti-
ation and epithelial plasticity, which are often accompanied by enhanced proliferative
activity and cell cycle deregulation [8–10]. Cell cycle dysregulation has been identified
as a key driver of PDAC, characterized by uncontrolled cell cycle progression that pro-
motes tumor proliferation and disease progression [9,11]. Notably, dysregulation of the
G2/M checkpoint has been linked to advanced-stage PDAC and poor patient survival [12].
Therefore, elucidating the mechanisms underlying cell cycle dysregulation and associ-
ated gene networks represents a promising approach to improving PDAC diagnosis and
early detection.

A dense, fibrotic stromal microenvironment represents one of the most prominent
pathological features of PDAC [13,14]. The intercommunication between stromal compart-
ment and tumor (epithelial) cells drives the development of PDAC [15]. Fibroblasts serve
as the primary cellular elements in the stromal compartment, acting as the main producers
and regulators of the ECM and collagen, driving its remodeling and significantly contribut-
ing to PDAC progression [16,17]. ECM remodeling forms the dense fibrotic stroma, which
acts as a physical barrier that impedes the penetration of chemotherapy drugs and hinders
immune cell infiltration [18]. Therefore, deciphering the interactions between the stroma
and tumor is crucial for understanding the pathogenesis of PDAC and identifying potential
therapeutic strategies to overcome these challenges.

The evolving immune landscape significantly supports both the initiation and progres-
sion of PDAC [19,20]. NK cells, as key components of the innate immune system, play a
critical role in shaping the immune landscape of PDAC [21]. Studies have demonstrated a
significant reduction in NK cell infiltration in human PDAC, with lower NK cell abundance
correlating with poorer patient survival [22,23]. NK cells exist in resting and activated
states. Activated NK cells are cytotoxic, while resting cells require stimulation to exert
similar effects [24]. These differences mainly arise from variations in surface receptor
expression. Spatial transcriptomic analyses further reveal that NK cells localize within
the PDAC tumor microenvironment and interact closely with malignant epithelial ductal
cells [25]. Collectively, the dynamic presence and functional heterogeneity of NK cells
underscore their importance in PDAC progression and support their potential utility as
prognostic biomarkers and immunotherapeutic targets.

In this study, single-cell RNA sequencing and bulk RNA sequencing were employed
to delineate a subpopulation of highly proliferative epithelial cells that are in a transitional
phase. By integrating the dysregulated cell cycle status and degree of cellular differentiation
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with the clinical stage, a gene-based risk score model was developed, which demonstrates
the ability to predict both prognosis and clinical stage. Furthermore, utilizing this risk score,
we conducted a comprehensive analysis of the cellular microenvironment, identifying
augmented intercellular communication between a specific fibroblast subpopulation and
epithelial cells, which was found to drive ECM remodeling, thereby revealing potential
mechanisms underlying the progression of PDAC. Additionally, the performance of the
risk score model was evaluated and validated in the context of various clinical outcomes,
TNM staging, and chemotherapy response, offering significant predictive value for clinical
treatment strategies. Finally, the correlation between immune cell infiltration patterns and
the risk score model was investigated, specifically on the different infiltration patterns of
NK cells between the high and low-risk group, offering insights into the mechanisms by
which immune cells may contribute to tumor immune evasion.

2. Materials and Methods
2.1. Single Cell Analysis

Eleven single cell samples (4 in PDAC stage I [PDACI], 4 in stage II [PDAC II],
and 3 in stage III [PDAC III]) from CAR001160 were obtained from the TISCH platform
(http://tisch.comp-genomics.org) (accessed on 20 February 2023). Each sample was curated
by performing scDblFinder to exclude the doublets, per-CellQCFilters to trim out the
outliers (low quality cells) followed by the use of MAD (Median Absolute Deviation,
MAD = 5) thresholds taking all the cells below median plus 5 times the MAD. Seurat objects
were merged together for normalization in ‘LogNormalize’ method with a 10,000 scale. The
maxLikGlobalDimEst function was applied to determine the appropriate dimensionality.
Samples under different layers in Seurat V5 were integrated by HarmonyIntegration for
batch correction. The FindMarkers function combined with the SingleR package was
implemented to annotate the clusters.

2.2. Differentiation Analysis

Differentiation status of each single cell was evaluated by CytoTRACE2 (ver-
sion 1.0.0) [26]. To include a sufficient number of single cells to be representative and
statistically robust, cells with a relative differentiation score above 60% and below 40%
were categorized into less differentiated group and more differentiated group, respectively.
The rest were regarded as middle group.

2.3. Differential Expression Analysis

Differentially expression analysis was calculated by the limma-voom framework
(version 3.62.1) [27] following a pseudobulk transformation. Only genes were included in
the analysis if their expression counts exceeded 10 in at least three samples. Differentially
expressed genes were defined based on the criteria of adjusted p-value (p.adj) < 0.05 and
absolute log2 fold change > 1.

2.4. Continuous Expressed Gene Pattern Analysis Across PDAC Stages

TDEseq (version 1.1) [28] was employed to identify genes with temporal dynamic
expression patterns in our PDAC stage-series single-cell RNA sequencing transcriptomic
data. Counts, normalized counts, and metadata were extracted from a subset of Seurat
objects to create a TDEseq object. Linear models were used to fit the expression data. A
minimum fold change of 0.1 and a significance threshold of 0.05 were set for defining
differential expression. The model type FastLMM was selected to account for possible
confounding effects. Genes that exhibited a continuous increase in expression throughout

http://tisch.comp-genomics.org
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the PDAC stages were labeled with the “SignificantDE” tag and classified under the
“growth” pattern in the TDEseq output.

2.5. Functional Enrichment Analysis

Single-cell gene set enrichment analysis was conducted by pseudobulk transforming
grouped by sample source and annotation, followed by the singleseqgset package. Single-
sample gene set enrichment analysis was applied on ranked genes for each clinical sample.
All the enrichment scores were shown in z-scored format. GO analysis was carried out
using the clusterProfiler (version 4.14.4) [29] package for over-representative analysis.

2.6. Lasso Cox Regression Model Construction and Validation

The gene expression profiles and clinical data of GSE79668 were downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/) (accessed on 1 September 2024)
as the test cohort, and PDAC TCGA PanCancer Atlas and PDAC QCMG data were
download from the cBioPortal platform (https://www.cbioportal.org/) (accessed on
8 September 2021) as the validation cohort. To avoid the error of negative value in log2
transformation, transcriptome data in a z-score scale were used for the downstream anal-
ysis. To narrow down the number of input genes for the Lasso Cox model due to the
overfitting issue, overlapped genes were fed to univariate Cox proportional hazards regres-
sion models first to test the survival correlation. Then, Lasso Cox regression was performed
with 10-fold cross-validation to determine the optimal lambda. For the assessment of the
accuracy and reliability of the survival model, Kaplan–Meier survival analysis and a further
time-dependent receiver operating characteristic (ROC) analysis was utilized on validation
cohort, and we chose the first 3 years as representative follow-up points for ROC analysis.

2.7. Evaluation of Association Between Risk Score and Clinical Outcomes

To investigate the association between the risk score and clinical outcomes such as over-
all survival, DFS (disease-free survival), PFS (progression-free survival), and DSS (disease-
specific survival), a univariate Cox proportional hazards regression model was imple-
mented using the coxph function from the survival package. Kaplan–Meier survival curves
were then generated for each survival outcome based on the risk score-stratified groups to
further illustrate the impact of our predictive model on survival. Log-rank tests were used
to assess the statistical significance of survival differences between groups. Kruskal–Wallis
tests were carried out for statistical analysis in the distribution of risk scores across clinical
outcomes. Dunn’s post hoc tests were applied to perform pairwise comparisons. The
results were adjusted for multiple comparisons using the Benjamini–Hochberg test.

2.8. Cell–Cell Communication Analysis

To investigate the mechanisms underlying the nature of epithelial cells categorized
by risk score, we added a risk score category label to the epithelial cells and incorporated
this information into the Seurat object. We then fed the entire Seurat object into CellChat
(version 2.1.2) [30] to explore the interactions between the epithelial cell groups and other
cell types in the dataset.

2.9. Immune Cell Infiltration Analysis

CIBERSORT was conducted for characterizing the immunol cellular composition from
TCGA gene expression profiles using LM22 as a reference, which contained 547 gene
signatures distinguishing 22 human immune cell phenotypes. Patient data were analyzed
and relate to the risk score category, which infer the distribution of immune-infiltrating
cells and its potential role in the diverse risk group.

https://www.ncbi.nlm.nih.gov/geo/
https://www.cbioportal.org/
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2.10. Quantitative Polymerase Chain Reaction (Qpcr)

qPCR was performed using KAPA SYBR® FAST qPCR kits. Each experiment was
independently repeated three times, with GAPDH used as the internal control. The relative
expression levels were calculated using the 2 − ∆∆Ct method based on the CT values. The
primer sequences were as follows: RPL39L forward: GAG-TGTTCCAATCTCTCCCTCA,
RPL39L reverse: CCACAATACCCTCCTGATTACCC; C16orf74 forward: TCCTGAAC-
GACAAGCACCTGGA, C16orf74 reverse: GGGTCGAT-TTCTCCATCATCTGG; UBE2C
forward: CTGGCGATAAAGGGATTTCTGCC, UBE2C reverse: GCGAGAGCTTATAC-
CTCAGGTC; GAPDH forward: GTCTCCTCTGACTTCAACAGCG, GAPDH reverse:
ACCACCCTGTTGCTG-TAGCCAA.

3. Results
3.1. Identification of a Highly Proliferative Epithelial Subpopulation Driving Early Tumorigenesis
in PDAC

To explore the interesting genes driving the early tumorigenesis of PDAC disease, we
analyzed 11 single-cell samples from the CAR001160 dataset, which represents different
clinical stages. After quality control and doublets cleaning, the transcriptomes of 19,362 cells
(7805 cells from PDACI, 7703 cells from PDAC II, and 3854 from PDAC III) were retained
for subsequent analysis. Ultimately, analysis returned the identification of eight major cell
populations based on the marker genes (Figure 1A,B).

Epithelial cells, as a key population, are widely considered as the primary cause
of PDAC initiation and progression. A focused analysis on epithelial cells may provide
more elaborate and more subtle biomarkers for the prognosis of PDAC. To this end, the
analysis proceeded by extracting the epithelial cells as a key population using the three
most well-known epithelial marker genes (Figure 1C), which were then re-normalized
to ensure consistency across the dataset, and the differentiation status of single cells was
assessed individually. It revealed that more advanced stages contained higher percentage of
less differentiated cells as well as cells in the G2M phase (Figure 1D,E), indicating potential
alterations in proliferative dynamics and cell cycle regulation. To further delineate the
heterogeneity within the epithelial cell population, we re-integrated the data and identified
eight major clusters. Of note, these eight clusters could be further organized into three
larger groups (circled) based on the similarities in gene expression patterns (Figure 1F).

Among these, sub-cluster 5 stood out by being clearly separated from the other
clusters in the UMAP plot, suggesting notable differences in its gene expression pattern.
Interestingly, this cluster also had the highest proportion of cells originating from PDAC
stage III patients, pointing to a possible link with more advanced disease (Figure 1G). We
next investigated the stemness markers on this cluster. However, rather than exhibiting
classic features of stem-like cells, sub-cluster 5 was characterized by unique gene expression
profiles, including genes like TOP2A, PBK, CCNB2, DLGAP5, CENPA, HMMR, MKI67,
and BIRC5, all of which are known to be associated with cell proliferation and cancer
progression [31–38] (Figure 1H). A further analysis on the distribution of cell cycling
and clinical stages across the sub-clusters (Figure 1J) display the characteristics of highly
proliferating and less differentiated traits in this sub-cluster. The G2M phase is particularly
noteworthy as it is often upregulated in cancer cells to sustain rapid proliferation and
overcome cell cycle checkpoints that would otherwise restrict tumor progression [39].
Moreover, GSEA analysis of sub-clusters revealed the dominance of cell cycle-related
pathways, including the G2M checkpoint, DNA repair, and E2F targets, emphasizing the
proliferative and genomic instability characteristics of sub-cluster 5 (Figure 1I).
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Figure 1. Overview of whole integrated single cell data and on re-analyzed epithelial cells. (A) Inte-
grated PDAC single cell data in UMAP with annotation. (B) Dot plot representation of the expression
of marker genes for annotation. The dot size represents the percentage of cells expressing each
marker gene, and the dot color indicates PDAC stage: light blue for PDAC I, sky blue for PDAC
II, and dark blue for PDAC III. (C) UMAP plots showing the expression level of epithelial cells
marker genes. (D) UMAP analysis of epithelial cell differentiation and clinical stage in PDAC: UMAP
embedding of epithelial cells grouped by clinical stage (left) and by corresponding CytoTRACE2
relative differentiation score (middle). The relative differentiation score ranges from 0 to 1. The
higher the score, the lower the degree of differentiation and the brighter the corresponding cell color
in UMAP. The right plot represents the distribution of differentiation group across PDAC stages.
(E) Cell cycle dynamics in different PDAC stages. (F) Re-normalized and re-integrated epithelial
cells in eight major clusters shown in UMAP. (G) Composition of PDAC grades across sub-clusters.
(H) Expression of stem-like genes as well as proliferation and cancer progression-associated genes in
epithelial sub-clusters. The X-axis represents clusters, and the Y-axis shows average expression levels.
(I) GSEA on epithelial sub-clusters with Hallmark collection. (J) Distribution of cell cycling (left) and
differentiation status (right) grouped by sub-clusters.

3.2. Development of a Prognostic Model Capturing the Transitional Phase of PDAC Progression

To capture the transitional trait that is reflective of tumor progression, we first selected
genes showing continuous upregulation along clinical stages within epithelial cells and
discovered 1576 genes which exhibited an enhancement in sub-cluster 5 throughout PDAC
progression. Next, we cross-referenced these with genes upregulated in less differentiated
cells. The intersection provided a focused list of candidates with potential relevance to
both cellular dedifferentiation and PDAC aggressiveness (Figure 2A). We applied subse-
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quent univariate Cox regression analysis to rigorously evaluate prognostic significance
(Figure 2B).

Figure 2. Lasso Cox model construction. (A) Overlap of genes associated with cellular differentiation
(left circle) and PDAC progression (right circle). (B) Identification of prognostic genes in PDAC
using univariate Cox regression analysis. (C,D) Lasso Cox regression analysis of seven input gene
lists responsible for PDAC advancement and epithelial identification. (E) Kaplan–Meier analysis of
patient in stratifying risk groups.

To enhance the predictive power of the model and capability of capturing epithelial
cell-specific transcriptomic features, we incorporated two well-established epithelial mark-
ers, EPCAM and KRT19, both of which are widely used to indicate epithelial status in
tumors and are established clinical biomarkers [40,41]. Ultimately, seven genes were incor-
porated into a Lasso Cox model construction, which allowed us to explore the prognostic
significance of these genes (Figure 2C,D).

To that end, four genes were selected to build up the final prognostic model:
RPL39L * 0.201 + C16orf74 * 0.283 + UBE2C * 0.0162 + KRT19 * 0.397. Their potential role
in clinical prognosis was validated using Kaplan–Meier survival curves to compare survival
outcomes between the gene expression level (Figure 2E).

Interestingly, UBE2C, though significant in univariate Cox regression, did not
show a statistically significant survival difference between low- and high-risk groups
in Kaplan–Meier analysis. This suggests that its prognostic value may not be fully captured
by a simple dichotomous risk classification, as UBE2C likely has a more nuanced relation-
ship with survival. Categorizing patients into low-, middle-, and high-risk groups revealed
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a significant association between UBE2C and survival, indicating that a multi-category
approach better reflects its gradual prognostic impact.

3.3. Validation and Performance Evaluation of the Prognostic Model in PDAC Progression and
Single-Cell Risk Stratification

To validate the predictive power, we cross-validated our model using two clinical
datasets, PDAC QCMG and additionally TCGA PanCancer Atlas, specifically focusing
on their association with survival outcomes. Risk scores were calculated individually
for each patient, and participants were stratified into low-risk and high-risk subgroups
accordingly. Across all cohorts, including the training and test sets, patients in the high-
risk group exhibited significantly shorter overall survival compared to those in the low-
risk group (Figure 3A). Additionally, time-dependent ROC curves provided additional
evidence supporting the capability of this model for prognosis prediction in PDAC disease,
particularly in distinguishing survival outcomes at early (first 1- to 3-year) time points

Figure 3. Validation of Lasso Cox model. (A) Kaplan–Meier curves and time-dependent ROC analysis
for 1- to 3- year survival for patients in high-risk and low-risk group. (B) Integration of test cohorts
after batch effect removal. (C) Risk score progression across clinical stages in PDAC integrated cohort.
Risk score distribution across PDAC clinical stages (left), and trend analysis of risk scores (right).
(D) Distribution of cells across PDAC stages within risk groups. The right plot further breaks down
into annotated cell-type composition within each risk group. The value in heat map displays the
composition in percentage format. (E) Composition of epithelial cells in different PDAC stages in
each risk group. (F) Composition of epithelial sub-clusters among risk groups.
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Next, we tested the model capability in predicting clinical stage progression. Consid-
ering the limited number of PDAC I and PDAC III cases, we combined the two test cohorts
after batch effect correction (Figure 3B) and collapsed Phase III and Phase IV into a ‘more
advanced’ group. The result exhibited a significant increase in risk scores between PDAC
I and PDAC II. However, no statistically significant differences were observed between
PDAC I and the more advanced group, nor between Phase II and the more advanced
group. Nonetheless, we observed a trend toward higher risk scores in the more advanced
group compared to Phase I (Figure 3C, left). Additionally, a Jonckheere–Terpstra test
was conducted and showed a significance (p < 0.05), indicating a monotonic increase in
risk scores as the disease progressed across stages (Figure 3C, right). The observed trend
reflects the transitional phase traits which are associated with early to intermediate tumor
progression. Its sensitivity to later stages may be inherently limited. It may also be partially
attributed to the relatively small sample size within the more advanced group, which
is often underrepresented due to clinical and sampling constraints. This could reduce
statistical power and the underestimation of true differences in risk scores.

Furthermore, we applied the model on a single-cell level by computing risk scores
for individual cells. Cells were categorized into three groups, lower, medium, and high,
based on tertiles. Then, we looked at the composition of annotated cell types across PDAC
stage within each risk group. As depicted in Figure 3D (right plot), in the low-risk group,
PDAC class III had a high percentage of macrophages and B cells, whereas epithelial cells
contributed the least (blue squares). Conversely, in earlier-stage PDAC (PDAC I) within the
low-risk group, epithelial cells were more abundant (orange squares). As the risk group
graded from low to high, the proportion of epithelial cells became more pronounced across
all PDAC stages (Figure 3E).

In the risk-grouped epithelial cells, besides sub-cluster 5, two additional clusters—sub-
cluster 1 and sub-cluster 2—showed a continuous enrichment as risk scores increased, and
sub-cluster 1 exhibited an enhanced epithelial–mesenchymal transition (EMT) signature in
previous GSEA analyses (Figures 1I and 3F). These findings confirm that epithelial cells,
particularly those with high-risk profiles, play a central role in driving PDAC progression.
Importantly, these high-risk epithelial cells appear to be more closely associated with a
transitional phase, where they are shifting from a differentiated to a more aggressive,
dedifferentiated, and proliferative state.

3.4. The Correlation of Marker Genes Expression with PDAC Progress

To further investigate the correlation between the expression of marker genes and
PDAC progression, we checked their expression across various clinical stages in PDAC
patient cohorts from the TCGA database. The results reveal that KRT19, C16orf74, and
UBE2C were upregulated in PDAC II patients compared to PDAC I, demonstrating the
positive correlation between the expression of these marker genes and disease progression
(Figure 4A).

The absence of statistical significance in the more advanced group may be attributed
to model limitations or the relatively small sample size, as previously noted. Next, we
compared their expression with the GTEx database, except KRT19, as it is a well-known
marker of PDAC, strongly associated with tumor progression and diagnosis. As expected,
RPL39L, C16orf74, and UBE2C suggested higher expression levels in the PDAC cohort
relative to normal pancreatic tissue (Figure 4B,C). Furthermore, we performed a qPCR
(quantitative polymerase chain reaction) to validate the marker genes expression in PCa
cancer cell lines Panc-1 and normal pancreatic ductal cells HPDE. The qPCR analysis
showed that RPL39L, C16orf74, and UBE2C mRNA was significantly increased in Panc-1
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cells compared to HPDE cells (Figure 4C), which highlights the important role of these
marker genes in tumorigenesis.

 
Figure 4. The correlation between the expression of marker genes and PDAC progression. (A) The
expression of marker genes at different stages of PDAC. (B) The differentially expressed genes
between PDAC tumor tissue (T) and normal pancreas (N) based on TCGA and GTEx databases.
(C) The expression levels of RPL39L, C16orf74, and UBE2C in PDAC tumor tissue (T) and normal
pancreas (N) based on TCGA and GTEx databases. PAAD = Pancreatic adenocarcinoma. (D) The
expression levels of RPL39L, C16orf74, and UBE2C mRNA in Panc-1 and HPDE cell lines are
shown. Statistical significance is indicated by asterisks: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and
p < 0.0001 (****).

3.5. Cell–Cell Communication Network Analysis Highlights Key Signaling Interactions and
Centrality in Collagen Pathways

To have a deeper understanding of the mechanisms underlying the behavior of epithe-
lial cells stratified by risk score, we utilized CellChat to examine cell–cell communication
dynamics. The results showed that fibroblast_2 exhibited increasingly enhanced signal-
ing interaction with epithelial cells as the risk score escalated (Figure 5A). Notably, this
interaction was particularly enriched in high-risk epithelial cells, which are more closely
associated with the transitional phase of PDAC. The netVisual_bubble plots revealed that
collagen signaling was particularly dominant in the interactions between fibroblasts and
epithelial cells, with a marked intensification of signaling between fibroblast_2 and epithe-
lial cells as the risk score increased (Figure 5B), and centrality score analysis reinforced the
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enhanced communication (Figure 5D). It implies that collagen signaling may actively drive
the progression of epithelial cells toward a transitional phase, thereby promoting tumor
progression and therapy resistance.

Figure 5. Cell signaling network on fibroblasts and scored epithelial cells. (A) Overview of the cell–cell
communication network in a weighted, directed format. Edge weights represent interaction strength.
The edge weights between different networks display intensity between cell groups. (B) Bubble plots
of significant interactions from fibroblast_1 (left) and fibroblast_2 (right) to risk-scored epithelial
cells. The names on the left represent the molecules of ligand–receptor pairs, with the following
color intensity: red indicates higher probability, while green indicates lower probability. (C) Gene
expression distribution of collagen signaling genes related to L-R pairs. (D) Centrality scores of
heatmap on collagen signaling. A higher intensity of green suggests greater importance in the
network, reflecting dominant roles in sending, receiving, mediating, and influencing intercellular
communication. (E) Violin plot of genes expression associated with ECM components and the TME.
(F) Single cell gene set enrichment analysis on collagen and immune-related pathways.

Analyzing those two cell types, we observed that the expression of SDC4, SDC1, ITGB1,
ITGA2, and ITGA3 molecules increased as their epithelial cells’ risk score rose, while CD44
expression decreased with higher risk scores (Figure 5C). As for fibroblast_2, we found
high expression of extracellular matrix (ECM)-related genes and components of the tumor
microenvironment (TME) (Figure 5E), stressing the idea that fibroblast_2-derived collagen is
a key mediator of epithelial cell transitions toward a more aggressive, invasive state [42,43].
Pathway analysis further revealed upregulated collagen and ECM pathways in fibroblast_2,
whereas fibroblast_1 displayed stronger immune-related signaling, including enriched
JAK-STAT, interleukin, interferon (IFN) pathways (Figure 5F). These finding suggest that
fibroblast_1 and fibroblast_2 may represent distinct fibroblast subtypes as the UMAP plots
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suggest, potentially aligning with inflammatory CAFs (iCAFs) and myo-fibroblastic CAFs
(myo-like CAFs) in PDAC progression.

3.6. Association of the Risk Model with Clinical Outcomes, Tumor Invasiveness, and
Drug Response

The univariate Cox regression analysis of the TCGA Pan Atlas cohort demonstrated
that the risk model significantly impacts progression-free survival (PFS), disease-free sur-
vival (DFS), and disease-specific survival (DSS), with higher risk scores correlating with
worse outcomes (Figure 6A). These findings were further supported by Kaplan–Meier sur-
vival curves, which showed that high-risk epithelial tumors exhibit a more invasive pheno-
type, accelerating disease progression and increasing disease-specific mortality (Figure 6B).

Figure 6. Association of risk model with survival outcomes, TNM staging, and drug response in
TCGA. (A) Univariate Cox regression analysis of risk score on PFS, DFS, DSS. (B) Kaplan–Meier curve
for PFS, DFS, and DSS based on risk score. Analysis of DFS conducted a multi-category approach
considering the dichotomous may not fully representative. (C) Boxplot showing the association
between risk score and M-stage, N-stage, and T-stage (from left to right). (D) Scatter plot of predicted
probability for T-stage based on risk score. Each point represents an individual sample, color-coded by
T-stage category (red for T1 + T2 and green for T3 + T4). The LOESS regression curve (blue) highlights
a positive trend. (E) Correlation between risk scores and Erlotinib sensitivity in pancreatic cancer
cell lines. Colored squares indicate significant correlations (p < 0.05), with numbers representing the
correlation coefficients. (F) Association between risk scores and gemcitabine treatment response in
PDAC patients.

Next, we evaluated the model’s ability to predict tumor (T), node (N), and metastasis
(M) stages. While risk scores were independent of N- and M-stages, the small number of
M1 cases (4 vs. 79 M0) may have limited statistical power. For T-stage, we collapsed the
data into two broader groups: ‘T1 + T2’ (smaller and less invasive tumors) and ‘T3 + T4’
(larger and more invasive tumors) groups due to the limited number of T1 and T4 cases.
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Although no significant association was found, patients in the ‘T3 + T4’ group tended to
have higher risk scores (Figure 6C). A scatter plot of T-stage probability against risk scores
showed a clear trend that as the risk score rises, the likelihood of a tumor being classified
as more invasive increases (Figure 6D).

Moreover, we observed a significant negative correlation between risk scores and the
IC50 of Erlotinib in pancreatic cancer cell lines, suggesting that patients with high-risk
scores may exhibit increased sensitivity to this drug (Figure 6E). However, in the TCGA
dataset, only one patient had received Erlotinib, limiting further analysis. The majority
of patients were treated with Gemcitabine, and notably, the complete response group
exhibited significantly lower risk scores compared to the partial response and clinical
progressive disease groups (Figure 6F).

3.7. Immune Infiltration Patterns and Their Association with Risk Scores in PDAC

To assess the immune infiltration degree by risk group, we performed CIBERSORT on
the TCGA Pan Atlas cohort, which contains 179 cases of transcriptomic data (Figure 7A).
The resulting heatmap suggested a negative correlation between several immune cell
populations: Macrophages.M1 and activated dendritic cells, resting NK cells and activated
NK cells, and monocytes and neutrophils (Figure 7B). This suggests that specific immune
cell types may be inversely regulated in the TME of PDAC, with potential implications for
tumor progression and immune evasion.

Figure 7. Immune landscape differences between risk groups reveal impaired NK cell activation in
high-risk PDAC. (A) Overview on immune cell composition grouping by risk score. (B) Correlation
of immune cell populations in the PDAC tumor microenvironment. (C) Comparison of resting and
activated NK cell composition across risk groups.

We further examined immune cell composition across the low- and high-risk groups.
A striking observation was the significant increase in the number of resting NK cells in the
high-risk group compared to the low-risk group (Figure 7C). This finding is particularly
relevant, as NK cells play a crucial role in immune surveillance, and their infiltration is
often correlated with tumor progression [44]. Interestingly, despite the inverse relationship
between resting NK cells and activated NK cells in the TME, we did not observe any
significant difference in the composition of activated NK cells between the risk groups,
indicating a redistribution of NK cell subsets within the TME, characterized by an increased
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proportion of resting NK cells in the high-risk group. However, in the absence of activation-
specific surface markers and functional transcriptomic profiles, the activation state of NK
cells cannot be conclusively characterized.

4. Discussion
The construction of a four-gene prognostic model based on single-cell and bulk tran-

scriptomes from PDAC provides a valuable tool for predicting patient outcomes and
guiding clinical management, particularly in early or intermediate stages of the disease
(before PDAC III). Our model effectively captures tumor progression from early to interme-
diate phases, aligning with biological and clinical observations. However, its sensitivity to
distinguishing later-stage disease appears to be limited, which may be attributed to both
biological and statistical factors.

Biologically, our findings suggest that the most significant shift in tumor behavior
occurs between Phase I and Phase II, characterized by epithelial plasticity, dedifferentiation,
and increased invasiveness [45,46]. This transition aligns with the upregulation of genes
linked to the transitional phase of epithelial cancer cells [47,48]. However, as tumors
advance into later stages (Phase III), additional mechanisms, such as immune evasion
and metastasis, may predominate the tumor behavior [49]. Since our model is built on
epithelial-centered transitional genes, its sensitivity to later-stage differentiation may be
reduced, as these genes become less relevant in highly aggressive, more heterogeneous
tumor states [50].

Statistically, sample imbalance may have contributed to limited sensitivity in later
stages, as there was a disproportionately small number of advanced-stage cases, making
it difficult to detect significant differences, even if a trend existed. Furthermore, higher
variance in the advanced-stage group may have diluted clear associations, impacting
statistical significance. While this study included TCGA-based analyses and validation
in a representative PDAC cell line, further studies using additional PDAC models and
patient-derived samples will be needed to better define the stage-specific relevance of
these markers.

Despite these limitations, the significant increase in risk scores from Phase I to Phase II
supports the robustness of our model in identifying early transitions to a more aggressive
epithelial state.

An essential finding of our study is the shift in receptor usage in epithelial cells
as the risk score increases. Specifically, we observed that CD44 expression decreased
while SDC1, SDC4, ITGB1, ITGA2, and ITGA3 were upregulated in high-risk tumors.
These molecules play crucial roles in cell adhesion, ECM interactions, and tumor invasion.
Their high expression levels have been associated with poor differentiation, advanced-
stage disease, and increased metastatic potential in PDAC [51–53]. The integration of our
risk model with clinical progression markers such as PFS, DSS, DFS, and T-stage further
supports its strong clinical relevance and association with tumor aggressiveness. Recent
studies using co-culture systems have shown that CAFs enhance collagen secretion and
establish direct cell–cell interactions that support PDAC cell survival and invasion [54,55].
In our study, we further highlight the critical role of fibroblast–epithelial interactions
in PDAC progression by identifying a strong connection between myo-like fibroblasts
and high-risk epithelial cells through collagen signaling. This reinforces the importance
of fibroblast activity in PDAC pathogenesis, reinforcing the need for fibroblast subtype-
specific therapeutic strategies.

We also found a strong correlation between risk scores and drug response. This
suggests that the risk model could serve as a predictive biomarker for chemotherapy
sensitivity, particularly in distinguishing patients who are under the transitional phase of
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disease. However, the limited clinical data restricted additional validation. In particular, the
limited availability of cases in certain clinical groups, such as patients with advanced-stage
disease or those treated with Erlotinib, may influence the reliability and applicability of
these findings. Future studies should validate these results in larger, independent cohorts
and explore the underlying molecular mechanisms driving these associations.

The immune microenvironment plays a crucial role in PDAC progression, with accu-
mulating evidence indicating a profound immunosuppressive landscape characterized by
impaired immune cell function [20,56]. Our study suggests that tumor progression may
be associated with an altered NK cell phenotype, potentially leading to impaired immune
surveillance during the epithelial transition phase. This aligns with previous reports that
PDAC tumors actively suppress NK cell activation through various immunosuppressive
mechanisms, including TGF-β signaling and inhibitory receptor expression [57].

The observed increase in resting NK cells in the high-risk group, without a correspond-
ing change in activated NK cells, reflects altered NK cell dynamics within the TME. There
may be several explanations for this phenomenon. For example, regulatory T cells and
myeloid-derived suppressor cells in the tumor immune microenvironment can inhibit NK
cell activation despite increased infiltration by releasing transforming growth factor-beta,
interleukin-10, and nitric oxide [58]. Tumor cells can also activate the signal transducer and
activator of transcription 3 (STAT3) signaling pathway to suppress NK cell activity [59].
These immunosuppressive processes may be part of a broader immune-evasive strategy
adopted by aggressive epithelial cells, contributing to the selective enrichment of resting
NK cells. In addition, the increase in resting NK cells in the tumor microenvironment may
represent a compensatory response yet potentially exhibits tumor-promoting activity [60].
Due to the limitation of our study, future studies integrating NK cell phenotyping with tran-
scriptomic analysis will be essential to elucidate the underlying mechanisms of this shift,
as well as to better define the role of NK cells in immune modulation and risk stratification
in this context.

In conclusion, our findings emphasize the importance of integrating molecular profil-
ing with immune landscape analysis to improve risk stratification in PDAC. By identifying
key drivers of tumor progression, our study lays the foundation for future research aimed
at developing targeted therapies that disrupt fibroblast-mediated tumor interactions and
enhance immune responses. Further exploration of fibroblast subtypes and NK cell dys-
function in PDAC may open new ways for improving patient outcomes.

5. Conclusions
In conclusion, this study reveals the transcriptomic heterogeneity between subgroups

of transitional-phase epithelial cells in PDAC and establishes a gene-based risk model
associated with patient survival and disease stage. Furthermore, the TME, including
epithelial–fibroblast interactions and immune infiltration pattern, was analyzed in the
context of the risk model for its potential role in PDAC progression. Overall, these findings
present a promising diagnostic model and highlight potential therapeutic targets for PDAC.
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Large-Associated Protein 5 (DLGAP5) Is a Putative Prognostic Biomarker for Intraductal Papillary Mucinous Neoplasm (IPMN)
of Pancreas. Clin. Cancer Res. 2024, 30, B037. [CrossRef]

35. Zheng, C.; Zhang, T.; Li, D.; Huang, C.; Tang, H.; Ni, X.-F.; Chen, B. Upregulation of CENPM Facilitates Tumor Metastasis via the
mTOR/p70S6K Signaling Pathway in Pancreatic Cancer. Oncol. Rep. 2020, 44, 1003–1012. [CrossRef]

36. Lin, A.; Feng, J.; Chen, X.; Wang, D.; Wong, M.; Zhang, G.; Na, J.; Zhang, T.; Chen, Z.; Chen, Y.-T.; et al. High Levels of Truncated
RHAMM Cooperate with Dysfunctional P53 to Accelerate the Progression of Pancreatic Cancer. Cancer Lett. 2021, 514, 79–89.
[CrossRef] [PubMed]

37. Yang, R.; Liang, X.; Wang, H.; Guo, M.; Shen, H.; Shi, Y.; Liu, Q.; Sun, Y.; Yang, L.; Zhan, M. The RNA Methyltransferase NSUN6
Suppresses Pancreatic Cancer Development by Regulating Cell Proliferation. eBioMedicine 2021, 63, 103195. [CrossRef]

38. Boidot, R.; Vegran, F.; Jacob, D.; Chevrier, S.; Gangneux, N.; Taboureau, J.; Oudin, C.; Rainville, V.; Mercier, L.; Lizard-Nacol, S.
The Expression of BIRC5 Is Correlated with Loss of Specific Chromosomal Regions in Breast Carcinomas. Genes. Chromosomes
Cancer 2008, 47, 299–308. [CrossRef] [PubMed]

39. Ujiki, M.B.; Ding, X.-Z.; Salabat, M.R.; Bentrem, D.J.; Golkar, L.; Milam, B.; Talamonti, M.S.; Bell, R.H.; Iwamura, T.; Adrian, T.E.
Apigenin Inhibits Pancreatic Cancer Cell Proliferation through G2/M Cell Cycle Arrest. Mol. Cancer 2006, 5, 76. [CrossRef]

https://doi.org/10.1016/j.semcancer.2019.08.004
https://doi.org/10.1158/2159-8290.CD-24-0002
https://doi.org/10.1016/j.ebiom.2022.103958
https://doi.org/10.3390/cancers14040995
https://doi.org/10.3748/wjg.v27.i24.3483
https://www.ncbi.nlm.nih.gov/pubmed/34239264
https://doi.org/10.1080/2162402X.2020.1845424
https://doi.org/10.1016/j.bbrc.2017.12.083
https://doi.org/10.1111/j.1600-065X.2006.00457.x
https://www.ncbi.nlm.nih.gov/pubmed/17100877
https://doi.org/10.1101/2024.05.23.593868
https://doi.org/10.1101/2024.03.19.585637
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1186/s13059-024-03237-3
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41596-024-01045-4
https://doi.org/10.1016/j.bbadis.2017.10.019
https://doi.org/10.3389/fphar.2021.772926
https://www.ncbi.nlm.nih.gov/pubmed/35115926
https://doi.org/10.1158/1557-3265.LIQBIOP24-B037
https://doi.org/10.3892/or.2020.7673
https://doi.org/10.1016/j.canlet.2021.05.011
https://www.ncbi.nlm.nih.gov/pubmed/34044069
https://doi.org/10.1016/j.ebiom.2020.103195
https://doi.org/10.1002/gcc.20533
https://www.ncbi.nlm.nih.gov/pubmed/18181175
https://doi.org/10.1186/1476-4598-5-76


Cancers 2025, 17, 1813 18 of 18

40. Gires, O.; Pan, M.; Schinke, H.; Canis, M.; Baeuerle, P.A. Expression and Function of Epithelial Cell Adhesion Molecule EpCAM:
Where Are We after 40 Years? Cancer Metastasis Rev. 2020, 39, 969–987. [CrossRef]

41. Barriere, G.; Fici, P.; Gallerani, G.; Fabbri, F.; Zoli, W.; Rigaud, M. Circulating Tumor Cells and Epithelial, Mesenchymal and
Stemness Markers: Characterization of Cell Subpopulations. Ann. Transl. Med. 2014, 2, 109. [CrossRef]

42. Yang, X.; Lin, Y.; Shi, Y.; Li, B.; Liu, W.; Yin, W.; Dang, Y.; Chu, Y.; Fan, J.; He, R. FAP Promotes Immunosuppression by
Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3–CCL2 Signaling. Cancer Res. 2016, 76, 4124–4135.
[CrossRef] [PubMed]

43. Mezzapelle, R.; Leo, M.; Caprioglio, F.; Colley, L.S.; Lamarca, A.; Sabatino, L.; Colantuoni, V.; Crippa, M.P.; Bianchi, M.E.
CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers 2022, 14, 2314.
[CrossRef] [PubMed]

44. Ghiringhelli, F.; Ménard, C.; Martin, F.; Zitvogel, L. The Role of Regulatory T Cells in the Control of Natural Killer Cells: Relevance
during Tumor Progression. Immunol. Rev. 2006, 214, 229–238. [CrossRef]

45. Wang, X.; Xue, X.; Pang, M.; Yu, L.; Qian, J.; Li, X.; Tian, M.; Lyu, A.; Lu, C.; Liu, Y. Epithelial–Mesenchymal Plasticity in Cancer:
Signaling Pathways and Therapeutic Targets. MedComm 2024, 5, e659. [CrossRef] [PubMed]

46. Tam, W.L.; Weinberg, R.A. The Epigenetics of Epithelial-Mesenchymal Plasticity in Cancer. Nat. Med. 2013, 19, 1438–1449.
[CrossRef] [PubMed]

47. Martin, T.A.; Ye, L.; Sanders, A.J.; Lane, J.; Jiang, W.G. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In
Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013.

48. Dongre, A.; Weinberg, R.A. New Insights into the Mechanisms of Epithelial–Mesenchymal Transition and Implications for Cancer.
Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [CrossRef]

49. Li, Y.; Liu, F.; Cai, Q.; Deng, L.; Ouyang, Q.; Zhang, X.H.-F.; Zheng, J. Invasion and Metastasis in Cancer: Molecular Insights and
Therapeutic Targets. Signal Transduct. Target. Ther. 2025, 10, 57. [CrossRef]

50. Nussinov, R.; Yavuz, B.R.; Jang, H. Molecular Principles Underlying Aggressive Cancers. Signal Transduct. Target. Ther. 2025,
10, 42. [CrossRef]

51. Yao, W.; Rose, J.L.; Wang, W.; Seth, S.; Jiang, H.; Taguchi, A.; Liu, J.; Yan, L.; Kapoor, A.; Hou, P.; et al. Syndecan1 Is a Critical
Mediator of Macropinocytosis in Pancreatic Cancer. Nature 2019, 568, 410–414. [CrossRef]

52. Zhu, Y.; Zheng, D.; Lei, L.; Cai, K.; Xie, H.; Zheng, J.; Yu, C. High Expression of Syndecan-4 Is Related to Clinicopathological
Features and Poor Prognosis of Pancreatic Adenocarcinoma. BMC Cancer 2022, 22, 1042. [CrossRef] [PubMed]

53. Zhang, C.; Shen, Q.; Liu, F.; Yang, F.; Gao, M.; Jiang, X.; Li, Y.; Zhang, X.; En, G.; Pan, X.; et al. SDC1 and ITGA2 as Novel
Prognostic Biomarkers for PDAC Related to IPMN. Sci. Rep. 2023, 13, 18727. [CrossRef] [PubMed]

54. Begum, A.; McMillan, R.H.; Chang, Y.-T.; Penchev, V.R.; Rajeshkumar, N.V.; Maitra, A.; Goggins, M.G.; Eshelman, J.R.; Wolfgang,
C.L.; Rasheed, Z.A.; et al. Direct Interactions with Cancer-Associated Fibroblasts Lead to Enhanced Pancreatic Cancer Stem Cell
Function. Pancreas 2019, 48, 329–334. [CrossRef]

55. Zhang, T.; Ren, Y.; Yang, P.; Wang, J.; Zhou, H. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma. Cell Death
Dis. 2022, 13, 897. [CrossRef] [PubMed]

56. Steele, N.G.; Carpenter, E.S.; Kemp, S.B.; Sirihorachai, V.; The, S.; Delrosario, L.; Lazarus, J.; Amir, E.D.; Gunchick, V.; Espinoza, C.;
et al. Multimodal Mapping of the Tumor and Peripheral Blood Immune Landscape in Human Pancreatic Cancer. Nat. Cancer
2020, 1, 1097–1112. [CrossRef]

57. Gao, Y.; Souza-Fonseca-Guimaraes, F.; Bald, T.; Ng, S.S.; Young, A.; Ngiow, S.F.; Rautela, J.; Straube, J.; Waddell, N.; Blake, S.J.; et al.
Tumor Immunoevasion by the Conversion of Effector NK Cells into Type 1 Innate Lymphoid Cells. Nat. Immunol. 2017, 18,
1004–1015. [CrossRef]

58. Cózar, B.; Greppi, M.; Carpentier, S.; Narni-Mancinelli, E.; Chiossone, L.; Vivier, E. Tumor-Infiltrating Natural Killer Cells. Cancer
Discov. 2021, 11, 34–44. [CrossRef]

59. Witalisz-Siepracka, A.; Klein, K.; Zdársky, B.; Stoiber, D. The Multifaceted Role of STAT3 in NK-Cell Tumor Surveillance. Front.
Immunol. 2022, 13, 947568. [CrossRef]

60. Mao, C.; Chen, Y.; Xing, D.; Zhang, T.; Lin, Y.; Long, C.; Yu, J.; Luo, Y.; Ming, T.; Xie, W.; et al. Resting Natural Killer Cells Promote
the Progress of Colon Cancer Liver Metastasis by Elevating Tumor-Derived sSCF. eLife 2024, 13, RP97201. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10555-020-09898-3
https://doi.org/10.3978/j.issn.2305-5839.2014.10.04
https://doi.org/10.1158/0008-5472.CAN-15-2973
https://www.ncbi.nlm.nih.gov/pubmed/27216177
https://doi.org/10.3390/cancers14092314
https://www.ncbi.nlm.nih.gov/pubmed/35565443
https://doi.org/10.1111/j.1600-065X.2006.00445.x
https://doi.org/10.1002/mco2.659
https://www.ncbi.nlm.nih.gov/pubmed/39092293
https://doi.org/10.1038/nm.3336
https://www.ncbi.nlm.nih.gov/pubmed/24202396
https://doi.org/10.1038/s41580-018-0080-4
https://doi.org/10.1038/s41392-025-02148-4
https://doi.org/10.1038/s41392-025-02129-7
https://doi.org/10.1038/s41586-019-1062-1
https://doi.org/10.1186/s12885-022-10128-y
https://www.ncbi.nlm.nih.gov/pubmed/36199068
https://doi.org/10.1038/s41598-023-44646-x
https://www.ncbi.nlm.nih.gov/pubmed/37907515
https://doi.org/10.1097/MPA.0000000000001249
https://doi.org/10.1038/s41419-022-05351-1
https://www.ncbi.nlm.nih.gov/pubmed/36284087
https://doi.org/10.1038/s43018-020-00121-4
https://doi.org/10.1038/ni.3800
https://doi.org/10.1158/2159-8290.CD-20-0655
https://doi.org/10.3389/fimmu.2022.947568
https://doi.org/10.7554/eLife.97201

	Introduction 
	Materials and Methods 
	Single Cell Analysis 
	Differentiation Analysis 
	Differential Expression Analysis 
	Continuous Expressed Gene Pattern Analysis Across PDAC Stages 
	Functional Enrichment Analysis 
	Lasso Cox Regression Model Construction and Validation 
	Evaluation of Association Between Risk Score and Clinical Outcomes 
	Cell–Cell Communication Analysis 
	Immune Cell Infiltration Analysis 
	Quantitative Polymerase Chain Reaction (Qpcr) 

	Results 
	Identification of a Highly Proliferative Epithelial Subpopulation Driving Early Tumorigenesis in PDAC 
	Development of a Prognostic Model Capturing the Transitional Phase of PDAC Progression 
	Validation and Performance Evaluation of the Prognostic Model in PDAC Progression and Single-Cell Risk Stratification 
	The Correlation of Marker Genes Expression with PDAC Progress 
	Cell–Cell Communication Network Analysis Highlights Key Signaling Interactions and Centrality in Collagen Pathways 
	Association of the Risk Model with Clinical Outcomes, Tumor Invasiveness, and Drug Response 
	Immune Infiltration Patterns and Their Association with Risk Scores in PDAC 

	Discussion 
	Conclusions 
	References

