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Assessment of clinical 
radiosensitivity in patients 
with head‑neck squamous cell 
carcinoma from pre‑treatment 
quantitative ultrasound radiomics
Laurentius Oscar Osapoetra1,2,3,6, Archya Dasgupta1,2,3,6, Daniel DiCenzo3, Kashuf Fatima3, 
Karina Quiaoit3, Murtuza Saifuddin3, Irene Karam1,2, Ian Poon1,2, Zain Husain1,2, 
William T. Tran1,2,4, Lakshmanan Sannachi3 & Gregory J. Czarnota1,2,3,5* 

To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in 
patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy 
(RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from 
the index lymph node before treatment. Response was assessed initially at 3 months with complete 
responders labelled as early responders (ER). Patients with residual disease were followed to classify 
them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine 
learning classifiers with leave-one-out cross-validation was used for the development of a binary 
response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, 
and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and 
area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/
PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, 
and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can 
predict the response to RT with an accuracy of more than 90% with a strong influence on the survival.
Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.

Radiomics is an emerging field in oncology involving advanced computational imaging analysis and typically 
involves the application of artificial intelligence for meaningful interpretation of data1. Tumour images are now 
recognized as more than greyscale images, and computer vision can unfold information that can be linked with 
underlying genotypic and phenotypic features2. Imaging forms an integral role in oncology in diagnosis, disease 
staging, treatment planning, the assessment of treatment response, and tumour surveillance. Standard imaging 
modalities involve morphological-based techniques like ultrasonography (US), computed tomography (CT), 
magnetic resonance imaging (MRI) or functional imaging like positron emission tomography (PET) or functional 
MRI (fMRI). The use of radiomics to serve as potential noninvasive biomarkers in risk stratification, in prediction 
and monitoring of treatment response has generated interest to develop strategies towards precision oncology1,3.

Head and neck malignancies accounted for 890,000 new cases worldwide (seventh most common globally) 
and 450,000 deaths in 20184. Radical radiotherapy (RT) with or without concurrent chemotherapy forms the 
primary treatment for a majority of patients with head and neck squamous cell carcinomas (HNSCC) arising 
from the oropharynx, hypopharynx, or larynx leading to excellent organ preservation5. Locally advanced cancer 
is present in approximately 40–60% of patients during presentation, which involves advanced primary disease 
and/or regional lymph nodes (LN)5,6. In the past decades, technological advances in RT with intensity-modulated 
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radiotherapy (IMRT) and image-guided radiotherapy (IGRT) have led to a reduction of radiation toxicities like 
xerostomia7. The survival outcome of patients with locally advanced HNSCC remains compromised despite 
such advancements. As a result, there is increasing interest regarding the use of response-guided adaptive RT, 
with several ongoing trials investigating dose-escalation strategies for patients deemed to be non-responders8,9.

As imaging has a crucial role in the management of HNSCC, radiomic analysis has been undertaken for 
different imaging modalities like PET, CT, and MRI10–12. Study endpoints have been variable with some studies 
investigating molecular characteristics, while others have linked radiomic features with survival outcomes with 
encouraging results. Quantitative ultrasound (QUS) uses data typically not interpreted by clinical B-mode US 
devices. QUS uses raw radiofrequency (RF) data, which can provide information related to tissue microstructure 
elastic properties and underlying biology13. Tumour treatment response can be detected using QUS much earlier 
than conventional imaging due to ongoing changes in elastic properties associated with cell death14,15. Radiomic 
analysis of QUS has proven to be useful in the determination of response to neoadjuvant chemotherapy in breast 
cancer16–19.

In previous studies, QUS obtained before and during treatment was shown to be promising in predicting 
treatment response for head-neck malignancies20,21. In a cohort of 32 patients, pre-treatment QUS could predict 
the response at 3 months with an accuracy of 88%20. In a subsequent study including 36 patients, the classifier 
performance was improved when QUS features were obtained during radiotherapy as early as after 1 week of 
treatment compared to pr-treatment21. In the current study, the number of patients has been increased to 59, 
and includes a homogeneous group of HNSCC (excluding other tumour histologies included in the previous 
study such as nasopharynx, parotid, and others). Also, the study methodology has significant development 
incorporating third-order imaging features (texture derivatives), using more advanced machine learning classi-
fiers, and final correlation with clinical outcomes. In addition, the endpoint of final response beyond 3 months 
in partial responders was analyzed in the present study. The imaging features used in the study were spectral 
parameters, texture of spectral parameters (QUS-Tex1), and second-order texture analysis of QUS-Tex1 features 
(QUS-Tex1-Tex2). Five spectral parameters were used-mid-band fit (MBF), spectral slope (SS), spectral inter-
cept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC). The machine learning 
classifiers included Fischer’s linear discriminant analysis (FLD), k-nearest neighbours (KNN), and support vec-
tor machines-radial basis function (SVM-RBF). Four textural features of contrast (CON), correlation (COR), 
energy (ENE), and homogeneity (HOM) were analyzed. To the best of our knowledge, this is the first study of 
QUS-radiomics using higher-order imaging features to predict different groups of radiation responses, which 
were linked to clinical outcomes.

Results
Clinical characteristics.  A total of 59 patients with node-positive HNSCC were included in the current 
analysis. The different patient, disease, and treatment-related features have been summarized in Table 1. None 
of the clinical features were significantly distributed between the three response groups (ER/LR/PD). In the 
entire group, the median age was 61 years (range, 39 to 80 years), with 12 patients being 70 years or above. The 
median size of the lymph nodes was 3.1 cm (range 1.3 to 7 cm), without any significant difference between the 
three response groups. The most common primary site was oropharynx in 42, followed by carcinoma unknown 
primary in 8, larynx in 6, and hypopharynx in 3 patients. The human papillomavirus (HPV) p16 immunostain-
ing was available in 44 patients, with positive staining in 38 (86%). Concurrent chemotherapy was used in 49, 
cetuximab (without chemotherapy) in 2, and RT alone in 8 patients. All patients included in the current study 
completed the scheduled course of RT.

Clinical outcomes.  During the first response evaluation at 3 months, 22 patients had a complete response 
and were designated as early responder (ER), as described earlier. For the remaining 37 patients, 29 were des-
ignated as late responder (LR) as they had complete disease resolution with a median of 6 months from RT 
completion (range 4 to 10 months), whereas 8 patients had persistent/progressive disease (PD) involving treated 
target disease (primary and nodal target volumes). Median follow up for all the patients was 32 months (range 5 
to 64 months). At follow up for the current study, 18 patients had recurrent disease (local-1, nodal-5, distant-9, 
local-nodal-1, local-nodal-distant-2). The 2-year and 5-year recurrence-free survival (RFS) for all patients was 
72% and 68%, respectively. The 2-year and 5-year overall survival (OS) for the entire cohort was 86% and 61%, 
respectively. Both the RFS and OS were significantly different between the three response groups (Table 1). The 
2-year RFS for the ER, LR, and PD was 96%, 74%, and 13%, respectively (p < 0.01).

Feature analysis.  Representative B-mode images and the corresponding representative QUS and QUS-
texture maps are presented in Fig. 1 for three patients, one each from the ER, LR, and PD groups. Obvious 
intratumoral heterogeneity was evident from the spectral parametric maps and their texture maps. Figure  1 
demonstrates typical hypoechogenicity for the tumour and apparent heterogeneity in quantitative ultrasound 
parameters.

Table 2 indicates the features that exhibited statistically significant differences between the different response 
groups. Three months after RT completion, 12 features were found to be significantly different between the 
complete response (ER) and partial/non-responder (LR/PD) groups. These included two spectral parameters 
(MBF, SI), one QUS-Tex1 feature (MBF-CON), and 9 QUS-Tex1-Tex2 features. Between the LR and PD groups, 
a different set of 12 features had different distributions. One spectral feature (ASD), three QUS-Tex1 features 
(AAC-CON, ASD-CON, and AAC-HOM), and 8 QUS-Tex1-Tex2 features were found to have different values 
between these two response groups. The scatter plots of all the 105 features between the binary response groups 
have been shown in Supplementary Fig. S1.
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Classification performances.  Table 3 presents the classifier performance using the three classifiers for the 
two binary response groups. The SVM-RBF model demonstrated the best results in differentiating the ER from 
the LR/PD group with a sensitivity, specificity, accuracy, and AUC of 86%, 95%, 92%, and 0.91, respectively. The 
three features selected for building the classifier model were QUS-Tex1-Tex2 parameters (MBF-HOM-CON, 
MBF-ENE-CON, ASD-HOM-ENE). For the SVM model, the accuracy was improved by 3% with parameter 
tuning. To study the influence of texture-derivatives on the classifier performance, the analyses were carried out 
in a step-wise manner, once using spectral and QUS-Tex1 features only and then finally, with all the 105 features 
incorporating QUS-Tex1-Tex2 features. The inclusion of texture-derivatives led to a significant improvement of 
the classifier performances. Without the texture-derivatives, the AUC was 0.70, 0.72, 0.51 for FLD, KNN, and 
SVM-RBF, which was improved to 0.75, 0.80, and 0.91 when all the QUS-Tex1-Tex2 features were included. The 
ROC plots using the three classifiers for the two different endpoints (with and without texture-derivatives) are 
shown in Fig. 2. The pictorial representation of the hyperplane plot using the SVM-RBF model to classify the two 
response groups at 3 months has been presented in Fig. 3.

In order to differentiate the LR from PD, the SVM-RBF performed better than the other two models with 
sensitivity, specificity, accuracy, and AUC of 97%, 88%, 95%, and 0.97, respectively. The two selected features 

Table 1.   Clinical characteristics and survival outcomes for the three response groups. ECOG Eastern 
cooperative oncology group, CUP carcinoma unknown primary, HPV human papillomavirus, RFS recurrence-
free survival, OS overall survival.

Parameter Early responder (n = 22) Late responder (n = 29)
Persistent/progressive disease 
(n = 8)

p-valueRadiation response category Highly radiosensitive Intermediate radiosensitivity Radioresistant

Age median (range) 66 (47–80) years 59 (39–79) years 62 (57–78) years 0.57

Gender

Male 21 27 8

Female 1 2 0 0.73

ECOG performance status

0 6 9 2 0.93

1 16 20 6

Primary site

Oropharynx 15 22 5

Larynx 3 1 2 0.17

Hypopharynx 2 0 1

CUP 2 6 0

HPV status

Positive 18 17 3

Negative 1 4 1 0.18

Unknown 3 8 4

T-stage

T0 2 6 0

T1 8 5 0

T2 4 8 4 0.28

T3 2 4 1

T4 6 6 3

N-stage

N1 11 11 2

N2 10 13 2 0.07

N3 1 5 4

Number of nodes

Median (range) 1 (1–3) 1 (1–5) 1 (1–4) 0.23

Concurrent therapy

Cisplatinum 17 23 5

Carboplatinum 1 2 0

Cisplatinum > carboplatinum 0 1 0 0.66

Cetuximab 1 0 1

None 3 3 2

2-year RFS 96% 74% 13%  < 0.01

2-year OS 100% 88% 45%  < 0.01



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6117  | https://doi.org/10.1038/s41598-021-85221-6

www.nature.com/scientificreports/

Figure 1.   Representative ultrasound B-mode (uppermost row), QUS spectral parametric maps of AAC 
and MBF, and the corresponding texture images from one patient in each of the three response groups-early 
responder (a), late responder (b), and persistent disease (c). QUS parametric images include the largest involved 
lymph node (central region bounded by closed dotted white curve). The colour bar ranges are 0 to 150 dB/cm3 
for AAC, − 20 to 20 dB for MBF and arbitrary unit for the texture features. The scale bar represents 1 cm.
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Table 2.   Imaging biomarkers that demonstrate statistically significant differences (p < 0.05) between the 
response groups at different time-points. SEM standard error mean, MBF midband fit, SI Spectral intercept, 
SS spectral slope, ASD average scatterer diameter, AAC​ average acoustic concentration, COR correlation, CON 
contrast, HOM homogeneity, ENE energy.

Features

Group 1 (mean ± SEM) Group 2 (mean ± SEM)

p-valueComplete responder Partial/non-responder

Response at 3 months
Complete responder (early responder) (n = 22) vs partial/non-responder (n = 37)

MBF-COR-COR 0.67 ± 0.01 0.64 ± 0.01 0.001

MBF-HOM-CON 1.29 ± 0.03 1.12 ± 0.04 0.004

SI-COR-COR 0.63 ± 0.01 0.61 ± 0.00 0.006

SI-HOM-CON 1.41 ± 0.03 1.26 ± 0.04 0.011

SS-COR-COR 0.62 ± 0.00 0.60 ± 0.00 0.017

SS-HOM-CON 1.41 ± 0.04 1.26 ± 0.04 0.018

MBF 0.97 ± 1.98 − 2.92 ± 1.40 0.027

MBF-CON 0.59 ± 0.03 0.52 ± 0.03 0.031

SI 15.20 ± 1.90 10.65 ± 1.13 0.032

MBF-CON-COR 0.70 ± 0.02 0.66 ± 0.01 0.035

ASD-COR-COR 0.62 ± 0.00 0.61 ± 0.00 0.042

ASD-HOM-CON 1.40 ± 0.03 1.32 ± 0.04 0.046

LR (mean ± SEM) PD (mean ± SEM) p-value

Final response
Late responder (n = 29) vs persistent/progressive disease (n = 8)

AAC-COR-ENE 0.18 ± 0.00 0.21 ± 0.01 0.000

AAC-ENE-HOM 0.62 ± 0.01 0.67 ± 0.01 0.001

AAC-CON 1.08 ± 0.10 1.91 ± 0.33 0.002

AAC-ENE-CON 7.76 ± 0.34 5.15 ± 0.57 0.002

AAC-COR-HOM 0.54 ± 0.00 0.56 ± 0.01 0.003

AAC-ENE-ENE 0.24 ± 0.01 0.32 ± 0.03 0.006

SS-HOM-ENE 0.32 ± 0.00 0.30 ± 0.01 0.008

SI-HOM-HOM 0.73 ± 0.00 0.72 ± 0.00 0.009

ASD-CON 1.08 ± 0.08 1.62 ± 0.25 0.009

AAC-HOM 0.79 ± 0.01 0.71 ± 0.04 0.013

ASD 95.49 ± 6.23 67.34 ± 9.40 0.014

SS-HOM-HOM 0.73 ± 0.00 0.72 ± 0.00 0.015

Table 3.   Performance of various machine learning classifiers with the best features selected for the different 
response groups. FLD Fischer’s linear discriminant analysis, KN k-nearest neighbour, SVM-RBF support vector 
machine-radial based function, MBF midband fit, SI spectral intercept, SS spectral slope, ASD average scatterer 
diameter, AAC​ average acoustic concentration, COR correlation, CON contrast, HOM homogeneity, ENE 
energy.

Classifier Sensitivity (%) Specificity (%) Accuracy (%) AUC​ Features selected

Response at 3 months
Complete responder (early responder) (n = 22) vs partial/non-responder (n = 37)

FLD 73 81 78 0.75
MBF-HOM-CON
MBF
SI-CON-ENE

KNN 73 84 80 0.80
SS-COR-COR
MBF-ENE-HOM
NA

SVM-RBF 86 95 92 0.91
MBF-HOM-CON
MBF-ENE-CON
ASD-HOM-ENE

Final response
Late responder (n = 29) vs persistent/progressive disease(n = 8)

FLD 86 100 89 0.92 AAC-ENE-HOM
AAC-HOM-CON

KNN 93 88 92 0.90 AAC-HOM
ASD-ENE-HOM

SVM-RBF 97 88 95 0.97 SS
SS-HOM-CON
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in the model were SS and SS-HOM-CON. Similar to the previous endpoint, the inclusion of texture derivatives 
improved the AUC for the SVM-RBF model from 0.92 to 0.97.

Finally, each patient was assigned to one of the three predicted response groups using the SVM-RBF model. 
The 2-year RFS for the predicted ER, predicted LR, and predicted PD groups were 91%, 78%, and 27%, respec-
tively (p < 0.01). Figure 4 shows the comparison of the RFS survival plots generated using the actual response 
groups and the radiomics-predicted response groups.

Discussion
Head and neck malignancies represent a diverse group of malignancies arising commonly from the epithelial 
lining of the upper aerodigestive tracts and associated glandular structures5. Outcomes in HNSCC are strongly 
influenced by clinical-pathological factors like the site of primary disease, disease stage, performance status 
of the patient, and causative factors like tobacco abuse or HPV. For patients with locally-advanced HNSCC or 
node-positive disease, the prognosis is poor, with an estimated 5-year survival rate being approximately 50% 
or less5. Also, with the presence of vital anatomical and physiological structures in the head and neck region, in 
patients cured of their disease, long-term treatment-related late toxicities can have significant adverse effects on 
quality of life22,23. There is an unmet need for the development of reliable biomarkers, which can help in better 
risk-stratification so that existing treatment strategies can be tailored accordingly. The introduction of compu-
tational techniques and artificial intelligence in imaging and medicine has led to the development of the field of 

Figure 2.   ROC plots of predictive models for different endpoints developed using spectral and texture features 
alone (upper row) and those developed using all the spectral, texture, and texture-derivate features (lower row). 
The endpoints considered are 3-month complete responder versus partial responder/non-responder (a,c), late 
responder versus persistent/progressive disease (b,d). Three standard classification algorithms that include FLD, 
KNN, and SVM-RBF were evaluated as indicated in the inset legend. The classification models that include 
texture-derivate features (lower row) achieved higher AUC values in general compared to those developed 
without texture-derivate features.
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Figure 3.   Hyperplane plot with the decision boundary based on support vector machine classifier using 
three features to differentiate the complete responders from partial/non-responders at three months following 
radiotherapy completion.

Figure 4.   Kaplan Meier survival plots showing the recurrence-free survival for the three predicted groups using 
a support vector machine radiomics model.
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radiomics, with standard imaging modalities producing new potential noninvasive biomarkers. In the current 
study, the role of ultrasound before radiation treatment was investigated in predicting final clinical response to 
therapy, using higher-order imaging features.

In the past few years, there had been an increasing number of studies investigating the role of radiomics in 
HNSCC, primarily involving CT, PET, or MRI10–12. The majority of the radiomic studies have investigated end-
points like molecular characteristics (HPV status) and clinical outcomes like local control, distant metastasis, and 
overall survival. Although favourable results have been obtained from most of the studies, there has been vari-
ance with regards to image processing, feature selection strategies, machine learning algorithms, and validation 
approaches24. A recent multi-institutional has indicated the utility of pre-operative contrast-enhanced CT-based 
radiomics in predicting histopathological extranodal extension25. In a study involving 128 patients with head 
and neck malignancies, Bogowicz et al. had shown radiomics analysis of CT features from the primary tumour 
and lymph nodes to correlate with loco-regional control26. Similarly, in a study involving 300 patients with 
HPV-related oropharyngeal cancers, Kwan et al. associated distant metastasis with radiomic features obtained 
from radiation planning CT images27. Vallières et al. had demonstrated that radiomic analysis of pretreatment 
PET and CT images could be used in a risk assessment for loco-regional recurrence and distant metastasis in a 
study of 300 patients with head neck malignancies undergoing radical intent RT28. Fewer imaging studies have 
investigated response to therapy as a study endpoint in head neck malignancies. Liu et al. performed texture 
analysis of T1, T2, and diffusion MR sequences in 53 patients with NPC treated with chemoradiation, which 
was able to predict the treatment response with an accuracy of approximately 90%29. Similarly, Wang et al. used 
pretreatment MRI in 120 patients with NPC to predict response to induction chemotherapy30.

Ultrasonography is frequently used in the management of HNSCC, more commonly indicated in the char-
acterization of suspicious neck nodes, as well as to guide biopsy or cytology procedures for histopathological 
confirmation31,32. B-mode US is more popularly used in clinical scenarios. The use of QUS involves technically 
identical ultrasound devices, but with raw RF data collected and analyzed quantitatively. QUS detects the elastic 
properties of the tissue microstructure and is influenced by parameters like cell size, shape, and organization33. 
Microcellular elastic properties have been demonstrated to be different across different grades of tumours, 
which have distinct biological behaviour34. In tissue characterization, QUS techniques have been proven to be 
extremely sensitive in detecting ongoing changes with treatment-induced cell death since it leads to changes in 
nuclear and cell structures properties with cell fragmentation, pyknosis, and the formation of apoptotic bod-
ies, ultimately changing scatterer elastic properties14,15. Clinical studies investigating QUS-radiomics indicated 
this methodology to be useful in predicting response to neoadjuvant chemotherapy (NAC) in patients with 
locally advanced breast cancer (LABC) before starting treatment16. Similarly, response changes with NAC can 
be detected as early during the first week of treatment, correlating with the final response obtained from his-
topathological examination months after the treatment is started17. This methodology is being evaluated in a 
randomized clinical trial of QUS-radiomics guided adaptive chemotherapy, where patients predicted to have 
inadequate response can have modifications made to their NAC (clinicaltrials.gov identifier NCT04050228). The 
application of QUS imaging for head and neck malignancies is a relatively new technique, with initial results from 
32 patients showing a predictive accuracy of 88% using spectral and texture features (18). Compared to other 
imaging modalities, QUS-based radiomics has the advantage of rapid scan acquisition that can be performed 
with a portable device, with excellent patient compliance. A QUS-based approach is expected to provide more 
biologically-linked information compared to other imaging like CT or MRI as the imaging information can be 
tuned to pick up details from a smaller foci of cells and is sensitive to approximately 10–20 cell diameters using 
a mean frequency of 6 MHz) (24).

In the current study, using an SVM-based model, the accuracy of classification between complete respond-
ers versus non-responders/partial responders at 3 months and late responders vs persistent/progressive disease 
patients was 92% and 95%, respectively. There were 12 features at each time having a differential distribution 
between the two binary groups. At the 3 month time, most of the features that were different between the two 
response groups were related to the MBF parameter. Mid-band fit denotes the value of linear fit at the central 
frequency and is influenced by scatterer size, shape, and organization (24). The 3-feature set used in the clas-
sification model used texture-derivatives of one ASD parameter and 2 MBF parameters. ASD is dependant on 
cell size, suggesting a differential structural organization between the two response groups, which impacted 
radiation response. Between the LR and PD response groups, the values were seen to be different for many of 
the AAC parameters, which accounts for the density of scatterers, their organization, and their elastic properties. 
The 2-feature SVM-model used SS and SS-texture-derivative features, with SS representing information related 
to cell shape and size. It is essential to note the majority of features selected in model development were texture-
derivatives suggesting intratumoral heterogeneity to have an important implication on response to radiation 
and clinical outcomes. Also, the inclusion of higher-order texture features led to an improvement in classifier 
performance, indicating a better representation of spatial heterogeneity with third-order imaging analysis.

Response to radiation had a strong influence on clinical outcomes (both RFS and OS). The patients with an 
early complete response within the first 3 months are likely to harbour disease sensitive to RT and had the best 
outcomes. Patients who exhibited a delayed response demonstrated an intermediate prognosis. As expected, 
patients with residual or progressive disease in an irradiated volume indicated radioresistant disease and showed 
the poorest RFS and OS amongst the patient groups. The radiomics model developed here can be utilized as a 
tool for predicting clinical radiosensitivity, with links to ultimate survival outcomes. The development of treat-
ment-escalation strategies has been explored elsewhere using response-guided adaptive radiotherapy to improve 
outcomes in patients with poor outcomes8,35. Similarly, de-escalation strategies can be considered in patients 
with an expected better prognosis in order to avoid treatment-related toxicities. Recent studies exploring treat-
ment de-escalation with the replacement of concurrent cisplatin with cetuximab in HPV-positive oropharyngeal 
cancer resulted in negative results36,37. These results explored a generalized approach using HPV as a marker of 
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de-intensification of chemotherapy but turned out to be ineffective. The use of a QUS-based radiomics model 
can help in predicting clinical radiosensitivity aiding in better risk-stratification on an individual patient basis 
and guiding towards precision medicine.

The current analysis involved a relatively small number of patients. The study here is currently being con-
tinued, and with further expansion, it is expected to lead to the generation of more robust and reproducible 
imaging biomarker models. Thus study included binary endpoints at two different times due to a small number 
of samples. With the inclusion of more patients, advanced classification algorithms like deep learning strategies 
and more robust validation strategies can be undertaken. In addition, given the technical challenges of imag-
ing primary head and neck tumours (deep location, tissue interfaces), in the patients here, the neck node was 
scanned. Given the high correlation of response of both the primary tumour and index neck node following 
treatment, using nodal imaging features alone suggests the clinical utility of the QUS-radiomics methods evalu-
ated in the work here.

Methods and materials
Patient selection.  The prospective study was conducted based on good clinical practice according to the 
declarations of Helsinki and institutional research ethics board approval (Sunnybrook Health Sciences Center, 
Canada) and registered with clinicaltrials.gov (identifier NCT03908684, registered on 09/04/2019). Patients with 
a diagnosis of biopsy-proven HNSCC with metastatic LN, the latter amenable to ultrasound imaging from a pri-
mary disease involving oropharynx, hypopharynx, larynx, or carcinoma of an unknown primary (CUP) treated 
with radical RT were eligible for this study. Patients with poor performance status (Eastern Co-operative Oncol-
ogy Group > 1), prior treatment for HNSCC, previous history of RT to the head and neck region, severe medical 
or psychiatric comorbidities with a life expectancy of < 6 months or unreliable for follow up were considered as 
exclusion criteria. Informed consent was obtained from all patients accrued in this study. Patients with naso-
pharyngeal cancer (NPC), CUP suspected from NPC (Epstein-Barr virus positivity or histological suspicion), 
oral cavity primary or no follow up after treatment completion for response assessment were excluded from the 
current analysis. The study methodology has been represented in Fig. 5.

Treatment protocols and response evaluation.  Study participation had no influence on patient treat-
ment or follow up. All patients were treated using a uniform radiation dose regimen of 70 Gy/33–35 fractions 
over 6–7 weeks to the high-risk volume using IMRT and IGRT techniques according to standard institutional 
practice. The use of concurrent systemic therapy was at the discretion of the responsible medical oncologist. The 

Figure 5.   Flowchart showing the study methodology.
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first response to treatment was evaluated at approximately 3 months following completion of RT with clinical 
examination, endoscopy, and morphological imaging with CT/MRI supplemented with PET-CT. Patients with 
complete resolution of the primary tumour and index lymph node < 1 cm at the end of 3 months were considered 
as “Early Responders” (ER). Patients with a residual nodal size of < 1 cm with strong radiological suspicion of 
residual disease or histological confirmation were excluded from the ER category. Patients with partial response 
or non-responders at 3 months were further followed up with clinical examinations, additional imaging, his-
topathological examination, or surgical intervention. Patients who experienced complete resolution of disease 
beyond 3 months were labelled as “Late Responders” (LR). Other patients were labelled as “persistent or progres-
sive disease” (PD) involving the primary or index LN. Further follow up was done every 3–6 months in the initial 
2 years and thereafter every 6–12 months as indicated. Study accrual was carried out between January 2015 and 
October 2019, with the final analysis done in June 2020.

Image acquisition.  Ultrasound RF data were collected from the index LN most amenable to imaging using 
a Sonix RP ultrasound imaging system (Ultrasonix, Vancouver, Canada) or an equivalent OEM system from 
Elekta Ltd (Montreal, Canada) before starting RT. Imaging was performed by a research sonographer with expe-
rience in head & neck ultrasound imaging. The system used a linear array transducer (Elekta: 4DL14-5/39, Sonix 
RP: L14-5/60) with a center frequency of 6.5 MHz with a bandwidth of 3–8 MHz. A 40 MHz sampling frequency 
was used for digitization. Data were acquired along 512 scan lines, spanning a 6 cm lateral field-of-view and the 
focal depth of 1.75 cm (Sonix RP) and 2.5 cm (Elekta). Earlier work has indicated that with appropriate data 
normalization using standardized techniques, QUS features are consistent between different clinical ultrasound 
devices38. The index LN was manually contoured on US B-mode images and designated as the region of inter-
est (ROI). For each patient, typically 3–5 slices were selected from the entire ROI at regular intervals. Given the 
technical challenges in volumetric acquisition and analysis of conventional probe-based ultrasound, the slices 
were selected to represent different areas of the lymph node. Quantitative ultrasound spectroscopic analysis, 
associated texture analysis, and texture-derivate analyses were performed on the selected regions from the target 
LN as described below.

Quantitative ultrasound spectral features.  Spectral analysis was performed using the RF data asso-
ciated with the segmented area of the index LN. A sliding window analysis was used with a 2-mm by 2-mm 
kernel to create parametric images for each QUS spectral parameter. A 94% overlap was used between adjacent 
sliding windows in both axial and lateral directions. Prior to spectral analysis, a Hanning gating function was 
applied on individual RF scan lines within the window. The power spectrum was generated using a Fast Fourier 
Transform (FFT) method. An average power spectrum was obtained from RF signals within the window. The 
power spectrum was normalized using a reference phantom technique using 5–30 µm glass beads embedded 
in a homogeneous medium of oil droplets embedded in gelatin39,40. For the phantom, the measured attenuation 
coefficient and speed of sound were 0.8 dB/cm/MHz and 1540 m/s, respectively (the University of Wisconsin, 
Department of Medical Physics, Madison, WI, USA). Attenuation compensation was applied to account for the 
attenuation from the intervening tissue layers (intervening tissue and tumour) considering 1 dB/cm/MHz for 
the overlying breast tissues39,41. The attenuation coefficient estimate (ACE) for the tumour was determined using 
a spectral difference method. This considered the rate of change in the log spectral power magnitude for the 
frequency bandwidth with depth (over the tumour region) relative to the reference phantom39,40. Five spectral 
parameters were determined from the power spectrum-mid-band fit (MBF), spectral slope (SS), spectral inter-
cept (SI), average scatterer diameter (ASD), and average acoustic concentration (AAC). Further details and the 
biological correlations of individual spectral parameters have been described in previous publications33,42. The 
values of the different spectral features were obtained from the individual windows, and the average weighted 
values from all the slices were used as first-order imaging features.

Texture parameters.  Colour-coded quantitative ultrasound-based parametric maps were generated 
based on the values of individual spectral parameters from each of the corresponding windows. A grey level 
co-occurrence matrix (GLCM) method was used to determine texture features to quantify intra-tumoural 
heterogeneity43. The GLCM method analyses the spatial relationship between neighbouring pixels at different 
angular directions. The grey level intensities of each of the parametric images were linearly scaled into 16 discrete 
values. The GLCM matrices were created from each QUS-parametric map at inter-pixel distances: 1, 2, 3, 4, 5 
pixels and at four angular directions: 0°, 45°, 90°, and 135°. Four textural features of contrast (CON), correlation 
(COR), energy (ENE), and homogeneity (HOM) were extracted and subsequently averaged over distances and 
angular directions to generate second-order imaging features (QUS-Tex1). Therefore, 5 spectral features led to 
the generation of 20 QUS-Tex1 features.

The third-order imaging features were texture-derivatives (QUS-Tex1-Tex2). A previous study involving breast 
cancer had demonstrated an improvement in the classifier performances with the inclusion of higher-order 
imaging features in the form of texture derivatives44. Texture-derivate analysis was done by creating intermediate 
texture-encoded maps using sliding window analysis with a 15-pixel by 15-pixel window with each pixel in these 
maps representing quantification of local textures within the concerned window. A second pass GLCM analysis 
was performed on the texture maps, resulting in 80 QUS-Tex1-Tex2 features.

The weighted averaged measures of the features were used for building models for predicting response. A total 
set of 105 QUS-radiomic features (5 spectral, 20 QUS-Tex1, 80 QUS-Tex1-Tex2) were acquired before starting RT. 
Imaging was obtained nominally within 24 h in advance of the start of treatment, although an interval of 7 days 
was allowed according to the study protocol.
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Statistical analysis.  Binary endpoints were used for constructing the radiomics model due to a relatively 
smaller number of patients in our study, and multiple classifier outputs will need a larger sample size for robust 
classification. The first endpoint was the response at 3 months following completion of RT-complete responders 
vs. partial/non-responders (i.e. ER vs LR + PD). The other classification endpoint was LR vs PD.

The distribution of categorical variables (clinical features) between the three response groups was studied 
using the Pearson chi-square test and Fisher’s exact test as appropriate. For the feature values, a Shapiro–Wilk 
test was performed to test the normality of distribution. For comparison between the binary response groups, 
an unpaired t-test was used for normally distributed data, while a Mann–Whitney U-Test was used for non-
parametric data. The survival analysis was performed using the Kaplan–Meier product-limit method, with the 
date of starting RT considered as baseline. A comparison of the different factors on survival was conducted using 
a log-rank test. A p-value of < 0.05 was used as a threshold of statistical significance.

Machine learning classifiers.  Three standard computational algorithms were used for the development 
of a radiomics model: Fischer’s linear discriminant analysis (FLD), k-nearest neighbours (KNN), and sup-
port vector machines-radial basis function (SVM-RBF). The FLD is a linear classification algorithm exploring 
multi-dimensional feature space that maximizes the ratio between-class to within-class variance. The KNN is 
an instance-based classification algorithm studying class association of a test point in the feature space. It is 
based on the spatial distribution of most of the points neighbouring the test point and the distance between 
those points to the test point. The classifier was tested using k-values of 1 to 5 nearest neighbours to find the one 
leading to the most optimal classification. The SVM-RBF algorithm used a nonlinear classification that maxi-
mizes the margin between the two specified classes. The input data was mapped into a higher-dimensional space 
using kernel functions where the data are supposed to have better distribution, which then applied a hyperplane 
optimally separating the two classes in this higher-dimensional feature space. A Gaussian radial basis function 
(RBF) as the kernel function was used in our study. The model parameters (soft margin parameter C and the free 
parameter γ) were optimized using a grid search method.

A forward sequential-feature-selection (SFS) technique was used for classification using predetermined end-
points. To avoid the overfitting of the predictive model, the number of features for the final classification was 
limited to 3 for ER vs. LR/PD and 2 features for LR vs. PD45. The classifier performance was trained based on 
F1-Score (the harmonic average of precision and sensitivity). A leave-one-out (LOO) cross-validation technique 
was used for validation and testing the efficacy of the classifier performances, which involves training the clas-
sification model with all observations except one which was used to test the developed model. Receiver operating 
characteristics (ROC) analysis was performed utilizing sensitivity, specificity, accuracy, and area under curve 
(AUC). The segmentation, feature extraction, texture analysis, and machine learning classification were done 
using MATLAB 2019b (MathWorks Inc., USA). Survival analysis was performed using IBM SPSS version 21 
(IBM corporation).

Conclusions
The use of a pretreatment texture-derivative based QUS-radiomics model was able to predict the final response 
to radiation with excellent accuracy (more than 90%). Clinical radiosensitivity had a strong influence on the 
survival outcomes, and a support vector machine classifier could accurately identify patients at higher risk of 
disease recurrence based on QUS-predictive factors.

Data availability
Data will be shared upon request to the corresponding author and the institutional ethics committee according 
to the policy of Sunnybrook Health Sciences Centre, Toronto.
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