
June 2018 | Volume 9 | Article 12341

Mini Review
published: 01 June 2018

doi: 10.3389/fimmu.2018.01234

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Eva Reali,  

Istituto Ortopedico Galeazzi  
(IRCCS), Italy

Reviewed by: 
Pasquale Maffia,  

University of Glasgow,  
United Kingdom  

Francisco Capani,  
University of Buenos Aires,  

Argentina

*Correspondence:
Nehal N. Mehta 

nehal.mehta@nih.gov

Specialty section: 
This article was submitted 

to Inflammation,  
a section of the journal  

Frontiers in Immunology

Received: 27 March 2018
Accepted: 16 May 2018

Published: 01 June 2018

Citation: 
Sajja AP, Joshi AA, Teague HL, 
Dey AK and Mehta NN (2018) 
Potential Immunological Links 

Between Psoriasis and 
Cardiovascular Disease. 
Front. Immunol. 9:1234. 

doi: 10.3389/fimmu.2018.01234

Potential immunological Links 
Between Psoriasis and 
Cardiovascular Disease
Aparna P. Sajja, Aditya A. Joshi, Heather L. Teague, Amit K. Dey and Nehal N. Mehta*

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States

Preclinical and clinical research provide strong evidence that chronic, systemic inflam-
mation plays a key role in development and progression of atherosclerosis. Indeed, 
chronic inflammatory diseases, such as psoriasis, are associated with accelerated 
atherosclerosis and increased risk of cardiovascular events. Contemporary research 
has demonstrated plausible mechanistic links between immune cell dysfunction and 
cardiometabolic disease in psoriasis. In this review, we describe the role of potential 
common immunological mechanisms underlying both psoriasis and atherogenesis. We 
primarily discuss innate and adaptive immune cell subsets and their contributions to 
psoriatic disease and cardiovascular morbidity. Emerging efforts should focus on under-
standing the interplay among immune cells, adipose tissue, and various biomarkers of 
immune dysfunction to provide direction for future targeted therapy.

Keywords: psoriasis, cardiovascular disease, inflammation, atherosclerosis, vascular inflammation, inflammatory 
cytokines

inTRODUCTiOn

Inflammation is the hallmark of atherosclerosis (1). Preclinical and clinical research provide strong 
evidence that chronic inflammation is critical to the process of atherogenesis. Chronic inflam-
matory diseases, such as psoriasis, are associated with accelerated atherosclerosis and increased 
risk of cardiovascular events (2–6). Atherosclerosis is increasingly recognized as an inflammatory 
process, thus similarities between atherosclerosis and chronic, systemic inflammatory diseases 
have become an emerging focus of interest. Almost 20% patients with coronary heart disease 
lack conventional risk factors (7), supporting the importance of evaluating residual inflammatory 
risk (8). Chronic inflammatory diseases such as psoriasis have been shown to add 6% additional 
risk (9, 10) to the Framingham Risk Score (8, 9) highlighting the need to understand the role of 
immunological processes in cardiovascular disease (CVD) for better risk stratification and treat-
ment strategies.

CHROniC inFLAMMATiOn AnD CARDiOvASCULAR  
CO-MORBiDiTieS

Patients with chronic inflammatory diseases are predisposed to cardiometabolic diseases including 
obesity, hypertension, and dyslipidemia (11–16)—chronic inflammatory conditions common in the 
general population (17–19). Obesity, particularly visceral, is strongly associated with dysregulated 
expression of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 
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beta (IL-1β), and IL-6, as well as adiponectin and leptin, contribut-
ing to metabolic derangement and insulin resistance (13, 18, 20).  
Atherogenic metabolic dyslipidemia is common in chronic inflam-
mation. Abnormalities include impaired reverse cholesterol 
transport ability of the HDL, increased LDL particle number, and 
decreased LDL size (21–23). Animal and human models have 
demonstrated innate immunity as well as experimental in  vivo 
induction of inflammation via bolus of an inflammatory cytokine 
such as TNF-α or IL-6, results in release of adipokines and 
generation of peripheral insulin resistance (24–27). Moreover, 
anti-inflammatory therapies such as aspirin, colchicine, and more 
recently canakinumab have been effective in CVD treatment, sup-
porting the critical role of inflammation in CVD (28–32).

One of the most common co-morbid conditions associated 
with psoriasis is psoriatic arthritis (PsA). Epidemiological data 
indicate that almost one-third patients with psoriasis also have 
prevalent PsA (33). Similar to psoriasis, PsA is associated with 
increased prevalence of traditional cardiovascular risk factors, 
greater subclinical CVD assessed as vascular inflammation (VI) 
by 18-FDG PET/CT and ultrasound-guided carotid plaque 
assessment and intima-media thickness measurement, and 
elevated rates of major adverse cardiovascular events (MACEs) 
(34–38). Furthermore, like psoriasis, traditional risk factors do 
not fully capture the risk of CVD in PsA (39, 40).

Recently, there is growing focus on shared immunological 
links between atherosclerosis and several other autoimmune dis-
eases such as systemic lupus erythematosus, inflammatory bowel 
disease, human immunodeficiency virus infection, rheumatoid 
arthritis, and psoriasis. These all carry an accelerated CVD 
risk, thought to be partly attributable to inflammation-driven 
endothelial dysfunction, lipoprotein derangement, and metabolic 
dysfunction stemming from chronic inflammation (41, 42). In 
order to speed understanding of inflammatory cardiometabolic 
dysfunction, psoriasis has been utilized as a human model (3) to 
understand the role of innate and adaptive immunity in subclinical 
CVD (43, 44). The clinical implications of understanding how the 
inflammatory processes in psoriasis contribute to cardiovascular 
morbidity are vast since approximately 3% of the US population 
has psoriasis. Furthermore, observational reports have suggested 
that anti-inflammatory therapies commonly used to treat psoria-
sis may associate with reduced cardiovascular risk (45, 46).

POTenTiAL iMMUnOLOGiC LinKS 
BeTween PSORiASiS AnD CvD

Psoriasis is Associated with Subclinical 
and Clinical Atherosclerosis
In the last decade, multiple studies have demonstrated an associa-
tion between psoriasis and both subclinical and clinical athero-
sclerosis, such as VI by 18F-FDG PET/CT, coronary artery calcium 
and non-calcified coronary plaque burden by coronary computed 
tomography angiography (44, 47–51). Population-based studies 
provide evidence of early subclinical and clinical CVD in psoria-
sis (2, 4, 52, 53). Research into the concept of psoriatic march (54) 
has led to an understanding of common cellular and molecular 
level links between psoriasis and atherosclerosis (55).

Common immune Cells Between Psoriasis 
and Atherosclerosis
T Cells
Studies in the last two decades have established psoriasis primar-
ily as a T-cell-mediated disorder (56–60). While initial evidence 
implicated a predominant role of helper T  cells type 1 (Th1) 
through downstream activation of macrophages, neutrophils, 
and CD8+ cytotoxic T lymphocytes (61), recent research shows 
the importance of the Th17 and other IL-17 producing cell types 
such as CD8+ T cells and γδ T cells (62). Although Th1 subtype 
is the most studied cell-type in psoriasis, different stages of this 
chronic inflammatory disease employ various cells of innate and 
adaptive immunity (62). All the subtypes of T cells involved in 
pathogenesis of psoriasis are also involved in atherosclerosis (63).

Th1 Cells—Helper T Cells Type 1
Activation of the innate immune system is the key event in begin-
ning the inflammatory cascade in psoriasis. It primarily includes 
differentiation of T cells into Th1 cells catalyzed by IL-12 (62). 
Mechanistic studies in patients with psoriasis have suggested a 
preference of hematopoietic progenitors toward Th1 subtype (64). 
Th1 cells induce psoriatic inflammation by activating neutrophils, 
macrophages, and CD8+ cytotoxic T lymphocytes (61). Primary 
mediators of Th1 activity are interferon-gamma (IFN-γ), IL-2, 
and TNF-α, which act on keratinocytes and induce antimicrobial 
peptide production that subsequently continues the inflammatory 
cascade. Th1 cells are also critical to the process of atherosclerosis, 
a process thought to be primarily driven by IFN-γ, the hallmark 
cytokine of the Th1 response (65). In patients with unstable 
angina and acute coronary syndrome (ACS), Th1 cells were found 
to be elevated (66, 67). Furthermore, mechanistic studies have 
also established the role of IL-12 in the development and progres-
sion of early atherosclerotic plaques (68–70). In addition, IL-18, 
a Th1-promoting cytokine, has also been shown to have a role in 
atherosclerosis (71, 72). Finally, targeting Th1 differentiating tran-
scription factor is shown to associate with reduced atherosclerotic 
plaques (73). An IL-12 stimulated activation of Th1 response with 
downstream release of pro-inflammatory cytokines is a common 
feature between psoriasis and atherosclerosis and is thought 
to contribute to subsequent endothelial dysfunction and T cell 
recruitment to the sites of atherosclerotic plaques (74). While 
the role of Th1 cells is profoundly studied, the function of Th2 
cells remains a topic of controversy as multiple studies exist that 
support pro-atherosclerotic (75), atherosclerosis protective (76), 
and also null effect (77) of Th2 cells.

Th17 Cells—Helper T Cells Type 17
Th17 cells in psoriasis release different cytokines such as IL-17, 
IL-22, and TNF-α (78) and are also involved in macrophage-
dependent and -independent stimulation of dendritic cells 
(DCs) to propagate the inflammatory response (79). They may 
be involved in increased production of angiogenic inflammatory 
mediators such as monocyte chemoattractant protein (MCP-1), 
nitric oxide, and vascular endothelial growth factor (80, 81). 
Similar to Th2 helper cells, there is conflicting data on the role 
of Th17  cells in atherosclerosis (82). Patients with ACS show 
increased Th17 cells and IL-17 compared with those with stable 
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angina or non-cardiac chest pain (83, 84). There is mixed evidence 
from mechanistic models: with some mouse models supporting 
the pro-atherogenic role of Th17 and IL-17 (85–87), while oth-
ers have found low IL-17 mRNA in atherosclerotic plaques and 
overall attenuated disease development with high prevalence of 
Th17  cells (88–90). We later discuss the emerging role of neu-
trophils in the IL-17 axis, a possible mechanistic link; however, 
further clinical and translational research is necessary to elucidate 
the differential roles of Th17 and neutrophils in this pathway.

Regulatory T Cells (Treg Cells)
Regulatory T cells are a subset of T lymphocytes with a primary 
function to inhibit T  cell activation and proliferation, through 
both cell-contact-dependent and cell-contact-independent anti-
inflammatory cytokine (mainly TGFβ and IL-10) driven mecha-
nisms (91). Treg inhibitory function is distinctly impaired in 
psoriasis (92, 93), contributing to the chronic auto- inflammation 
in psoriasis. ACS patients are also known to have decreased levels 
of circulating Treg cells with reduced efficacy and increased apop-
tosis susceptibility (94–97). Treg cells play an anti-inflammatory 
role in atherosclerosis through endothelial cell modulation, 
plaque stabilization by decreasing macrophages and lipid content 
and increasing smooth muscle cell and collagen, inhibition of 
pro-inflammatory cytokines, and secretion of anti-inflammatory 
cytokines such as TGFβ, IL-10, and IL-35 (91). Identification of 
common targets to reverse Treg cell dysfunction or to augment 
their activity in psoriasis may represent treatment mechanisms 
for both psoriasis and atherosclerosis simultaneously.

Finally, there are several other T cell phenotypes that have been 
identified in psoriasis skin lesions, such as CD4+, CD8+ T cells, 
CD146+, and γδ T cells (98). However, their role in psoriasis and 
atherosclerosis need to be further explored. While the traditional 
paradigm of T cell lineages might predominate shared mechanis-
tic links between psoriasis and atherosclerosis, there is significant 
heterogeneity and plasticity within the T  cell subtypes. T  cell 
predominance may change in context of subtype preponderance 
with the natural disease course, specifically, a switch from Th1 
dominated profile in early initiation phase of psoriasis to a Th17 
governed response in the chronic inflammatory phase with both 
involved in atherosclerosis progression (99).

Dendritic Cells
In psoriasis, DCs not only act as antigen presenters and cytokine 
producers but also play an important part of bridging the innate 
and adaptive immune systems in continuing the chronic inflam-
mation inducing cascade (43, 79). While pDCs are important in 
initiation of psoriasis via type 1 IFN responses (62, 100), mDCs 
are key mediators for specific Th cell expansion via IL-12 and 
IL-23 secretion (79). While new evidence suggests a role for DCs 
in atherosclerotic plaque build-ups, plaque vulnerability through 
cholesterol metabolism and adaptive immune response modula-
tion (101), their shared role in psoriasis and atherosclerosis needs 
further research.

Monocytes and Macrophages
Monocytes and macrophages are cellular hallmark of athero-
sclerosis (1) and are also involved in pathogenesis of psoriasis 

(102). While macrophages are traditionally subclassified as pro-
inflammatory (M1) and anti-inflammatory (M2), they are known 
to be plastic and adapt to the surrounding milieu according to 
the underlying pathological state (103, 104). Furthermore, a 
preclinical in vivo and in vitro study demonstrated that chronic 
skin inflammation in psoriasis polarizes them toward the pro-
atherosclerotic phenotype (99). These cells are involved in ACS, 
and their increased expression and activity is also present in vul-
nerable plaques (105). Novel evidence has recently suggested that 
a complex interplay involving neutrophil–macrophage cross-talk 
is crucial to the process of atherosclerosis and ACS (106–108). As 
these cells are involved throughout the process of atherosclerosis 
from plaque development to complications, such as ACS, and also 
play a significant role in psoriasis, further research may provide 
new avenues for treatment of both these conditions.

Neutrophils
Despite being the most abundant white blood cell in the circula-
tion, neutrophils have received little attention in the pathophysi-
ology of atherosclerosis and psoriasis. Recent mouse models and 
clinical trials have demonstrated the mechanistic role of neutro-
phils in psoriasis and atherosclerosis through the IL-17 driven 
keratinocyte hyper-proliferation, leading to chronic skin inflam-
mation (109, 110). Psoriasis patients are known to have higher 
serum levels of IL-17 compared with healthy controls; however, 
the paradigm of Th17 as the predominant cellular source of IL-17 
in psoriatic lesions is no longer fully valid (111). Recent studies 
have demonstrated that cells of the innate immune system, such 
as neutrophils, mast cells, γδ T cells, and innate lymphoid cells, 
are the main sources of IL-17 in psoriasis. Furthermore, despite 
controversies, IL-17 is shown to have a role in atherosclerosis in 
clinical and mouse model-based studies (83–85, 87).

Psoriasis increases neutrophil activation and release of neu-
trophil-associated proteins. Proteins associated with neutrophils 
such as S100A8/A9 may further provide a link between psoriasis 
and cardiometabolic diseases (100). S100A8/A9 (MRP8/14) is 
released by activated neutrophils and upregulated in psoriatic 
lesional skin (100, 112). We demonstrated its strong association 
with both skin disease severity and VI (100). Collectively, evi-
dence suggests that neutrophils and their proteins may contribute 
to the early atherosclerotic milieu in psoriasis and independently 
predict endothelial dysfunction.

A novel subtype of neutrophils, the low-density granulocytes 
(LDGs), are moving to the forefront of research in psoriasis and 
CVD pathophysiology. LDGs are characterized by high pro-
inflammatory activity, altered phagocytic function, elevated type 
I interferon production, and high abundance in atherosclerotic 
plaques and plasma of psoriasis patients (113). At the gene expres-
sion level, LDGs differ from their autologous normal-density 
granulocytes (NDGs) counterparts, as well as from healthy con-
trol neutrophils (114–116). LDGs also differ phenotypically 
from NDGs. Of these differences, the most compelling is their 
enhanced capacity to spontaneously form neutrophil extracellular 
traps (NETs). This novel defense mechanism termed NETosis 
goes beyond classical phagocytosis, where NETs are formed as 
a result of release of cytosolic granule proteins bound to nuclear 
material catalyzed by peptidylarginine deiminase 4 (117).  
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FiGURe 1 | Systemic effects of chronic low-grade inflammation in psoriasis. (A) Psoriasis, both cutaneous and arthritic, is a low-grade chronic, systemic 
inflammatory disease associated with increased circulating pro-inflammatory cytokines. (B) Chronic inflammation in psoriasis is associated with adipose tissue 
dysfunction characterized by pro-inflammatory cytokines and adipokines associated with endothelial dysfunction. (C) Furthermore, psoriasis exhibits a deranged 
lipid profile and impaired HDL function, which in combination with chronic inflammation accelerate atherosclerotic vascular disease. (D) The vessel wall is infiltrated 
through a complex interplay of pro-inflammatory cellular components, cholesterol crystals, and various lipoproteins. Over the time, with build-up of the plaque, this 
atherosclerotic lesion poses a significant threat to blood flow and is prone to rupture, often accelerated by inflammation leading to myocardial infarction. (e) Thus, 
psoriasis and psoriatic arthritis upregulate T-cell, neutrophil chemotaxis, and keratinocyte activation and endothelial dysfunction leading to increased atherosclerosis 
in blood vessels. Abbreviations: TNF-α, tumor necrosis factor-alpha; IL, interleukin; IFN-γ, interferon-gamma.
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Although NETs are beneficial in antimicrobial defense, they may 
act as a source of autoantigens and are implicated in the develop-
ment of autoimmune diseases especially psoriasis, as well as other 
diseases including systemic lupus erythematosus, atherosclerosis, 
preeclampsia, acute lung injury, deep vein thrombosis, and cancer-
associated thrombosis (118–121). Cholesterol crystals are shown 
to trigger NETosis, further potentiating atherosclerosis by mac-
rophage priming, Th17 activation, and immune cell recruitment 

in plaques (108). NETs are also shown through immunochemical 
stains to directly induce endothelial dysfunction and plaque rup-
ture in human carotid plaque sections (122). NETs may be involved 
in the initial injury of the endothelium during atherogenesis, with 
recent evidence demonstrating the presence of neutrophils and 
NETs at sites of plaque rupture and endothelial cell erosion in 
human carotid plaques, features which we hypothesized would be 
evident in early atherosclerosis in psoriasis.
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TABLe 1 | Biologic treatment options to treat psoriasis.

Biologic drug Target cytokine Cardiovascular effects

Etanercept Tumor necrosis factor-α Observational data indicating better 
CV outcomes. RCT for subclinical 
cardiovascular disease (CVD) 
demonstrating promising results.  
RCT dedicated for CV events not 
available (139, 140, 143)

Infliximab

Adalimumab

Secukinumab Interleukin-17A and 
interleukin-17A receptor 
for brodalumab

Dedicated RCT for CV events 
unavailableIxekizumab

Bimekizumab
Brodalumaba

Ustekinumab Interleukin-12/23p40 RCT for subclinical CVD  
demonstrating favorable results. 
Dedicated RCT unavailable (144)

Briakinumaba

Guselkumab Interleukin-23p19 No data available yet for CV effects
Tildrakizumab
Risankizumab

Fezakinumab Interleukin-22 Drug still in early development phase

aDiscontinued medications from the market.
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ADiPOSe DYSFUnCTiOn in PSORiASiS

Systemic inflammation associated with psoriasis also contributes 
to inflammation of the adipose tissue (20), harboring components 
of the innate immune system (Figure  1) (63, 123). The physi-
ological distinction between visceral and subcutaneous adiposity 
has been considered an important determinant in assessing 
CVD risk. Visceral adiposity is highly metabolically active, 
and its dysregulation can alter the immune cell and adipokine 
profile, exacerbating endothelial dysfunction. Visceral adiposity 
is associated with subclinical CVD measured as VI by 18F-FDG 
PET/CT independent of cardiovascular risk factors in psoriasis 
(124). Furthermore, a decrease in visceral adiposity associated 
with an improvement of VI following 1  year of biologic anti-
inflammatory therapy.

Psoriatic adipose tissue contains immune cells that influence 
cardiometabolic disease (20). T  cells, B  cells, DCs, neutrophils, 
mast cells, and adipose tissue macrophages (ATM) may contribute 
to obesity and insulin resistance, while eosinophils and Treg may 
protect against insulin resistance. ATM represent unique functional 
subset in psoriasis that are predisposed toward pro-inflammatory 
cytokine expression and adipose dysfunction, extending beyond 
the M1/M2 macrophage paradigm (20, 125, 126).

While visceral abdominal adiposity is being increasingly 
studied, there is emerging research that a local type of visceral adi-
pose tissue, known as perivascular adipose tissue (PVAT), which 
surrounds most blood vessels (coronary arteries, the aorta, and 
microcirculation of the mesentery), may contribute to cardiometa-
bolic disease (127, 128). Its anatomic proximity to the vasculature 
has led to research investigating the mechanisms of dysfunctional 
PVAT driven immune-mediated cross-talk in endothelial and 
vascular function under inflammatory conditions (127, 128). 
Mechanistic studies have demonstrated significant adipokine and 
chemokine (MCP-1, IL-8) production by PVAT and its ability to 
stimulate chemotaxis, contributing to progression of atheroscle-
rosis (129, 130). Multiple pathways have been identified through 
which adipokines are implicated in CVD development—from 
direct vascular effects on endothelial function and smooth muscle 
migration to immune cell migration into the vascular wall through 
a potential “outside-in” inflammatory cascade (127). Recent efforts 
have led to a novel approach to image the PVAT and showed that 
it is associated with coronary inflammation in a dynamic fashion 
(131), with potential for prospective risk stratification.

Leptin is shown to be elevated in patients with psoriasis, 
to correlate with psoriasis disease severity and with indices 
of subclinical atherosclerosis (132, 133). We have previously 
exhibited an association between enhanced leptin and resistin 
activity with attenuated adiponectin activity in innate immune 
activation (24). Increased leptin and resistin promote expres-
sion of pro-inflammatory cytokines including TNF-α, IL-2, 
IL-6, and MCP-1, all of which are prothrombotic and drive 
VI through monocyte migration and macrophage activation 
(134). Finally, adipokines may contribute to the effect of insu-
lin on the vasculature by contributing to changes in capillary 
recruitment (127).

Peri- and epicardial fat tissue are additional sources of visceral 
fat deposition, and a rich source of inflammatory cytokines that 

are associated with both subclinical and clinical coronary heart 
disease (128). Epicardial fat tissue has been reported to be sig-
nificantly increased in psoriasis patients and may represent an 
independent risk factor for atherosclerosis (135).

BiOLOGiC THeRAPieS

The current generation of biologic agents target cytokines criti-
cal to the pathogenesis of psoriasis, including the three known 
major drivers: TNF-α, IL-23, and IL-17. The majority of most 
effective psoriasis treatments target the IL-23/Th17 pathway. 
These medications include the anti-IL-17 and anti-IL23p19 
agents (Table 1). However, as novel therapies emerge, even today, 
anti-TNF agents remain the standard of care in general clinical 
practice (43, 136). While observational data in large payer-based 
or veterans association-based cohorts suggest a reduced risk for 
MACEs primarily with anti-TNF agents, no trials assessing direct 
cardiovascular effects of these medications in psoriasis patients 
exist to date (137–140). Although effective in treating psoriasis, 
interestingly, these therapies have been proven of no use in rheu-
matoid arthritis, another chronic inflammatory disease where the 
IL-23/Th17 axis plays an important role. The rationale behind 
these contradictory findings in two major inflammatory diseases 
currently remains unclear (141, 142).

FUTURe DiReCTiOnS

Over the last decade, remarkable progress has been made for 
the treatment of moderate-to-severe psoriasis, especially with 
the advent of biologic therapies, which target specific cytokines, 
immune cells, and pathways. Moreover, the recent success of 
CANTOS (32) has demonstrated that inflammation reduction 
through direct IL-1β inhibition using a monoclonal antibody, 
canakinumab, in the absence of lipid lowering, can reduce CV 
event rates. As such, the emerging field of biologic treatments 
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of the recent trial CANTOS (32), which demonstrated reduced 
incidence of recurrent cardiovascular events after treating residual 
inflammation in patients with known coronary artery disease.
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