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The field of microbiome research has developed rapidly over the past decades and has
become a topic of major interest to basic, preclinical, and clinical research, the
pharmaceutical industry as well as the general public. The microbiome is a complex
and diverse ecosystem and defined as the collection of all host-associated
microorganisms and their genes. It is acquired through vertical transmission and
environmental exposure and includes microbes of all kingdoms: bacteria, archaea,
prokaryotic and eukaryotic viruses, fungi, protozoa, and the meiofauna. These
microorganisms co-evolved with their respective hosts over millions of years, thereby
establishing a mutually beneficial, symbiotic relationship on all epithelial barriers. Thus, the
microbiome plays a pivotal role in virtually every aspect of mammalian physiology,
particularly in the development, homeostasis, and function of the immune system.
Consequently, the combination of the host genome and the microbial genome,
together referred to as the metagenome, largely drives the mammalian phenotype. So
far, the majority of studies have unilaterally focused on the gastrointestinal bacterial
microbiota. However, recent work illustrating the impact of viruses, fungi, and protozoa on
host immunity urges us towards a holistic view of the mammalian microbiome and the
appreciation for its non-bacterial kingdoms. In addition, the importance of microbiota on
epithelial barriers other than the gut as well as their systemic effects viamicrobially-derived
biologically active compounds is increasingly recognized. Here, we want to provide a brief
but comprehensive overview of the most important findings and the current knowledge on
how microbes of all kingdoms and microbial niches shape local and systemic immunity in
health and disease.

Keywords: bacterial microbiome, mycobiome, virome, archaeome, gut microbiota, lung microbiota, skin
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INTRODUCTION

Multicellular organisms are not only composed of their
individual cells, but also of the microorganisms that inhabit
ecological niches such as the gastrointestinal tract, the skin, the
respiratory tract, and the genitourinary system. These microbes
do not just passively colonize their hosts, they rather established
a symbiotic relationship on all epithelial barrier sites during
millions of years of co-evolution. The host provides its resident
microbes with a habitat as well as nutrients, and in return, they
help in digesting food, providing vitamins, and protecting their
host from diseases (1–4).

Microbiota is defined as the ecological community of all host-
associated microbes within a particular niche, whereas the
collection of those microorganisms and their genomes is
known as the microbiome (5). The host genome is the building
plan for mammalian organisms, thereby creating well-defined
ecological niches for microbes. Nonetheless, the mammalian
phenotype itself within a given environment is rather driven by
the combination of the host genome and the microbiome
together referred to as the metagenome. Therefore, the
microbiome plays a pivotal role in virtually every aspect of
mammalian physiology, particularly in the development,
maturation, homeostasis, and ultimately the function of the
immune system (6–11). This mutually beneficial coexistence is
also acknowledged in the holobiont theory or the metaorganism
concept, emphasizing the intimate relationship between the host
and its inhabiting microorganisms (12–14).

Over the last decades, microbiome research has primarily
focused on the gastrointestinal bacterial community and its
effects on the host health and disease. This line of research
provided insights into mechanisms of the bidirectional crosstalk
between the host and its bacterial subtenants. However, many
disease states are paralleled with changes in the bacterial
microbiome and vice versa, leaving the question of whether the
microbiome is responsible for the disorder or whether the disease
influences microbial composition, placing researchers into a
challenging chicken and egg situation. In this context, it is
pivotal to acknowledge that the microbiome is a complex and
diverse ecosystem comprising microorganisms of all kingdoms,
Abbreviations: AD, Alzheimer’s disease; ALD, Alcoholic liver disease; allo-HSCT,
Allogeneic hematopoietic stem cell transplantation; ASCA, Anti-saccharomyces
cerevisiae antibodies; AhR, aryl hydrocarbon receptor; ASD, autism spectrum
disorder; CARD, caspase recruitment domain-containing protein; CCR, C-C
chemokine receptor; CLEC7A, C-type lectin domain family 7 member A; DC,
dendritic cell; DSS, Dextran sulfate sodium; gdT cell, gamma delta T cell; EAE,
experimental autoimmune encephalitis; FMT, fecal microbiota transplantation;
FXR, farnesoid X receptor; GvHD, Graft-versus-host disease; HCC, hepatocellular
carcinoma; HIV, human immunodeficiency virus; HSV-2, herpes simplex virus 2;
IAV, influenza type A virus; IL-1RA, IL-1 receptor antagonist; ILC, innate
lymphoid cell; IFN, interferon; IL, interleukin; MNP, mononuclear phagocyte;
MS, multiple sclerosis; MCMV, murine cytomegalovirus; NAFLD, non-alcoholic
fatty liver disease; NKT cell, natural killer T cell; PD, Parkinson’s disease; PD-L1,
programmed cell death 1 ligand 1; PRR, pattern recognition receptor; PGE2,
prostaglandin E2; RIG-I, retinoic acid-inducible gene I; ROS, reactive oxygen
species; Treg cell, regulatory T cell; SFB, segmented filamentous bacteria; SCFA,
short-chain fatty acids; SPF, Specific-pathogen-free; STING, Stimulator of
interferon genes; TH1 cell, T helper 1 cell; TH2 cell, T helper 2 cell; TH17 cell,
T helper 17 cell; TLR, toll-like receptor.
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namely bacteria, archaea, eukaryotes like protozoa and fungi, and
even multicellular eukaryotes such as helminths (15). In
addition, eukaryotic viruses, phages, and endogenous retroviral
elements are also crucial members of the mammalian
microbiome (16). These microbial communities are present not
only in the gut, but at all epithelial barrier sites, and the overall
complexity is likely potentiated by trans-kingdom interactions
between these commensals (17). As explained above, this
complex ecosystem together with the host genome shapes the
metaorganism and its physiology through multifactorial and
nonlinear interactions. Thus, experimental models of
translational research that are aiming to identify causal
relationships and to unravel underlying mechanisms must be
capable of navigating this complexity. Therefore, focusing on the
gut bacteria, merely one component of the entire microbiome,
makes it exceedingly difficult to fully decipher complex
microbiota-related physiological mechanisms. Instead, a full
description of the microbiome at distinct epithelial barrier sites
and a more comprehensive view of mammalian organisms as
holobionts might be a key to successfully conduct mechanistic
studies, thereby opening up a promising window of opportunity
to solve the chicken and egg question.
TECHNOLOGICAL CHALLENGES
IN THE ANALYSIS OF DIFFERENT
MICROBIAL KINGDOMS

Ever since, most studies investigating the microbial influence on
the host’s physiology focused on bacteria of the gastrointestinal
tract, particularly highly abundant bacteria. The primary reason
for this bacteriocentric approach was a major technological
restriction: pioneer studies on mammalian microbiota almost
exclusively relied on culture-based approaches that were more
commonly available for bacterial organisms, specifically
gastrointestinal microbes. Moreover, the gut incorporates high
microbial biomass and is thus much easier to study than niches
with low microbial biomass like the skin, the respiratory tract, or
the genitourinary system.

Technological advances, especially the common use of
sequencing methods and a continuous reduction in the
associated costs alongside novel computational bioinformatics
tools, have enabled the scientific community to explore the
bacterial microbiome as well as other microbial kingdoms in
more detail, unveiling previously unappreciated microorganisms
(18, 19). However, the focus on bacterial organisms of the gut
remained vastly unchanged. Thus, the commonly used methods
were optimized for detecting bacterial DNA, which causes
problems when focusing on viruses, archaea, or eukaryotes like
fungi. When using 16S rRNA gene profiling, microorganisms
other than bacteria are vastly neglected as the primers fail to cover
multi-kingdom diversity. Nowadays, the probably least biased
approach to study highly diverse microbial communities is
shotgun metagenomic sequencing. However, the predominance
of bacteria leads to an unfavorable bacteria-to-archaea or
bacteria-to-fungi ratio, and thus a high sequencing depth is
June 2021 | Volume 12 | Article 702378
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needed to detect comparably rare fungal or archaeal signatures
(20, 21). The differences in the cellular structures between
bacteria, archaea, or eukaryotes are another technological
hurdle in analyzing microbial DNA. For example, commercial
DNA extraction kits contain lysozyme that cuts bacterial
peptidoglycan but not archaeal pseudopeptidoglycan (21).
Likewise, the efficiency of isolating fungal DNA significantly
differs between several isolation methods for microbial DNA
(22). Another challenge comes when analyzing viral
communities, as the genome of many viruses is not composed
of DNA but RNA, so that the study design requires the inclusion
of RNA in its analyses (23). Thus, the research community
urgently needs tailored protocols to enrich, extract and study
non-bacterial kingdoms such as the archaeome, the virome, the
mycobiome, and other eukaryotes like protozoa and
the meiofauna.

Another crucial component to ensure future success in
microbiome research will be the availability of high-quality
databases. Although current databases for bacteria are already
refined and accurate, they certainly need further optimization.
This is substantially different for other microbial kingdoms, as
reliable and well-annotated databases are urgently needed for
analyses at the species level, but often not available (21, 24).
Many sequences included in databases for fungal communities
are annotated as uncultured or are incorrect at the species level
(25). This is further complicated by the fact that sexual and
asexual forms of the very same fungal species are frequently
classified as different taxa (26, 27). In virome studies, only
around half of the sequences can be aligned to reference
databases, indicating an enormous amount of viral “dark
matter” that needs further exploration (23, 28). Hence, the
scientific community imperatively needs further optimization
of databases, particularly as regards non-bacterial kingdoms.
This could be achieved by studies shedding more light on the
“dark matter” still obscuring vast parts of the mammalian
microbiome, thereby empowering mechanistic studies on host-
microbe interactions.
THE MICROBIOME OF THE
GASTROINTESTINAL TRACT: LOCAL
EFFECTS ON IMMUNITY

Gut Bacterial Microbiome
The gastrointestinal tract certainly is the most intensively studied
microbial niche and considering its impact on local and systemic
immunity, the most remarkable epithelial barrier site of
mammalian organisms. Further, the bacterial microbiome of
the gastrointestinal tract is the so far best characterized
microbial community that mainly comprises anaerobic bacteria
of the phyla Bacteroidetes and Firmicutes (29). It plays an
essential role in the development, maturation, aging, and
homeostasis of the host’s immune system and thus the
orchestration and functionality of host immune responses in
steady state and during various inflammatory events (Figure 1)
(30, 31).
Frontiers in Immunology | www.frontiersin.org 3
Several studies showed that certain gut bacteria strongly shape
local immunity at the corresponding barrier site. An example are
segmented filamentous bacteria (SFB), gram-positive bacteria
that grow close to the intestinal epithelium and that induced
the formation of T helper 17 (TH17) cells, which are crucial for
tissue homeostasis at barrier sites (32). However, not only
commensal SFB but also other bacteria like murine
enteropathogenic Citrobacter rodentium, a human pathogenic
Escherichia coli strain, or the human symbiont Bifidobacterium
adolescentis, were able to induce an accumulation of TH17 cells
(33, 34). Adhesion to the intestinal epithelial cells seems to be a
key factor for gut TH17 cell differentiation, as this is a shared
feature of the above-mentioned bacteria, and adhesive-defect
mutants did not induce TH17 cell development (33, 34).
However, further studies suggested that TH17 cells induced by
different bacteria display divergent inflammatory phenotypes
(35). SFB are not only important in TH17 responses but also
seem to induce T follicular helper cell development in the Peyer’s
patches, which leads to the aggravation of inflammation in an
autoimmune arthritis model (36). Not only bacteria themselves,
but also their products such as metabolites affect immune
development and functionality. For instance, microbiota-
derived short-chain fatty acids (SCFA) are needed for antigen-
activated CD8+ T cells to develop into long-living memory cells
(37). SCFA produced by Clostridia of the Cluster IV, XIVa, and
XVIII promote the accumulation of interleukin (IL)-10
producing regulatory T (Treg) cells in the colon and attenuate
pathology in a colitis model (38–40). A bacterial polysaccharide
of Bacteroides fragilis also induced IL-10 producing Treg cells,
which protect against experimental colitis induced by
Helicobacter hepaticus (41). Bile acids, further microbial-
derived metabolites, play a protective role in the intestine by
interacting with the farnesoid X receptor (FXR) (42, 43).
Additionally, recent studies suggested bacterially produced
secondary bile acids to regulate the differentiation of colonic
Treg cells, which have a positive impact on dextran sulfate sodium
(DSS)-induced colitis (44–46). Not only the gastrointestinal
T cell compartment but also B cell development in the
intestinal mucosa is affected by commensal colonization (47).
Other microbial metabolites, like aryl hydrocarbon receptor
(AhR) ligands, produced by tryptophan-metabolizing
microbes, induce the production of IL-22, thereby providing
resistance to Candida colonization and gut inflammation
(48). Additionally, various microbial molecules can influence
macrophage polarization towards either a pro-inflammatory or
an anti-inflammatory state, depending on the stimulating
metabolites and the context (49–51). Gut-resident bacteria and
their metabolites thus have a substantial effect on gastrointestinal
health and disease.

Gut Archaeome
Over 50 years ago, the first methanogenic archaeal microorganism
was isolated from human feces, ever since we know that the
gastrointestinal tract is also inhabited by representatives of the
archaeal domain (52). Further methanogenic and to a lesser extent
also non-methanogenic archaeal species were detected in the
human gut, supporting initial findings that methanogenic
June 2021 | Volume 12 | Article 702378
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archaea are commensal inhabitants of the human gastrointestinal
tract (53). Some methanoarchaeal species showed immunogenic
properties (54, 55), however, the interaction between archaea and
the immune system, as well as the involvement of archaea
in human physiology remains blurry (21). A recent study
suggested trans-kingdom interactions between bacteria of the
Christensenellaceae family and archaea of the Methanobrevibacter
family to be associated with a lean body mass index in humans
(56). Interestingly, no human pathogenic archaeal species are
Frontiers in Immunology | www.frontiersin.org 4
known today, and there is only little to no data available on how
archaea might affect the physiology of their respective hosts (21).
Consequently, a substantial amount of research is required to
further unravel the relationship between the host and its
archaeal inhabitants.

Gut Mycobiome
The gut mycobiome is a diverse community mainly comprising
Saccharomyces, especially Candida species, as well as yeasts of the
FIGURE 1 | Local and systemic effects of the gut microbiome on the immune system. The mammalian gut is populated by a plethora of microbes comprising
representatives of all kingdoms, specifically bacteria, archaea, eukaryotes like fungi, protozoa, and helminths, as well as eukaryotic viruses and bacterial phages. The
collectivity of all gut-associated microorganisms affects the development, maturation, homeostasis, and consequently functionality of the immune system, which in
turn has local and systemic consequences. Changes in the microbial composition might affect the protection against or acceleration of inflammatory diseases,
regulation of intestinal pathologies, and the protection against intestinal infections. Microbiota influence not only the gut tissue itself, but also other organs like the
liver, lung, and brain via the so-called gut-liver, gut-lung, or gut-brain axes. These distant organs are also affected positively or negatively in their homeostasis,
defense against infections, or development of organ-specific pathologies.
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family Dipodcaceae, and occasionally also Malassezia and
Cladosporium (57–59). Comparable to the gut bacterial
microbiome, gastrointestinal fungi were also shown to strongly
shape local immunity at the corresponding barrier site (60).
Candida albicans colonization in the gut induced IL-17 and
IL-22 production of TH17 cells that protect from systemic
infection with Candida albicans and Staphylococcus aureus
(61, 62). However, Candida albicans gut colonization also
promoted susceptibility to TH17 cell-mediated airway
inflammation and correlated with systemic levels of TH17 cell
inflammation (62). In humans, the gut mycobiome induced
antifungal antibody production that protects against systemic
fungal infections in a caspase recruitment domain-containing
protein 9 (CARD9) dependent way (63). Commensal fungi seem
to have certain anti-inflammatory properties as a disturbance of
the fungal gut community aggravated colitis in a mouse model
(64). Similarly, the interaction of gut fungi with C-type lectin
receptors on macrophages seems to protect from DSS-induced
colitis and colon cancer (65, 66). Fungal colonization after
antibiotic treatment can even recapitulate the beneficial effect
of bacterial gut colonization on DSS-induced colitis (67).
However, these anti-inflammatory capabilities appear to be
context-sensitive, since fungal colonization seemed to be
detrimental in colitis in specific-pathogen-free (SPF) mice (68).
Patients suffering from Crohn’s disease frequently show elevated
anti-Saccharomyces cerevisiae antibodies (ASCA), leading to the
assumption that commensal fungi might play a role in human
gastrointestinal diseases (69). Importantly, ASCA can even be
detected before disease onset and are highly predictive for
receiving a diagnosis of Crohn’s disease within the next five
years (70). Thus, the gut mycobiome also appears to be an
essential component in shaping local immunity in steady state as
well as during inflammation.

Gut Virome
The gastrointestinal virome also plays a pivotal role in shaping
local gut immunity. A substantial proportion of viruses detected
in fecal samples are bacteriophages that are likely to influence the
composition and functional properties of the gastrointestinal
bacterial community (71). Phages might do so by predating
susceptible bacterial strains, which confers an advantage to the
growth of others (72). Another mechanism is horizontal gene
transfer that changes genetic diversity and thereby influences
virulence, antibiotic resistance, and metabolic determinants of
the bacterial community (73). Thus, phages capable of affecting
the composition of gastrointestinal bacterial communities exert
an indirect impact on the function of the immune system (72,
74). This is further illustrated by a study that suggested
bacteriophage diversity and colonization level to be a key
factor in the success of fecal microbiota transplantation (FMT)
in the therapy of recurrent Clostridium difficile infection (75).
Besides their indirect effects, phages can also directly exacerbate
colitis by inducing host immunity via toll-like receptor (TLR)-9
stimulated interferon (IFN)-g production (76). Bacteria-infecting
prophages initiate viral gut colonization during the first months
of life; eukaryotic viruses follow a few months later, depending on
breastfeeding (77). The presence of enteric viruses in the gut is
Frontiers in Immunology | www.frontiersin.org 5
imperative for tissue homeostasis and the prevention of overt
inflammation. Type I IFN stimulated by activation of the viral
pattern recognition receptors (PRRs) retinoic acid-inducible
gene I (RIG-I) and stimulator of interferon genes (STING) is
protective against intestinal barrier damage and prevented graft-
versus-host disease (GvHD) in mice (78). RIG-I activated by
enteric viruses also stimulates IL-15 secretion, which is important
for maintaining tissue-regenerative intraepithelial lymphocytes
(79). Another virus-sensing PRR, TLR7, enhances resistance to
vancomycin-resistant Enterococcus infection of antibiotic-treated
mice via secretion of anti-microbial peptides stimulated by IL-22
producing innate lymphoid cells (ILC) (80). Recognition of gut
viruses by TLR3 and TLR7 also protects against DSS-induced
colitis via a type-I IFN mediated mechanism (81). IFN-l induced
by enteric viruses was suggested as an additional protective factor
against DSS-induced colitis by preventing reactive oxygen species
(ROS) production and neutrophil degranulation (82). Infection
with murine norovirus could even compensate for the absence of
gut bacteria regarding their immune-promoting function and the
protective capacities against Citrobacter rodentium induced
pathologies (83). Another study found murine astrovirus, a
commensal gastrointestinal virus in mice, to protect against
murine norovirus and rotavirus in immunodeficient mice by
increasing IFN-l levels (84). This effect is mediated by
stimulation of type I IFN that leads to the recruitment of C-C
chemokine receptor type 2 (CCR2) dependent monocytes and
the production of IL-22 by type 3 ILC (85). Hence, besides gut
bacteria and fungi, the gut virome is also a crucial factor for
immunity at the barrier site, not only by direct interaction but
also indirectly by affecting other microbial kingdoms. This is a
relevant and increasingly recognized phenomenon known as
trans-kingdom interactions (17).

Other Eukaryotic Members of the
Gut Microbiome
The impact of eukaryotic multicellular organisms like protozoa
and helminths on local and systemic immunity is still largely
unrecognized (86). Some organisms such as Entamoeba
histolytica and Ascaris lumbricoides are obligatory pathogens,
while others, for example, Blastocystis, are associated with disease
but also found in healthy people (86). The commensal murine
protist Tritrichomonas musculis induced an accumulation of
T helper 1 (TH1) and TH17 cells in an inflammasome and
IL-18 dependent mechanism (87). This induction of adaptive
immunity enhanced anti-bacterial defense but also increased
intestinal inflammation (87). Similarly, Tritrichomonas muris
was found to induce a TH1 response in the cecum leading to
accelerated gastrointestinal inflammation in a colitis mouse
model (88). Different studies found the SCFA succinate,
produced by Tritrichomonas muris, to activate tuft cells in the
intestinal epithelium. Tuft cells subsequently induced the
secretion of IL-13, IL-4, and IL-5 by type 2 ILC in an IL-25
dependent manner (89–91). This cytokine milieu promoted the
expansion of tuft and goblet cells, a common mechanism for
clearing helminth infection and protecting from subsequent
colonization by other parasites (89). Interestingly, tuft cell
expansion promoted norovirus infection as the norovirus
June 2021 | Volume 12 | Article 702378
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receptor is specifically expressed on tuft cells (92). Moreover,
helminth infection can manipulate the immune system leading
to an impaired antiviral immunity or even viral reactivation (93,
94). Non-fungal eukaryotes are regularly found in the gut and
seem to have beneficial as well as detrimental effects on local
immunity by deteriorating intestinal inflammation but also
preventing secondary helminth infection.

Taken together, a rapidly growing body of literature points
towards a pivotal role of the microbial community including
representatives of all microbial kingdoms in the homeostasis of
the gut. Particularly, the development, maturation, aging, and
thus the functionality of host immune responses at the barrier
site in steady state as well as during various inflammatory events
are largely orchestrated by the gut microbiome.
THE MICROBIOME OF THE
GASTROINTESTINAL TRACT: SYSTEMIC
EFFECTS ON IMMUNITY

Gut Bacterial Microbiome
The gastrointestinal bacterial microbiome does not only shape
immunity at its corresponding barrier site but also exerts
powerful effects on systemic immune responses (Figure 1).
Among the most affected organs are the lung, the brain, and
the liver whose physiology is influenced via the so-called gut-
lung (95), gut-brain (96), or gut-liver axis (97). The gut-lung axis
has a significant influence on the susceptibility to respiratory
infections and allergic airway diseases. For example, germ-free
mice are more susceptible to lethal Klebsiella pneumoniae
infection, an effect that can be reversed by transient TLR
activation through administration of several TLR agonists
usually produced by indigenous microbiota (98). A comparable
effect of a reduced microbial load was observed in the context of
Influenza A virus (IAV) infection. Mice pre-treated with
antibiotics showed an aggravation of IAV infection due to a
diminished T cell response because of poorly activated dendritic
cells (DC) and a higher activation threshold of innate immunity
(99, 100). Additionally, TLR5 activation by bacterial flagellin in
the gut is essential for the development of an efficient antibody
response to IAV vaccination (101). Another study found the
metabolite desaminotyrosine produced by Clostridium
orbiscindens to be a protective factor against IAV infection by
modulating type I IFN signaling (102). A further mechanism that
might prevent overt immunopathology in the lung following
IAV infection was SCFA-mediated alteration of bone marrow
hematopoiesis leading to increased numbers of anti-
inflammatory macrophages in the lungs (103). Gastrointestinal
bacteria not only play a pivotal role during respiratory infections,
but they also appear to be crucial in allergic airway disorders. Gut
dysbiosis induced by antibiotic or antifungal treatment can
aggravate allergen-induced airway inflammation (64, 104).
Otherwise, infection with Helicobacter pylori conferred
protection towards experimentally induced lung inflammation,
a Treg cell-mediated effect (105, 106). A comparable protection
Frontiers in Immunology | www.frontiersin.org 6
from allergic airway disease was found in mice supplemented
with Lactobacillus johnsonii, a bacterium that is enriched in the
gastrointestinal tract of mice that were previously exposed to
house dust mites (106). However, the protective effect of the
bacterial microbiome might be reversed in the context of chronic
pulmonary diseases. A study using a mouse model of cystic
fibrosis showed amelioration of airway hyperresponsiveness after
lowering the enteric bacterial burden by antibiotic treatment
with Streptomycin (107).

Besides the lung, the gut bacterial microbiome is very well
known to affect the development, maturation, normal aging,
homeostasis, and function of the brain, which is accomplished
through communication along the gut-brain axis (96). Important
mediators for this are neuroactive metabolites produced by gut-
resident microbiota. Good examples are the influence of
gastrointestinal bacteria on microglial development and
homeostasis, an important phenomenon likely mediated
through microbially-produced, neuro-modulatory SCFA (108).
This study also highlights that the complex and diverse gut
community, rather than single gut-resident bacteria, is
fundamental for proper microglial development and function
(108). Not only microglial development but also axogenesis is
affected by gut bacteria and their metabolites. Axogenesis was
markedly reduced in offspring of germ-free or antibiotics-treated
damns, leading to sensation impairment in the offspring (109).
This effect could be reversed by colonizing the pregnant damns
with spore-forming bacteria or treatment with selected
metabolites (109). The microbiota-mediated influence on brain
homeostasis also affects the progression of several brain
pathologies including psychiatric disorders like autism
spectrum disorder (ASD), as well as neurological diseases such
as Alzheimer’s disease (AD), Parkinson’s diseases (PD), multiple
sclerosis (MS), and stroke. To mention some examples,
microbiota depletion attenuated brain inflammation and
pathologies in mice with experimental autoimmune
encephalitis (EAE), a gold-standard model of human MS as
well as in an AD mouse model (110–112). Susceptibility to
developing EAE symptoms could be transferred from MS
patients to transgenic mice spontaneously developing EAE,
which showed an increased incidence of disease symptoms
after FMT from MS diseased donors (113). Moreover, in a
mouse model of ASD, oral treatment with Bacteroides fragilis
ameliorated ASD-related behavioral abnormalities, an effect that
is most likely mediated by microbiota-dependent metabolites
(114). Another study using a PD mouse model has underlined
the microbial influence on neurological disorders by identifying
gut microbiota to enhance a-synuclein-mediated motor
dysfunction, an effect probably also mediated by microbially-
produced SCFA (115). Further, the gut bacterial microbiota
affects meningeal IL-17 producing gamma delta T (gdT) cells,
which worsened the outcome of experimentally induced strokes
(116). Similar to the intestine, another part of the digestive tract,
the oral cavity, has a niche-specific bacterial microbiome (117).
Interestingly, the amount and diversity of oral colonization seem
to decline during weaning, coinciding with upregulation of saliva
production and salivary antimicrobial components (118).
June 2021 | Volume 12 | Article 702378
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Moreover, in several studies, periodontitis and tooth loss were
associated with the development of dementia and Alzheimer’s
disease (119, 120).

There also is an interplay between the gut bacteria and the
liver. So, common liver diseases like alcoholic liver disease
(ALD), non-alcoholic fatty liver disease (NAFLD), liver
cirrhosis, or hepatocellular carcinoma (HCC) are associated
with changes in the bacterial gut microbiome (97). Changes in
the microbiome can also change liver cancer by bile acids
transformation that affect CXCR6+ natural killer T (NKT) cells
in the liver (121). A therapeutic option using the microbiome-
related effect on liver immunity is FMT, which showed
promising results in an ALD mouse model and was recently
also explored in a first clinical trial in humans (122, 123). Even
though, science has already gained substantial knowledge on how
gut bacterial microbiota influence immunity in distant organs,
there is still extensive research required to fully decipher these
complex interactions.

Gut Mycobiome
Like the gut bacterial microbiome, the gut mycobiome can also
shape systemic immune responses, particularly in the lung, brain,
and liver. Regarding the gut-lung axis, fungal dysbiosis caused by
antibiotics or antifungal treatment can exacerbate experimentally
induced allergic airway disease (64, 124). Allergic airway
inflammation was significantly aggravated through sensing of
fungal dysbiosis by gut resident mononuclear phagocytes
(MNPs) and a subsequent increase in pulmonary T helper 2
(TH2) cells and eosinophils (125). The beneficial effect of fungi on
allergic airway disease seems to be a tightly balanced equilibrium,
as fungal overgrowth following antibiotic treatment leads to a
promotion of allergic airway inflammation (126). One of the
proposed mechanisms was the elevation of prostaglandin E2
(PGE2) plasma levels by the overgrowth of Candida species and
the promotion of macrophage polarization towards an
alternatively activated M2 phenotype (104). Additionally, the
expansion of a single fungal species in the gut, Wallemia
mellicola, could aggravate allergic airway disease (127). In
humans, Candida albicans, a common gut fungal species,
seems to be the major direct inducer of anti-fungal TH17 cells
in peripheral blood (61). These TH17 cells are cross-reactive to
inhaled Aspergillus fumigatus and are activated and expanded in
patients with airway inflammation (61). Likewise, intestinal
colonization with Candida albicans in mice promoted
susceptibility to airway inflammation (62). Candida albicans
strains adapted to the mouse gastrointestinal tract conferred
enhanced protection against systemic infection with several fungi
and bacteria, but this effect required IL-6 and was also observed
in lymphocyte-deficient mice (128). Moreover, fungal
colonization following antibiotic treatment recapitulates the
beneficial effect of bacterial gut colonization in lethal IAV
infection (67).

Like gut bacteria, fungi can also affect brain and liver
homeostasis. An example of this is the improvement of
symptoms of EAE, after oral supplementation of mice with
Candida kefyr (129). Regarding influences on the liver,
gut-resident fungi promote the development of ALD, an effect
Frontiers in Immunology | www.frontiersin.org 7
that is mediated by increased translocation of fungal b-glucan to
the systemic circulation, which induced IL-1b-mediated liver
inflammation through binding to C-type lectin domain family
7 member A (CLEC7A) on Kupffer cells (130).

Furthermore, the gut mycobiome has a fundamental
influence on the maturation of the immune system itself. The
gastrointestinal fungal species Candida tropicalis was found to
play a substantial role in the early life maturation of secondary
lymphoid organs (131). Recent studies transferring mice into a
natural environment supported this by showing an increased
fungal diversity and an elevated fungal load, especially in
Aspergillus species. These alterations of the fungal community
were accompanied by an increase in peripheral granulocytes and
activated T cells, illustrating an enhanced immune maturation
(132, 133). Not only gut bacteria, but also gut fungi have systemic
effects on immunity. Even though there is only limited data on
fungal metabolites, their involvement in this communication
seems likely.

Gut Virome
The gastrointestinal virome also shapes immunity at gut-distal
sites such as the lung and the liver. For example, an infection
with murine norovirus protects against lung infection with
Pseudomonas aeruginosa and alleviates lung inflammation
(134). A liver-related example is that a decreased diversity of
the intestinal virome is associated with an increase in the severity
of NAFLD in humans (135). Further research is required to fully
understand how intestinal viral communities shape peripheral
immune reactions at various sites.

In addition to gut-resident viruses, there is increasing evidence
that systemic chronic viral infections are not only pathogenic but
can also have advantages to the host (136). Latent herpesvirus
infection mediates resistance to bacterial infection with Listeria
monocytogenes or Yersinia pestis and results in increased
resistance to tumor grafts (137–139). Type I IFN production
induced by chronic murine cytomegalovirus (MCMV) infection
stimulated epithelial proliferation and intestinal wound repair
(140). Latent infection with chronic viruses has thus been
considered as an integral part of the microbiome that has a
substantial influence on the host’s immune system.

Other Eukaryotic Members of the
Gut Microbiome
Apart from local effects on the gastrointestinal immune system,
multicellular eukaryotes were also found to influence immunity
in the lung. In mouse models, infection with Heligmosomoides
polygyrus leads to a decreased development of allergic airway
inflammation, probably through a mechanism that involves
Treg cells and is independent of IL-10 (141). Interestingly,
Heligmosomoides polygyrus derived egg-shell products were
sufficient to prevent experimental allergic airway inflammation,
probably by directly inhibiting IL-33 release (142, 143). In
humans, reports are still inconsistent regarding a correlation
between gastrointestinal helminth infection and the occurrence
of allergic airway disease (144). More research on protist and
helminth members of the gut microbiome is required for a better
description of their influence on immunity.
June 2021 | Volume 12 | Article 702378

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Runge and Rosshart The Mammalian Metaorganism
Taken together, the gut bacterial microbiome exerts many
important effects on various gut-distant organs such as the lung,
the brain, and the liver. However, current data also clearly
indicate a critical involvement of nearly all microbial kingdoms
in the functionality of the host’s immune system, and thus the
orchestration of systemic host immune responses in health and
disease. Importantly, biologically active microbial compounds
appear to be essential in mediating the communication between
the host and its microbiota along the corresponding axis.
THE MICROBIOME OF THE SKIN: LOCAL
AND SYSTEMIC EFFECTS ON IMMUNITY

Skin Bacterial Microbiome
The skin is the outermost barrier of our body and is in constant
contact with multiple environmental influences. To maintain this
barrier, our skin works together with its residing microbiota
(Figure 2) (145, 146). Various species are adapted to the specific
properties of the respective site and thus inhabit different
cutaneous microenvironments (147). For example, sebaceous
sites are dominated by lipophilic Propionibacterium species,
while Staphylococcus and Corynebacterium species colonize the
moist areas (148). The initial microbial skin colonization
depends on the delivery mode. Vaginally delivered babies
acquire the mother’s vaginal microbiome, while cesarean
section leads to the acquisition of skin-associated microbiota
(149, 150). A major shift in microbial skin communities occurs
during puberty: several taxa disappear and the microbiota
becomes dominated by lipophilic species (151). During
cutaneous immune homeostasis, skin commensal bacteria
maintain the host-microbial mutualism by protective and
regulatory responses. Commensal bacteria affect the immune
system in the absence of inflammation and independent of
changes in the gut microbiome (152, 153). Cutaneous
Frontiers in Immunology | www.frontiersin.org 8
colonization with the skin commensal Staphylococcus
epidermidis leads to a non-inflammatory accumulation of
IL-17A and IFN-g expressing CD8+ T cells in the skin (152).
Similarly, T cells in germ-free mice produced significantly lower
cytokine levels, a phenotype that could be reversed by
colonization with Staphylococcus epidermidis (153). Tolerance
to commensal microbes is established during the postnatal
period when developing hair follicles are colonized by
microbes that induce commensal-specific Treg cells (154, 155).
The complement system, which is part of this regulatory
mechanism by maintaining microbial diversity, is also
regulated by commensal microbes (156). The commensal
Staphylococcus epidermidis seems to be an essential microbe
capable of regulating immunity at this barrier site. In an in
vitro study using human monocyte-derived DC, Staphylococcus
epidermidis products stimulate DC to produce more IL-10 and
lower the proliferation effect on CD4+ T cells (157). Additionally,
Treg cells treated with Staphylococcus products have a higher
immune-suppressive potential on T cells (157). Interestingly, this
homeostatic immunity to microbiota is mediated by non-
classical MHC class I molecules (158). Metabolites of
commensal bacteria also have a suppressive effect on the
development of skin inflammation. Treatment of atopic
dermatitis with lysates of Vitreoscilla filiformis, a gram-negative
bacterium present in thermal spa water, leads to pronounced
amelioration of atopic dermatitis symptoms in a clinical trial and
an experimental model (159, 160). Studies in mice suggested that
this is an effect of IL-10 secretion from DC and accumulation of
Treg cells, which have a suppressive effect on T cell expansion
(160). The bacterial skin microbiome also affects the process of
acute wound healing, specifically when the integrity of the skin
barrier is breached. During inflammation caused by skin
wounding, lipoteichoic acid of Staphylococcus epidermidis can
mitigate skin inflammation in a TLR dependent manner (161).
Wound closure is also accelerated by commensal-specific T cells
that express tissue repair and immunoregulatory signatures
FIGURE 2 | The microbiota of the skin exerts local effects on immunity. Besides the gut, also other epithelial barrier sites such as the skin are populated by diverse
microbes of all kingdoms. The microbiota of the skin influences tissue and immune homeostasis, inflammatory skin diseases, wound healing, and protects from
skin infections.
June 2021 | Volume 12 | Article 702378

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Runge and Rosshart The Mammalian Metaorganism
(158). The influence of commensal microbes on local immunity
confers resistance to potentially harmful pathogens. In vivo, skin
colonization with Staphylococcus epidermidis led to CD103+ DC
dependent formation of IL-17 producing CD8+ T cells leading to
the production of alarmins by keratinocytes inhibiting Candida
albicans outgrowth (152). Restoration of IL-17 production after
Staphylococcus epidermidis colonization also helped in the
control of Leishmania major infection but then again lead to
an increased inflammatory response (153). In summary, the skin
bacterial microbiome is a fundamental player in securing skin
homeostasis, preventing inflammatory skin diseases, supporting
wound healing, and protecting against pathogenic infections.

Skin Archaeome
Besides multiple bacterial species, archaea of the phyla
Thaumarchaeota and Euryarchaeota were detected on human
skin samples (53, 162). Their abundance is correlated to dry skin
occurrence, but mechanistic details of a potential causal
relationship are missing (163).

Skin Mycobiome
Lipophilic fungi of the genusMalassezia are the dominant fungal
microorganisms on the skin of most adults (148, 151). A recent
publication suggested that immunity to commensal fungi might
play a role in the aggravation of skin inflammation in psoriasis
(164). Thus, recent literature shows an important role of fungi in
skin immunity, thereby prompting us to more closely investigate
the role of the skin mycobiome.

Skin Virome
Eukaryotic viruses and phages are detected on human skin and
are the most unstable part of the skin microbiome (165, 166).
Bacteriophages were found to negatively interfere with chronic
wound healing in Pseudomonas aeruginosa infected wounds,
likely mediated by endocytosis and TLR3 (167).

In conclusion, even though microorganisms other than
bacteria are highly abundant on the skin and their involvement
Frontiers in Immunology | www.frontiersin.org 9
in skin immunity has been shown in some promising studies,
their local and especially systemic influence on the host’s
immune system is still poorly explored. However, unraveling
these interactions appears to be a promising field for
future studies.
THE MICROBIOME OF THE
RESPIRATORY TRACT: LOCAL AND
SYSTEMIC EFFECTS ON IMMUNITY

Respiratory Tract Bacterial Microbiome
The initial dogma of the lung being devoid of microorganisms
has recently shifted by advances in sequencing techniques,
leading to improved microbial detection. These findings also
indicate that lung immunity is influenced by the lung
microbiome in several diseases (Figure 3). The respiratory
bacterial microbiome differs markedly between the upper and
lower respiratory tract and is probably influenced by the oral
microbiome through frequent micro-aspirations and by airborne
microorganisms present in the inhaled air (168). Enrichment of
the bacterial lung microbiota with oral taxa is associated with an
increased number of lymphocytes, especially TH17 cells, elevated
cytokine levels, and a diminished TLR4 response by alveolar
macrophages, thus influencing the basal inflammatory status in
the lung (169). Staphylococcus aureus in the lung leads to TLR2-
dependent recruitment of monocytes that differentiate into
alveolar macrophages and exert a protective effect against IAV
pathologies (170). The presence of lung microbiota in early life is
essential for the immune maturation and attenuation of airway
inflammation that is mediated by the interaction of Treg cells
with programmed cell death 1 ligand 1 (PD-L1) expressing DC
(171). A similar effect could be observed in children growing up
on farms in Central Europe, that were protected from asthma
and atopy supposedly due to an increased environmental
microbial exposure (172). In line with this, maternal exposure
FIGURE 3 | The microbiota of the respiratory tract exerts local effects on immunity. The respiratory tract is also inhabited by various microbes of different kingdoms.
These microbes can prevent allergic airway diseases such as asthma and they can protect from airway infections.
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to Acitenobacter lwoffii F78, a bacterium frequently found in
cowsheds and farm dust samples leads to the protection of the
offspring against experimental asthma (173). Thus, lung bacterial
communities may mediate a regulatory function in the
development of allergic airway diseases.

Respiratory Tract Archaeome
The lung is also colonized by archaeal microbes, mainly by
woesearchaeal species (53). However, there is little to nothing
known about the function and effects of archaea in the
respiratory tract.

Respiratory Tract Mycobiome
There is only a low fungal burden in the lungs, consisting
primarily of the division of Ascomycota and Basidiomycota
with Candida species being the predominant organisms (174).
So far, there is only sparse knowledge about fungal influences on
the host’s immunity in the respiratory tract.

Respiratory Tract Virome
The virome in the respiratory tract is composed of intrinsic
components with a high abundance of Anelloviruses and phages,
and other respiratory viruses that are normally considered
pathogens (175, 176). Early life infection with IAV protects
against airway hyperreactivity, a protective effect primarily
mediated through an expansion of NKT cells (177). On the
contrary, early infection with respiratory syncytial virus increases
susceptibility to allergic airway disease by impairing Treg cell
function (178). Another study in mice found that infection with
Sendai virus is associated with subsequent airway hyperreactivity
that depends on IL-13 dependent activation of NKT cells and
lung macrophages (179). Overall, there is only little knowledge
regarding the impact of the lung-resident virome on local or
systemic immunity.

In summary, the currently available data on lung microbiota
are still limited, particularly as regards to microorganisms other
Frontiers in Immunology | www.frontiersin.org 10
than bacteria. This is likely due to the low microbial biomass
present in the lung, thereby leading to profound technical
challenges in reliably assessing the lung microbiota. However,
studying the lung microbiome certainly is an interesting future
topic, since the lung is the second largest barrier site and is
affected by various diseases where the microbiome is known to be
a crucial factor (e.g. infectious diseases, cancer, allergies,
inflammatory and autoimmune diseases).
THE MICROBIOME OF THE
GENITOURINARY TRACT: LOCAL AND
SYSTEMIC EFFECTS ON IMMUNITY

Genitourinary Tract Bacterial Microbiome
Similar to other microbial niches, the genitourinary tract is also
colonized by microorganisms of different kingdoms that have
direct or indirect effects on immunity (Figure 4). Compared to
other microbial niches, the vaginal bacterial microbiome is a
relatively basic community, characterized by comparably low
diversity and is dominated by Lactobacillus species, which thrive
in this anaerobic environment (24, 180). Some asymptomatic
women carry a more diverse vaginal community containing
bacteria of the genera Gardnerella and Prevotella (24, 180).
However, Lactobacilli play the most pivotal role in maintaining
the homeostasis of the vaginal tract through the production and
secretion of anti-microbial compounds such as H2O2,
bacteriocin, and lactic acid. These compounds serve as a first,
effective line of defense by establishing a low vaginal pH and by
creating an overall hostile environment for invading bacteria and
other microorganisms (181). Another direct effect of lactic acid is
its anti-inflammatory impact on vaginal epithelial cells, shown by
a reduced production of pro-inflammatory cytokines and
increased production of the IL-1 receptor antagonist (IL-1RA)
(182). Therefore, a Lactobacilli-dominated vaginal microbiome
FIGURE 4 | The microbiota of the genitourinary tract exerts local effects on immunity. Particularly the vagina is colonized with abundant microbes of unrelated
kingdoms. The vaginal microbial communities safeguard from local, ascending, and subsequently systemic infections, and are crucial for beneficially balanced
cytokine as well as chemokine profile.
June 2021 | Volume 12 | Article 702378

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Runge and Rosshart The Mammalian Metaorganism
protects against urogenital infections such as urinary tract
infections and sexually transmitted pathogens like Chlamydia,
human immunodeficiency virus (HIV), and herpes simplex virus 2
(HSV-2) (183–185). The increased occurrence of HIV infection
in women with a high-diversity vaginal bacterial microbiome
might be explained by an increased number of activated
CD4+ T cells, also including CCR5+ CD4+ T cells, the HIV
target cells (185). The increase in activated T cells might be
induced by elevated cytokine and chemokine levels in the
genitourinary tract of women with high-diverse vaginal
bacterial communities (185, 186). The increased abundance of
pro-inflammatory cytokines in vaginal fluid might also be a risk
factor of preterm birth that was observed to be associated with a
decreased vaginal colonization with Lactobacillus species (187).
In summary, a vaginal bacterial microbiome rich in Lactobacillus
species is important for the protection against urogenital
infections as well as a beneficially balanced cytokine and
chemokine profile in the genitourinary tract.

Genitourinary Tract Archaeome
The archaeal species Methanobrevibacter smithii was detected in
vaginal samples and was associated with bacterial vaginosis (188,
189). Consequently, the presence of Methanobrevibacter smithii
was proposed as a biomarker for the diagnosis of bacterial
vaginosis (189). Apart from this, there is only little information
available on associations between residing archaea and
genitourinary tract diseases.

Genitourinary Tract Mycobiome
Apart from other commensal communities, fungi are a common
constituent of the female vaginal microbiome in healthy women
(24). The vaginal mycobiome is dominated by the division of
Ascomycota, mainly the genus Candida, which was present in
two-thirds of asymptomatic Estonian women (24, 190).
Although candidiasis is one of the most frequent genital
diseases, Candida species frequently colonize the vagina of
healthy women, and only little is known about the influence of
vaginal fungal communities on the host’s physiology (191).

Genitourinary Tract Virome
Most vaginal DNA viruses that are identified today are double-
stranded DNA bacteriophages, with eukaryotic viruses
constituting only 4% of the total reads (192). Eukaryotic DNA
viruses in the vagina are dominated by papillomavirus species,
but also herpesviruses, polyomaviruses, and anelloviruses can be
detected (192–194). Additionally, several groups have identified
functional and nonfunctional prophages in the genomes of
vaginal bacterial species, suggesting bacteriophages to play a
role in shaping the vaginal bacterial microbiome, thereby
influencing vaginal health (195–197). Another study also found
links between eukaryotic viral and bacterial community
composition and the occurrence of bacterial vaginosis (192). In
conclusion, there are many potential trans-kingdom interactions
between viral and bacterial communities in the vagina and thus
indirect and potentially also direct influences of the vaginal
virome on health and disease of the genitourinary system.
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Endogenous retroviruses are a group of transposable elements
that are stably integrated into the genome of their host. They were
originally acquired by infection of the host’s germline cells with
retroviruses and are vertically transmitted because of their
permanent integration (198). The most prominent representatives
of human endogenous retroviruses are syncytin-1 and syncytin-2,
which are homologous to the surface proteins encoding env genes
of human endogenous retroviruses (199). They have an essential
role in the host’s physiology of the placenta bymediating cell fusion
between cytotrophoblasts and placental syncytiotrophoblasts
(200). Thus, these relicts of ancient viral infections play a
fundamental role in the exchange of nutrients, gases, and
hormones between the mother and the fetus. Additionally,
they prevent fetal rejection by controlling the maternal
immunosuppressive state (201, 202). Hence, these relicts of
ancient viral infections were critically involved in mammalian
evolution, a prime example of the intimate relationship between
microorganisms and their hosts.

Taken together, the bacterial microbiome undoubtfully plays
an essential role for the genitourinary tract. However, other
microbial kingdoms and their important impact on health and
diseases of the genitourinary tract are increasingly evident,
appreciated, and also studied.
DISCUSSION AND OUTLOOK

The past decade was characterized by substantial technological
progress, allowing researchers to study the mammalian
microbiome and its impact on the host in health and disease
in a much more precise and mechanistic fashion. As a
consequence, it has been established that the microbiota plays
a pivotal role in virtually every aspect of mammalian physiology,
particularly in the development, maturation, homeostasis,
orchestration, and ultimately the function of the immune
system (7, 8). By now, it can be considered as textbook
knowledge that mammals are metaorganisms and that the
combination of the host genome and the overall microbiome
including all kingdoms at all epithelial barrier sites largely drives
their phenotypes (15). This can be considered the most
important conceptual advance in the field of microbiome
research during the last decades.

The comparison of conventional SPF mice to germ-free,
antibiotic-treated, and gnotobiotic mouse models was pivotal
in illuminating the impact of the mammalian microbiome on
host physiology. These proof-of-principal studies were essential
in illustrating the therapeutic potential lying within microbiome
research such as the remarkably diverse set of biologically active
compounds produced by the microbiota. As illustrated
throughout this review, these compounds can not only
influence their corresponding barrier site but also establish
axes of communication, thereby exerting crucial systemic
effects. Translational microbiome research should aim to
identify these compounds and to understand their biological
function in health and disease. Among others, this may be a
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pathbreaking strategy to discover novel microbiota-based drugs
(114, 203).

Aside from these important studies, a substantial body of
literature emphasizes that the majority of rodent-based data
could not be translated into clinical practice (204–211). Recent
paradigm-shifting work illustrated that lab mice are too far
removed from natural environmental conditions to reliably
mirror the physiology of free-living mammals like humans
(212–215). This circumstance distorts how the immune system
of ultra-clean lab mice develops and functions, leading to false
assumptions of how the human immune system works as
reviewed elsewhere (216, 217). To address these shortcomings
several approaches have been suggested: Cohousing of lab mice
with pet store mice (212), sequential infections of lab mice (213),
rewilding of lab mice in semi-natural habitats (214), engraftment
of wild mouse gut microbiota into lab mice (215) and the
transfers of lab mouse embryos into wild mouse surrogate
mothers, the so-called “wildling” model (218). Indeed,
compared to conventional lab mice, the resulting animals were
protected in models of infectious diseases and cancer and
displayed an increased translational research value (212, 215).
Particularly, wildlings phenocopied the human outcome and
could have prevented catastrophically failed clinical trials,
where conventional rodent and non-human primate models
had failed to predict the human response to harmful drug
treatments (218–220). Thus, utilizing these microbially diverse
models in translational microbiome research may help to
discover novel disease treatment options that cannot be found
in conventional mouse models and increase the safety and
success rate of bench-to-bedside efforts.

As mentioned above, only a few findings in microbiome
research could be directly translated into the clinic so far and
many of them originate from human research. For example,
there are ideas to use bacterial products in inflammatory skin
disease, and promising studies have already proposed a beneficial
outcome (159). Moreover, the injection of beta-glucans from
fungi cell walls alongside therapeutic antibodies or
chemotherapy in cancer treatment shows promising results
(221, 222). Another well-known example is allogenic FMT, a
potent treatment of antibiotic-refractory Clostridium difficile
infection (223, 224). Recent studies also showed a beneficial
combination of FMT with immunotherapy to overcome the
initial resistance to immunotherapy in melanoma patients
(225, 226). Allogeneic hematopoietic stem cell transplantation
(allo-HSCT) is accompanied by the usage of broad-spectrum
antibiotics leading to a low diversity of the gut microbiome
which can be successfully treated by autologous FMT (227). This
might be a promising treatment option as low-diversity
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microbiota correlate with increased mortality in allo-HSCT
patients (228). Eran Elinav and colleagues published an
encouraging exploratory study utilizing vaginal microbiome
transplantation to efficiently treat recurrent bacterial vaginosis
(229). Even though important steps have already been made, the
journey of microbiome research and the successful transfer of
microbiota-related therapies into the clinic has only begun.

Thus, besides further technological advances, the key to tap
into the full therapeutic potential of translational microbiome
research may be: (I) a stronger appreciation of mammals as
metaorganisms; (II) the more pronounced investigation of non-
bacterial members of the microbiome as well as trans-kingdom
interactions at all epithelial barrier sites; (III) a focus on how the
bidirectional crosstalk between the host and its microbiota works
from a mechanistic standpoint of view, particularly (IV) how
microbial biologically active compounds affect the health and
disease of the host and (V) take advantage of newly developed
translational microbiome research mouse models that more
closely resemble the human metaorganism.

This approach will open up a promising window of
opportunity to discover novel treatments for a wide range of
human diseases of global relevance including transplant
rejection, GvHD, cancer, infectious diseases, allergies,
autoimmune and inflammatory diseases, psychiatric and
neurological disorders as well as cardiovascular diseases.
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