
Genome analysis

The Practical Haplotype Graph, a platform for storing

and using pangenomes for imputation

P. J. Bradbury 1,*, T. Casstevens2, S. E. Jensen 3, L. C. Johnson2, Z. R. Miller2,

B. Monier 2, M. C. Romay2, B. Song2 and E. S. Buckler1,2,3

1United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, NY 14853, USA, 2Institute for

Genomic Diversity, Cornell University, Ithaca, NY 14853, USA and 3Plant Breeding and Genetics Section, School of Integrative Plant

Science, Cornell University, Ithaca, NY 14853, USA

*To whom correspondence should be addressed.

Associate Editor: Christina Kendziorski

Received on September 2, 2021; revised on February 28, 2022; editorial decision on May 9, 2022; accepted on June 22, 2022

Abstract

Motivation: Pangenomes provide novel insights for population and quantitative genetics, genomics and breeding
not available from studying a single reference genome. Instead, a species is better represented by a pangenome or
collection of genomes. Unfortunately, managing and using pangenomes for genomically diverse species is compu-
tationally and practically challenging. We developed a trellis graph representation anchored to the reference
genome that represents most pangenomes well and can be used to impute complete genomes from low density
sequence or variant data.

Results: The Practical Haplotype Graph (PHG) is a pangenome pipeline, database (PostGRES & SQLite), data model
(Java, Kotlin or R) and Breeding API (BrAPI) web service. The PHG has already been able to accurately represent di-
versity in four major crops including maize, one of the most genomically diverse species, with up to 1000-fold data
compression. Using simulated data, we show that, at even 0.1� coverage, with appropriate reads and sequence
alignment, imputation results in extremely accurate haplotype reconstruction. The PHG is a platform and environ-
ment for the understanding and application of genomic diversity.

Availability and implementation: All resources listed here are freely available. The PHG Docker used to generate the
simulation results is https://hub.docker.com/ as maizegenetics/phg:0.0.27. PHG source code is at https://bitbucket.
org/bucklerlab/practicalhaplotypegraph/src/master/. The code used for the analysis of simulated data is at https://bit
bucket.org/bucklerlab/phg-manuscript/src/master/. The PHG database of NAM parent haplotypes is in the CyVerse
data store (https://de.cyverse.org/de/) and named/iplant/home/shared/panzea/panGenome/PHG_db_maize/phg_v5
Assemblies_20200608.db.

Contact: pjb39@cornell.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Individuals within a species or population can vary considerably for
genome content. A single reference genome often inadequately rep-
resents that diversity. As a result, a system for organizing and using
information from multiple genomes would be very useful. Several
groups have shown that pangenome graphs can effectively represent
genomic diversity (Eizenga et al., 2020; Llamas et al., 2019;
Rakocevic et al., 2019). Most of that work has been done with
human genomes. Other species, especially plant species, have more
complex and diverse genomes, with an order of magnitude more ac-
tive transposons, making the direct application of pangenome
graphs developed for humans difficult (Llamas et al., 2019). For ex-
ample, comparisons of maize sequence estimate that 40–50% of the

genome is not alignable between pairs of inbred lines (Brunner et al.,
2005; Sun et al., 2018). In contrast, a study of 910 humans found
that total unalignable sequence from all individuals equaled about
10% of the genome (Sherman et al., 2019) while an earlier study of
an African and an Asian genome found about 0.2% of the genomic
sequence of each individual absent from the human reference
genome (Li et al., 2010).

The Practical Haplotype Graph (PHG) differs from other graph-
ical approaches in the way that it handles larger scale variation.
Specifically, because retroelements dominate many plant genomes
(Baucom et al., 2009; Bennetzen, 2000), intergenic regions often
align poorly between different individuals. In addition, plants gener-
ally have numerous but compact genes with recombination focused
near them (Rodgers-Melnick et al., 2015; Schnable et al., 1998).

VC The Author(s) 2022. Published by Oxford University Press. 3698

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 38(15), 2022, 3698–3702

https://doi.org/10.1093/bioinformatics/btac410

Advance Access Publication Date: 24 June 2022

Original Paper

https://orcid.org/0000-0003-3825-8480
https://orcid.org/0000-0002-4432-4715
https://orcid.org/0000-0001-6797-1221
https://hub.docker.com/
https://bitbucket.org/bucklerlab/practicalhaplotypegraph/src/master/
https://bitbucket.org/bucklerlab/practicalhaplotypegraph/src/master/
https://bitbucket.org/bucklerlab/phg-manuscript/src/master/
https://bitbucket.org/bucklerlab/phg-manuscript/src/master/
https://de.cyverse.org/de/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data
https://academic.oup.com/


The genes are broadly shared between individuals, while intergenic
regions are far more divergent. These features suggest dividing
regions of the genome into genic and intergenic intervals. A second
element, which arises from coalescent processes and from bottle-
necks introduced by crop breeding, is that haplotypes for these inter-
vals tend to be diverse but limited in number, especially within
breeding programs.

This article introduces the PHG, which represents genomes as
sequences of haplotypes rather than nucleotides and uses a simplified
approach for dealing with structural variation. The PHG encapsulates
a relational database for storing sequence and alignment information,
software for building and using that database, and pipelines that
employ widely used third-party software for some of those tasks.
The PHG software and database schemas are open-source and freely
available. They are distributed as a Docker image to simplify the task
of installing the environment needed.

While the PHG supports a range of genomic analyses, it is also
designed to be a useful tool for breeding programs. As such it pro-
vides methods to impute genotypes based on the haplotypes stored
in the database using low coverage sequence or single nucleotide
polymorphisms (SNPs) as input. It also divides the genome into
genic and intergenic haplotypes, which are biologically interesting
units likely to have a limited number of common haplotypes. The in-
put sequence can be a whole genome sequence generated from a ran-
dom shear library or sequence based on reduced representation
libraries created by a variety of methods. Alternatively, SNP calls
themselves can be used to impute the haplotypes carried by an indi-
vidual, though most of the description below refers to the use of
short read sequence to impute haplotypes and genotypes. That flexi-
bility allows a user to choose a sequencing methodology based on
cost and to change methods or suppliers over time as logistics dic-
tate. It also provides a method for translating historical genotypes
from various methods onto a common platform. Because the low
coverage sequence is used to impute a path through the graph, it
results in a list of imputed haplotypes. Storing the haplotype lists in
the PHG database results in very compact storage of a large number
of genotypes in a single database. Downstream analyses can either
use VCF files of imputed nucleotide variants or use the haplotypes
directly as multi-allelic loci.

2 Systems and methods

The PHG is a trellis graph that represents discrete genomic DNA
sequences and connections between them (Fig. 1). A haplotype is
defined as the sequence of part of an individual chromosome. A ref-
erence range is a segment of the reference genome. A node in the
graph represents one haplotype for one reference range. Two physic-
ally adjacent nodes are connected by an edge, which does not have
an associated sequence but only indicates whether two haplotypes

(might) occur together in some individuals. If a graph is built from a
subset of ranges, for example genic ranges only, it does not contain
any information about the excluded ranges. A haplotype graph is
then a collection of nodes and edges. Nodes for a single range can be
thought of as multiple alleles.

The PHG represents pangenomes as trellis graphs for a couple of
reasons. First a trellis graph supports imputation, because the com-
monly used HMM algorithms, Viterbi and forward-backward
(Rabiner, 1989), operate on a trellis graph. Second, and equally im-
portant, is that we chose to organize pangenomes by aligning all of
the genomes against a single reference genome. This was done to
provide a common coordinate system across all genomes. The two
defining characteristics of a trellis graph are that nodes are organ-
ized as a linear set of ordered points and that edges only occur be-
tween nodes at adjacent points. Those points can be defined as
spatial positions or as time points. For the PHG, we define the graph
positions as ordered reference ranges on a chromosome, where a ref-
erence range is a chromosomal interval on the reference genome.
Each chromosome is represented by an independent trellis graph.
Haplotypes are mappings of assemblies or high coverage WGS
sequence to each reference range.

The PHG database (schema shown in Supplementary Fig. S1)
stores all the data necessary to build a haplotype graph, which exists
only in computer memory. The data behind the graph is persistent,
while the graph is not. The first step in creating a PHG database
defines the reference range endpoints and assigns reference ranges to
user-defined groups. One useful strategy defines the endpoints from
gene boundaries. The reference ranges containing genes are assigned
to one group and the intergenic ranges to another group, which to-
gether cover the entire genome. After that, the reference genome is
loaded followed by haplotypes from other individuals.

The basic steps to populate the PHG database include importing
the reference range endpoints, loading the reference sequence, creat-
ing additional haplotypes and making consensus haplotypes.
Figure 2 provides an overview of the process used to populate the
database after the reference genome and reference ranges have been
set up. The additional haplotypes can be created from assemblies by
aligning those to the reference genome or from whole genome se-
quence (WGS). Haplotypes should be loaded from enough individu-
als to populate the database with the common haplotypes present in
the target population. Once the haplotypes have been loaded, skim
sequence can be used to impute additional genotypes. The resulting
information is stored in the database in a compressed format.

The process of creating haplotypes involves aligning sequence to
the reference genome, but the method and results are different de-
pending on whether assembled genomes or WGS are used. In the
case of WGS, only sequence that aligns well to a single location on
the reference genome is used to create haplotypes. For many species,
such as maize, WGS data provides good haplotype coverage for
genic reference ranges but not for many of the intergenic ranges,
which often do not align well. For example, in any two maize
inbreds, large segments of intergenic ranges can carry completely

Fig. 1. Diagram of a Practical Haplotype Graph (PHG). Rectangles containing se-

quence are graph nodes, which represent haplotypes. Edges connect adjacent nodes.

Solid edges connect nodes from the same assembly while dashed edges represent recom-

binations. To avoid cluttering the graph, except for reference range 1 to 2, not all pos-

sible dashed edges are shown. The four reads represent sequence reads from a sample

to be genotyped. These match sequence in the haplotypes (ATC - range 1, ATG - range

2, CAG - range 3, CAA - range 4). The thicker arrows along the assembly A and B

edges show the most likely path through the graph given the sequence reads. Of all pos-

sible paths connecting the tagged haplotypes, it has the fewest recombinations. The

imputed sequence for the sample is ‘GATCGATGCTACAGACCAAGG’ Fig. 2. Building a PHG database

The Practical Haplotype Graph 3699

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data


different sequences. With an assembly, if two adjacent genes can be
aligned to reference, the intervening sequence can be assigned to the
intergenic reference range even if the intergenic sequence itself does
not align, but with WGS unaligned sequence is not assigned to a
haplotype.

The type of data used to populate the PHG database with haplo-
types has a major influence on how well structural variants are cap-
tured. For assemblies, segments that align well to reference are
mapped to the reference ranges to which they align. Remaining seg-
ments are assigned to reference ranges based on flanking aligned se-
quence. In this way, over 99% of the the original assembly sequence
is used to create the PHG haplotypes (Supplementary Table S1). For
WGS data, only sequence that can be reliably aligned to reference is
used to create haplotypes. While this does a good job of capturing
smaller indels, much sequence does not align well and is missed. For
species like sorghum, using WGS has worked well for imputation
(Jensen et al., 2020). For others like maize, imputation accuracy for
WGS haplotypes can be disappointing. The Supplementary Methods
section has a more detailed discussion of the impact of structural
variation.

Once a PHG database has been populated with haplotypes, it
can be used to impute genotypes from skim sequences or SNPs
(Supplementary Fig. S2). Any new sample can be represented as a
collection of haplotypes already present in the PHG. The model
used for imputation is very similar to the Li and Stephens model (Li
and Stephens, 2003), which views genotypes as composed of seg-
ments from reference or ancestral haplotypes.

The method used by the PHG for imputation differs from most
other imputation software in one key way. It can use either SNP
calls or raw sequence reads as input. Most other software starts with
SNPs, often considered to be assayed with low error. PHG imput-
ation can start with raw sequence reads and use those directly to tag
haplotypes. It does so by aligning those reads to the PHG pange-
nome, identifying which haplotypes match each read, then using
that information together with the information about which nearby
haplotypes appear on the same chromosome to determine which set
of haplotypes is most likely to have generated the observed reads.
Alternatively, SNPs from any genotyping method can be used to tag
haplotypes. A hidden Markov model (HMM) uses the resulting read
mapping counts to impute the most likely path through the haplo-
type graph. The results are stored as a list of haplotype ids. More in-
formation about the alignment software used to build the PHG and
to impute paths, imputation details and the database schema can be
found in the Supplementary Methods.

2.1 Software architecture and distribution
The PHG software is a combination of custom code written using
Java and Kotlin (a modern JVM language), third-party software and
a set of helper scripts. The main PHG functions have been organized
as plugins based on the TASSEL 5 plugin architecture as described
on the TASSEL wiki (https://bitbucket.org/tasseladmin/tassel-5-
source/wiki/Home). The primary reasons for using the plugin archi-
tecture are that it provides a consistent API, which can be called
from a command line or from the TASSEL GUI, and is self-
documenting. The custom code is freely available, open source and
distributed with TASSEL 5 as phg.jar.

All of the steps in the PHG pipeline can be run with individual
plugins from a command line. Because running the PHG with a pro-
duction database typically requires a large amount of RAM
(>50 GB for some steps) and uses multiple CPUs, it has been
designed to run on a server using terminal commands. The database
connection parameters must be stored in a configuration file.
Parameters for individual plugins can be specified on the command
line or included in the configuration file. Because the pipeline is
complex and overall has more than one hundred user-settable
parameters, it has been organized into a few pipeline plugins cover-
ing the entire process from building the database, populating it with
haplotypes and imputing genotypes. The pipeline plugins, individual
components and sample configuration files are all documented at
the PHG wiki (https://bitbucket.org/bucklerlab/practicalhaplotype
graph/wiki/Home) along with directions for creating an example

database for testing (https://bitbucket.org/bucklerlab/practicalhaplo
typegraph/wiki/UserInstructions/ExampleDatabase.md).

The PHG is deployed as a Docker image. Each Docker image
contains a snapshot at a particular point in time of the software
used for processing. As new versions of a dockerized image are cre-
ated, the older versions remain available on docker hub (https://hub.
docker.com/r/maizegenetics/phg). This makes it easy for users to
replicate analyses using a specific version of the complete software
environment.

In addition to the command line API, we provide two additional
API’s. An alternative interface to the PHG that provides useful meth-
ods for examining and analyzing the contents of a PHG database is
rPHG, implemented as a package for the statistical programming
language R. PHG objects are built and stored in the R environment
using the PHG API along with a Java to R interface (https://CRAN.
R-project.org/package=rJava). Details about downloading and
running rPHG as well as source code can be found on Bitbucket
(https://bitbucket.org/bucklerlab/rphg/wiki/Home).

Another API available with the PHG is a Breeding API (BrAPI)
(Selby et al., 2019) compliant web service written using Ktor
(https://ktor.io). Ktor is a framework for creating web applications
using the Kotlin programming language. BrAPI is a specification for
a RESTful web service for sharing plant breeding data. Specifically,
the PHG web server implements the subset of BrAPI calls that sup-
port genotype information. Any breeding or genetics application
that implements the BrAPI V2 standard for genotypes will be able to
access data from PHG databases connected to a web service.
Because the PHG BrAPI web server is under active development, no
public server instances are available at this time.

3 Results and discussion

Important features of a pangenome representation include efficient
data compression and the accuracy of derived analyses like imput-
ation. Using simulated data in maize, we evaluate these two charac-
teristics of the platform. Empirical studies are already available
using earlier versions of the pipeline (Jensen et al., 2020; Jordan
et al., 2022; Long et al., 2022; Valdes Franco et al., 2020). To evalu-
ate performance, we use the maize PHG with 26 high quality assem-
bly genomes and low density GBS data on 5000 recombinant inbred
lines derived from those lines. The maize reference genome is
2.3 Gbp in size.

3.1 Alignment performance
The initial building of the PHG from assemblies requires the align-
ment of high-quality genomes to the reference genome. Adding new
assemblies to the PHG takes 7–8 CPU hours with two-thirds of the
time used by the MUMmer4 alignment process. While this whole
process can be parallelized, it is limited by the speed and sensitivity
of tools like MUMmer.

The PHG still relies on standard high-performance aligners such
as minimap2 in order to map reads for path imputation. To estimate
the speed and memory requirements, we compared reference genome
(2.3 Gbp reference) alignment with alignment to a PHG with 26
genomes. The RAM requirements increased by a factor of 4.4 from
34 to 150 Gb, while the processing time only increased 2.3-fold.
While the memory requirements are substantial, processing is efficient
given the 26-fold increase in the search space.

3.2 Data compression
A key aim of the PHG database is to efficiently store and represent
genomes in terms of disk and in-memory space. Most of the storage
space used by the PHG database consists of four types of data:
haplotype sequence, haplotype variants, read mapping counts and
imputed paths. The data types vary greatly in storage space use as
compared to alternative formats for similar data.

Haplotype sequence: Haplotype sequence for assemblies is stored
as compressed strings; the amount of disk space used is similar to
compressed FASTA files for the same assemblies.

3700 P.J.Bradbury et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home
https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home
https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home
https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/UserInstructions/ExampleDatabase.md
https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/UserInstructions/ExampleDatabase.md
https://hub.docker.com/r/maizegenetics/phg
https://hub.docker.com/r/maizegenetics/phg
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
https://bitbucket.org/bucklerlab/rphg/wiki/Home
https://ktor.io


Haplotype variants: The variant data for maize assemblies
aligned with MUMmer4 uses about 80% as much space as the files
output by MUMmer4.

Read mapping counts: The space used by read mappings varies
depending on the type and coverage of the data used to generate
them as well as the number of haplotypes to which they were
aligned. Aligning 30 million simulated reads (3 Gb Fastq file) against
a 26-genome maize PHG would normally produce a 50 Gb BAM
file. However, recording only the counts of best haplotypes combi-
nations results in a 69 Mb file (43-fold smaller than initial fastq, and
724-fold smaller than the BAM file).

Imputed path: A single imputed path uses about 250 KB of data-
base storage, whereas a gzipped gvcf generated from homozygous
PHG paths for a maize PHG requires about 176 Mb per sample, a
704-fold difference. A major advantage of the PHG is that it can
store a large number of fully imputed genomes very efficiently. In
large panels of germplasm such as 4705 NAM RILs, even if we only
write the SNPs to a standard VCF file, the haplotype representation
is roughly 1000-fold smaller.

3.3 Haplotype mapping accuracy
Imputing haplotypes and SNPs for a large number of samples using
a pangenome containing related germplasm is a central goal of the
PHG. PHG imputation performance requires that sequencing reads
are accurately mapped to haplotypes in the PHG. While short read
alignment accuracy is a problem for all genomics, it can be a larger
problem in massive pangenomes with redundant low copy sequen-
ces. To evaluate mapping performance, we simulated reads gener-
ated from haplotype sequence stored in the PHG database for the
inbred NAM parents B73, CML247 and Oh43. After those reads
were mapped back to all 26 genomes in the database, we asked
whether each read mapped to the sequence from which it came.
Because most reads align to more than one haplotype, if the read
mapped to the haplotype of the line from which it came, it was
counted as a correct mapping even if it mapped to other haplotypes
as well. A read that did not map to the haplotype from which it was
drawn counted as mapping incorrectly. Testing whether reads gener-
ated from one of the assemblies map back to the originating assem-
bly is an important test of a pangenome system.

We found accuracy was most sensitive to read types, how haplo-
types were collapsed, and minimizer redundancy. Collapsing refers
to the process of grouping similar haplotypes then replacing them
with the consensus haplotype for the group. Specifically, using
paired-end reads improved accuracy 3- to 6-fold over single-end
reads across a range of collapsing approaches (Fig. 3). This increase
in accuracy is the result of paired-end reads mapping more accurate-
ly to paralogous retrotransposons, as the advantage of paired-end
reads was smaller in genic regions (Supplementary Fig. S3) than in
the genome as a whole. Increasing minimizer redundancy improved
the accuracy of single-end reads more than the accuracy of pair-end
reads, again because of improvement in mapping to repetitive
regions (Fig. 3).

The size of the entire pangenome can be reduced by collapsing
similar haplotypes. Haplotypes can be collapsed using divergence
measured either by SNP or kmer similarity. The kmer-based ap-
proach, which is alignment free but slower, detects both SNP and
indel differences between haplotypes. Overall the kmer-based ap-
proach was more robust and decreased mapping error by roughly
1.7% across the entire genome (Fig. 3) and 15.8% in genic regions
(Supplementary Fig. S3). While more extreme collapsing of haplo-
types (mxDiv¼0.001) increased error, the pipeline was insensitive
to changes when mxDiv was below 0.00001. There was substantial
bias at high levels of collapsing (mxDiv¼0.001) because of the way
a haplotype is chosen to represent a cluster. The assemblies in the
database are ranked by quality and the best quality haplotype is
chosen to represent a cluster. For the simulation, the rank order was
B73>CML247>Oh43, which resulted in better accuracy for the
higher ranked assembly (B73). With SNP-based distance, but not
kmer-based distance, that bias persisted at lower collapsing levels
because haplotypes with no SNPs but with indels were collapsed
whereas with kmer similarity only identical haplotypes were

collapsed. As a result, kmer-based distance should be the preferred
method for collapsing haplotypes.

Alignment accuracy was also impacted by tuning the way the
aligner (minimap2) handles highly repetitive sequences. Aligners fre-
quently purge highly repetitive kmers or minimizers from their look-
up tables in order to maintain performance. This can be problematic
in pangenomes. For the data presented here, we aligned against 26
genomes at the same time. Not only was the sequence repeated with-
in genomes, it was repeated across them as well. In minimap2, the
f-parameter determines which minimizers are used for alignment.
When f has an integer value, then minimizers with more than
f occurrences are not used. Because the default f-parameter was not
optimal, mapping accuracy could be improved by nearly 2-fold with
higher f-parameters settings (Fig. 3). For paired-end reads with col-
lapsed haplotypes, the default f-parameter was sufficient. Overall,
read mapping errors were minimized with kmer-based collapsing,
an increase in the f-parameter, and use of paired end sequencing.

3.4 Haplotype imputation accuracy
For a set of read mapping counts, a hidden Markov model (HMM)
finds the path through a haplotype graph that best explains the
observed data. We tested the impact of the read type, minimap’s
f-parameter and haplotype collapsing approach on the haplotype
error rate (Supplementary Figs S4 and S5). Haplotype error rates
were about 7-fold lower on average than the mapping error rates,
which shows that the HMM model corrects many of the mismap-
ping errors. Paired-end reads performed better than single end reads,
but changes in f-parameter, diversity cutoff and distance method
had little impact. The increased error rate for non-consensus haplo-
types compared to consensus haplotypes is misleading because, prior
to collapsing, the HMM may have chosen a haplotype that was
identical to the read source but from a different parent taxon.
Overall, the HMM identified haplotypes with error rates as low
as 0.1%.

While reconstructing the ancestral haplotype is useful in closed
breeding pools and for some applications, generally users are most
interested in imputing variants correctly. At the SNP level, the error
rates approach one in a million under a range of realistic conditions
for read types and haplotype collapsing (Fig. 3). In a closed

Fig. 3. Effect of parameters on accuracy. (A) Read mapping error rate for the whole

genome as a function of the maximum diversity (mxDiv) parameter for determining

consensus haplotypes, read type (paired-end, single) and distance matrix method (kmer,

SNP). Read mapping error rate is the number of reads not mapping to the target haplo-

type divided by the total number of reads. NA labels the result of mapping against the

original, non-consensus haplotypes. (B) Imputed SNP error rate for paired and single-

end reads for different values of the diversity cutoff and consensus method. Error rate

equals the number of wrong SNP calls divided by the number of base pairs of sequence.

Where the B73 bar is absent, the error rate was zero. (C) Read mapping error as a func-

tion of minimizer redundancy controlled by the minimap2 f-parameter. f parameter val-

ues are (a) f1000,5000 [default]; (b) f5000,6000; (c) f10000,11000; (d)15000,16000;

(e) f20000,21000; (f) f25000,26000. mxDiv¼ 1e-4

The Practical Haplotype Graph 3701

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac410#supplementary-data


population as simulated here, error rates approach zero if the PHG
is tuned appropriately and using appropriate read types. While vali-
dating the platform and providing insight into the parameters, this
simulation did not test the effect of genotyping errors or imputing
individuals not used to build the database. These issues were
addressed by evaluating the PHG with real data.

3.5 Empirical studies
Other studies describe and evaluate the use of a PHG for sorghum
(Jensen et al., 2020), maize (Valdes Franco et al., 2020), wheat
(Jordan et al., 2022) and cassava (Long et al., 2022). The sorghum
project used WGS data for 24 inbred lines at an average 8� cover-
age to populate a database with haplotypes. Imputing a set of lines
mostly derived from the 24 inbred lines produced SNP calls that
were nearly the same as a GBS-specific pipeline and as effective for
genomic selection. The maize study used the same database that was
used for the simulation reported here. Genotypes were imputed
from GBS sequence reads for over 5000 NAM recombinant inbred
lines (RILs) resulting in an average genotype error rate less than
0.01. The wheat PHG was built from the exome capture data of 65
diverse wheat lines. Exome capture, GBS and skim sequence data
was used to accurately impute the genotypes of a panel of lines. The
cassava paper used haplotypes derived from runs of homozygosity
in otherwise heterozygous cassava lines to populate a PHG and
showed that the resulting PHG could be successfully used to impute
genotypes from 1� coverage skim sequence. Taken together these
studies show that the PHG can be used with a variety of data sources
and species.

4 Conclusions and future directions

The PHG is currently a powerful tool for storage, retrieval and im-
putation of haplotypes that can be used for both genomics and
breeding. It is already being used to merge the results of diverse gen-
otyping platforms to construct unified databases for entire species.
Specifically, the PHG will be a useful tool for breeding programs for
merging historic genotyping data generated from multiple methods,
for switching genotyping to low cost providers, and for tracking
haplotype selection across generations. A current limitation is that
accuracy of particular portions of paths is not estimated, which is es-
pecially important when samples with new haplotypes are being
analyzed. Statistics derived from the alignment and HMMs in con-
junction with machine learning should be able to estimate path ac-
curacy for individual reference ranges.

The ‘practical’ in PHG refers to the decision not to construct a
complete variant graph because that construction is very difficult for
genomes with large numbers of active retrotransposons. Instead, in
the case of assemblies the retrotransposons are assigned reference
positions based on nearby alignable sequence or, for WGS-based
haplotypes, simply not used when they cannot be aligned.
Additionally, since recombination is substantially focused within
genes or near their open chromatin flanks, a haplotype graph div-
ided at the edges of shared genes provides a reasonable compromise
between capturing ancestral haplotypes and recombination. Finally,
this practical representation allows the use of powerful aligners such
as minimap2 to impute PHG paths from short or long reads. In the
future, we see the potential to evolve the PHG into a graph of graphs
by modeling each reference range with a variant graph (Garrison
et al., 2018).

In the plant breeding community, BrAPI (Selby et al., 2019) is
becoming widely accepted as a standard for sharing genotypic and
phenotypic data across systems and analysis tools. Because the
BrAPI standard for sharing large genomic dataset is under develop-
ment and because the PHG DB can serve as a repository for genomic
data with up to 1000-fold data compression, we are working with

the community to improve variant and haplotype graph support in
BrAPI version 3.

Visualization and tools to work with haplotype graphs are still
in their infancy, but as APIs become more robust and standardized,
a wide range of tools in bioinformatic languages such as R and
Python will need to be developed. The development of tools that
allow diversity to be accurately represented and functional variation
to be identified can help drive both basic and applied research into
natural variation.

Funding

This material is based upon work supported by the U. S. Department of

Agriculture-Agricultural Research Service, National Science Foundation

Research-PGR [IOS-1238014, IOS-1822330], and the Bill and Melinda Gates

Foundation [OPP1159867, OPP1175661].

Conflict of Interest: none declared.

References

Baucom,R.S. et al. (2009) Exceptional diversity, non-random distribution,

and rapid evolution of retroelements in the B73 maize genome. PLoS

Genet., 5, e1000732.

Bennetzen,J.L. (2000) Transposable element contributions to plant gene and

genome evolution. Plant Mol. Biol., 42, 251–269.

Brunner,S. et al. (2005) Evolution of DNA sequence nonhomologies among

maize inbreds. Plant Cell., 17, 343–360.

Eizenga,J.M. et al. (2020) Pangenome graphs. Annu. Rev. Genomics Hum.

Genet., 21, 139–162.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by

representing genetic variation in the reference. Nat. Biotechnol., 36,

875–879.

Jensen,S.E. et al. (2020) A sorghum practical haplotype graph facilitates

genome-wide imputation and cost-effective genomic prediction. Plant

Genome., 13, e20009.

Jordan,K.W. et al. (2022) Development of the wheat practical haplotype graph

database as a resource for genotyping data storage and genotype imput-

ation. G3 (Bethesda), 12, jkab390.

Li,N. and Stephens,M. (2003) Modeling linkage disequilibrium and identify-

ing recombination hotspots using single-nucleotide polymorphism data.

Genetics, 165, 2213–2233.

Li,R. et al. (2010) Building the sequence map of the human pan-genome. Nat.

Biotechnol., 28, 57–63.

Llamas,B. et al. (2019) A strategy for building and using a human reference

pangenome. F1000Res., 8, 1751.

Long,E.M. et al. (2022) Genome-wide imputation using the practical haplo-

type graph in the heterozygous crop cassava. G3 (Bethesda), 12, jkab383.

Rabiner,L.R. (1989) A tutorial on hidden Markov models and selected appli-

cations in speech recognition. Proc. IEEE, 77, 257–286.

Rakocevic,G. et al. (2019) Fast and accurate genomic analyses using genome

graphs. Nat. Genet., 51, 354–362.

Rodgers-Melnick,E. et al. (2015) Recombination in diverse maize is stable,

predictable, and associated with genetic load. Proc. Natl. Acad. Sci. USA,

112, 3823–3828.

Schnable,P.S. et al. (1998) Genetic recombination in plants. Curr. Opin. Plant

Biol., 1, 123–129.

Selby,P. et al.; BrAPI Consortium. (2019) BrAPI—an application program-

ming interface for plant breeding applications. Bioinformatics, 35,

4147–4155.

Sherman,R.M. et al. (2019) Assembly of a pan-genome from deep sequencing

of 910 humans of african descent. Nat. Genet., 51, 30–35.

Sun,S. et al. (2018) Extensive intraspecific gene order and gene structural

variations between Mo17 and other maize genomes. Nat. Genet., 50,

1289–1295.

Valdes Franco,J.A. et al. (2020) A maize practical haplotype graph leverages

diverse NAM assemblies. bioRxiv, 2020.08.31.268425.

3702 P.J.Bradbury et al.


