
Citation: Zattera, M.L.; Bruschi, D.P.

Transposable Elements as a Source of

Novel Repetitive DNA in the

Eukaryote Genome. Cells 2022, 11,

3373. https://doi.org/10.3390/

cells11213373

Academic Editor: Laura Fanti

Received: 29 July 2022

Accepted: 26 September 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Transposable Elements as a Source of Novel Repetitive DNA in
the Eukaryote Genome
Michelle Louise Zattera 1 and Daniel Pacheco Bruschi 2,*

1 Departamento de Genética, Programa de Pós-Graduação em Genética, Setor de Ciências Biológicas,
Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil

2 Departamento de Genética, Laboratorio de Citogenética Evolutiva e Conservação Animal,
Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil

* Correspondence: danielbruschi@ufpr.br

Abstract: The impact of transposable elements (TEs) on the evolution of the eukaryote genome
has been observed in a number of biological processes, such as the recruitment of the host’s gene
expression network or the rearrangement of genome structure. However, TEs may also provide a
substrate for the emergence of novel repetitive elements, which contribute to the generation of new
genomic components during the course of the evolutionary process. In this review, we examine
published descriptions of TEs that give rise to tandem sequences in an attempt to comprehend
the relationship between TEs and the emergence of de novo satellite DNA families in eukaryotic
organisms. We evaluated the intragenomic behavior of the TEs, the role of their molecular structure,
and the chromosomal distribution of the paralogous copies that generate arrays of repeats as a
substrate for the emergence of new repetitive elements in the genome. We highlight the involvement
and importance of TEs in the eukaryote genome and its remodeling processes.
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1. Introduction

The duplication and mobilization cycles of transposable elements (TEs) are evolution-
ary processes that enrich the paralogous copies that constitute the repetitive DNA content
of the eukaryote genome. This repetitive DNA can be subdivided into two categories:
tandem repeat sequences, which represent copies organized in juxtaposition to one another
(e.g., DNA satellites, minisatellites, and microsatellites), or dispersed sequences, which
include the transposable elements themselves [1,2].

In most cases, transposable elements and tandem repeats are studied independently,
but evidence has been found that TEs may be involved in the origin of a library of tandem
repeats that is typically dispersed throughout the eukaryote genome, where it plays a
fundamental evolutionary role [3,4]. The sequences of homologies of satDNAs and trans-
posons or retrotransposons that have been identified in many species indicate the existence
of an intimate evolutionary relationship between the TEs and the emergence of tandem
repeat sequences, which implies that the TEs are involved in the reshaping of the genomic
architecture [3,5].

The conversion of one type of repetitive element into another has been reported in all
the principal branches of the eukaryote tree of life [6–8]. Here, we review case studies of
the emergence of repetitive DNA, focusing on the new satellite DNA (satDNA) families
derived from TEs with the aim of understanding (i) the intragenomic behavior of the
TEs, (ii) the role of their molecular structure, and (iii) the chromosomal distribution of
the paralogous copies. We discuss the genetic mechanisms that produce the TE copies
and contribute to the molecular co-option of these elements during the evolution of the
genome and chromosomes, most of which are revealed by the interplay and turnover of
the different repetitive classes in the genome.
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There are two major categories of transposable elements: classes I and II. Class I
elements, which are also known as retrotransposons, are dependent on the RNA for their
transposition in the genome, while class II elements (DNA transposons) do not depend on
any retrotranscription mechanism for their mobility [9].

The recruitment of copies of the TEs as a substrate for the evolutionary emergence of
new tandem repeats and satDNA families is directly dependent on the behavior of these
elements in the host genome. The intra-genomic behavior of the TEs in the host genome
follows a four-phase life cycle (Figure 1), starting with (i) the birth or invasion phase, when
the TEs are inserted into a new locus, followed by (ii) amplification, (iii) maturation, and
finally, (iv) death or degeneration [10–12].
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Figure 1. Life cycle of a transposable element, using LTR transposons with their respective Open
Reading Frames (ORFs) as an example. T0—simple copy of the element in the genome; T1—Invasion:
the chromosomal locus acquires at least one repeat unit; T2—Amplification: an increase in the
number of copies present in the genome, either by burst events (in the case of class I elements) or
the repair or homologous recombination of double-stranded DNA (class II); T3—Maturation: the
elements are inactivated or silenced through epigenetic silencing, piRNAs, DNA methylation or other
mechanisms, such as mutations; T4—Death or degeneration: the elements may be either eliminated
from the genome, undergo molecular domestication, begin to exercise new functions or give rise
to new repetitive sequences, such as tandem repeats. LTR = Long Terminal Repeat; ORF = Open
Reading Frame. (Source: the authors / created in Biorender.com, accessed on 5 September 2022).

The birth or invasion phase (Figure 1—T1) occurs when a new chromosomal locus
acquires at least one copy of a TE. In most cases, the TE is transmitted vertically through the
evolutionary lineage by splitting from the ancestral species, while invasion occurs through
new transposition events, either by the recombination of sequences already present in the
genome or events of horizontal transfer [13,14].

As a new repeat unit of a class I element (retrotransposon) is established in the genome,
the number of copies begins to increase rapidly (amplification phase; T3 in Figure 1). These
paralogous copies, generated by retrotransposition, are distributed randomly throughout
the genome [15,16]. Genomes of all characterized higher eukaryotes possess examples of
transposable element (TE) bursts [17]. Burst events can cause a local accumulation of TEs
in the chromosomes, generating extensive clusters of TEs [18–21].

Events of this type are more frequent in germ cells due to the temporary relaxation of
the epigenetic control of the TEs during the early development of the germline. This opens
a temporal window that may allow these elements to escape from their constraints and
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propagate in the host genome [22,23]. Amplification occurs primarily in male germ cells
due to the continuous spermatogenesis occurring throughout the life span of the animal,
whereas female germlines are arrested in meiosis and do not undergo the temporary
relaxation of epigenetic control observed in the male germline [24,25].

By contrast, the repair mechanism of double-strand (subclass I) or single-strand breaks
(subclass II; see [9]) that occur following mobilization events is a central genetic process
that results in the addition of a number of copies of the DNA transposons, given that
the chromosomal gap generated by the excision of a transposon sequence is repaired
by a homologous recombination mechanism, which results in the reintroduction of the
transposon at the donor site [26]. If the mobilization event occurs during the S phase, the
homologous recombination can use a sister chromatid as a template for the repair of the
chromosome gap, which also restores the excised element and results in an increase in the
number of copies of the class II elements [26,27].

The maturation phase (T4 in Figure 1) is the most prolonged stage of the process, and
is the most subject to the action of mechanisms of molecular evolution. The host genome
can evolve defenses to stop the spread of the TEs by temporary epigenetic inactivation,
irrespective of the mobilization mechanism involved in the insertion of the new TE [28].
During this phase, the silencing of transposition activity and the relaxation of selection
pressures on the paralogous copies contribute to the accumulation of random mutations in
the molecular structure of the TE sequences [29,30].

One of these pathways is through the silencing of the RNA by small RNA molecules—
endogenous siRNAs (endo-siRNAs) or PIWI-associated RNAs (piRNAs)—which guide
the process by modulating chromatin states or targeting the degradation of the RNA [31].
The piRNA pathway suppresses transposon activity in the metazoan germline, whereas
the endo-siRNAs repress TE activity in the somatic tissue [31,32].

The transposition of the TEs may also be suppressed by DNA methylation, in which a
methyl group is added covalently to the C’5 position of the cytosine (5-methylcytosine) [31,33].
This methylation is associated with repression of the TE, as first observed in the retrotrans-
poson Activator (Ac), Suppressor-mutator (Spm), and Mutator (Mu) of maize [34–36]. This
epigenetic suppression by DNA methylation is thought to contribute not only to the si-
lencing of transcription, but also to the formation of the heterochromatic regions of the
genome [37,38]. Epigenetic histone modifications, such as acetylation, phosphorylation,
and methylation, may also be involved in the repression of the TEs [39]. In the genus
Arabidopsis, for example, the histone methylation of H3K9me2 and H3K27me1 appears
to contribute to the transcriptional silencing of some TEs [40], while histone deacetylase
triggers the transcriptional activity of the different TEs [41]. The long-time prevalence of
TEs under epigenetic control results in the progressive accumulation of mutations (substi-
tutions or indels), which leads, in turn, to the degeneration of the sequence and a loss of
identity, which either reduces or eliminates its capacity for amplification in the genome
(Figure 1—T3). Recombination is often suppressed in the heterochromatic regions [42,43],
which appears to be one of the reasons why these portions of the chromosome are prone to
the accumulation of TEs, maintained by unequal crossing-over or genetic drift [44,45].

Stochastic mutations that interfere with the mobilization capacity of the silenced TE
sequences are either fixed or lost primarily through genetic drift, which may represent
the degeneration or death phase of the respective locus (Figure 1—T4). In this case, the
heterochromatin is often the “final resting place” of dysfunctional TEs, due to the low
frequency of recombination in these regions [44,45], leading to the formation of a “TE
cemetery” [45,46], where the TEs may play an important role in the structure of the het-
erochromatin itself [47]. Given the high level of degeneration of the TE sequences, the
recognition of genomes by searching for homologies often recovers contigs that are not
very similar to the active copies. This hampers the understanding of their evolutionary
history in the host genome.

The insertion and accumulation of some TEs in the vicinity of genes, for example, or
their degenerate copies, represent an opportunity for molecular evolution or domestica-
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tion [48–50]. Numerous studies have revealed protein motifs or repetitive regions of TEs be-
ing recruited for new genomic functions, providing an important source of novel sequences
for the evolution of the genome [51–53]. New regulatory sequences and new protein-coding
or even non-coding RNAs may play a beneficial role in the host genome [11,54,55], and may
also be involved in a number of different processes of the regulation of gene expression.
These processes include the regulation of transcription by the domesticated LTR retrotrans-
posons and the action of the Amniota SINE1 element, which enhances the genes encoding
the fibroblast growth factor of the inhibitor of an apoptosis protein family [56,57].

Given this, the ability of the TEs to provide a substrate for evolutionary innovations has
attracted considerable interest over the years, and has been the focus of numerous studies
of eukaryote species, which have found evidence of their involvement in the evolution of
the genome through their reorganization.

2. Transposons as a Source of Repetitive Units for the Emergence of Tandem Repeats

A number of studies have provided examples of TE sequences that give rise to new
repetitive classes, such as microsatellites, minisatellites, and satellite DNA [3,5,11,54,58].
Transposable elements represent an important substrate for genomic remodeling, and the
emergence of new repetitive sequences, which generate a library of short repeat arrays that
will subsequently be dispersed through the genome, to eventually become novel tandem
repeats [59] (Figure 1—T4).

Transposable elements may contain sites predisposed for the formation of microsatel-
lite DNA, which favors the dispersal of these repetitive units in the genome [5,58,60]. In
the human genome, for example, approximately 23% of all tandem arrays (satellite, mini-
and microsatellite sequences) are derived from TEs [61].

2.1. Classes and Mobility of the TEs

Studies of a range of different organisms have revealed a subtle prevalence of class
I elements as a source of repetitions in the genome. Retrotransposons of the SINE (Short
Interspersed Nuclear Element) superfamily, in particular the Alu elements, are a compelling
example of this process. The non-autonomous SINEs, which range in size from 100 to
600 base pairs (bps), are widely distributed in the eukaryotes, where they play an important
role in the organization of the genome, given their involvement in cell survival during
many different types of physiological stress, for example [62]. The Alu elements, which are
primate-specific, are considered to be the most widespread of the transposable elements,
representing approximately 11% of the human genome [63–65]. These elements are consid-
ered to be the origin of the pλg3 satDNA and (GAA)n-type repeats, which are both found
in the human genome [66–68], and the A-rich microsatellites in the primates [69]. Approx-
imately 7276 minisatellites in the human genome have been derived from transposable
elements, and 2663 are associated with Alu elements [61].

Non-autonomous TEs prevail as a source of the sequences for the formation of novel
repetitive elements (Table 1), and the MITE (Miniature Transposable Elements with inverted
repetitions) elements may be an especially interesting group for the understanding of this
process. The MITE-type elements are non-autonomous, class II elements of approximately
400 bps, which are characterized by inverted repetitions flanking a variable region [9,70,71].
The MITE repeats are known to give rise to (GTCY)n repeats in lepidopterans [72], Xstir
satDNA in Xenopus leavis [73], miDNA4 in Xenopus tropicalis [74], D1100 satDNA in rye [75],
a number of different types of satellite DNA in Messor ants [76], and HindIII satDNA in
bivalves [77].
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Table 1. Recorded cases of transposable elements giving rise to satellite, mini- and microsatellite
DNA (satDNA), according to their mobility and the regions of the transposable elements that have
given rise to the tandem repeat sequences. ORF (Open Reading Frame); TR (Tandem Repeat);
UTR (Untranslated Region); LTR (Long Terminal Repeat), TIR (Terminal Inverted Repeats), IR
(Inverted Repeat).

Species
Type of

Transposable
Element (TE)

Superfamily Class Mobility Region of
the TE

New
Sequence Reference

Pan paniscus
and Hylobates

lar
Alu elements SINE Alu

Family Class I non-
autonomous

3′ oligo(dA)
tail and
A-rich
middle
region

A-rich
primates’ mi-
crosatellites

[69]

Homo sapiens Alu | LTR –
retrotransposons

SINE Alu
Family Class I non-

autonomous

TR may
occur in any
region of the

TE

7276
Minisatellites [61]

Homo sapiens Alu SINE Alu
Family Class I non-

autonomous -
pλg3, pMSl,
pMS43, and

pMS228
[66]

Homo sapiens Alu SINE Alu
Family Class I non-

autonomous
Near to 3′

-UTR.
Three

minisatellites [68]

Homo sapiens Alu SINE Alu
Family Class I non-

autonomous
3′ oligo(dA)

tail. (GAA)n [67]

Mouse
genome SINE B1 SINE

Superfamily Class I non-
autonomous

GAGGCA
dimmer

within the
SINE

(GGCAGA)n [78]

Mouse
genome MaLR

Retrotransposon-
like

superfamily
Class I non-

autonomous LTR Ms6-hm e
Hm-2 [79]

Ctenomys sp. retroviral
genome - Class I - LTR RPCS

satDNA [80]

Phodopus
roborovskii

LINE-1
elements LINE Class I autonomous ORF2 PROsat [81]

Dolphin LINE-1 LINE Class I autonomous -3’ UTR
Common
Cetacean
Satellite

[82]

Phoca vitulina
concolour LINE-1 LINE Class I autonomous ORF2 Pvc 20 [83]

Genus Messor Mariner-like
(Mboumar) Tc1/mariner Class II autonomous

Mariner is
found inside
the satDNA

satDNA [84]

Gallus gallus CR1 CR1 family
of LINEs Class I autonomous

-3′ UTR and
a partial
coding

region of
ORF 2

HinfI (SCR1) [7]

Helicoverpa
zea

HzSINE1
MITE-like

SINE
Superfamily Class II non-

autonomous 5′-IR (GTCY)n [72]
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Table 1. Cont.

Species
Type of

Transposable
Element (TE)

Superfamily Class Mobility Region of
the TE

New
Sequence Reference

Drosophila
virilis,

Drosophila
americana,

and
Drosophila
biarmipes.

DINEs Helitron Class II non-
autonomous

Central
tandem
repeats
(CTRs)

satDNA
arrays [8]

Drosophila
guanche SGM-IS

SGM
Transposon

Family
Class II non-

autonomous - SGM
satDNA [85]

Drosophila
virilis group pDv element

pDv
transposable

element
family

Class II - Terminal
repeat

pvB370
BamHI sat

DNA
[86]

Drosophila
melanogaster TART | HeT-A

TART
subfamilies
of the HeT

DNA family

Class I
Class I

Autonomous
non-

autonomous
-3’ UTR 18HT

satDNA [87]

Drosophila
virilis Tetris Foldback

elements Class II non-
autonomous TIR

satDNA-
arrays

(TIR-220)
[88]

Hydromantes
imperialis and

H. ambrosii

SINE-like
elements

SINE
Superfamily Class I non-

autonomous

tRNA-
related
region

Hy/Pol III [89]

Monopterus
albus

LTR-
Retrotranspos

onGypsy

LTR-
Retrotransposon-

like
Class I autonomous LTR satDNA

MALREP [90]

Xenopus leavis Xmix MITE - Class II non-
autonomous TIR Xstir satDNA [73]

Xenopus leavis SINE-like SINE
Superfamily Class I non-

autonomous

tRNA-
related
region

Satellite 1 [91]

Xenopus
tropicalis

MITE of
TC1-mariner Tc1–Mariner Class II non-

autonomous

stDNA
located

within the
MITE

element

miDNA4 [74]

Ostrea edulis CvA Pearl Class II non-
autonomous - HindIII [77]

Venerupis
decussata MITE (Pearl) Pearl Class II non-

autonomous - BIV160 [92]

Arabidopsis
thaliana Atenspm En/Spm-like Class II autonomous -5’ UTR ENSAT1 [93]

Pisum
sativum

Ty3/gypsy-
like
ogre

Gypsy Class I autonomous -3′ UTR PisTR-A
satDNA [59]

Glycine max Gmr9/GmOgre Ty3-gypsy Class I autonomous

Between the
3’UTR and
Repetitive

LTR

Gmr9-
associate

minisatellite
[94]
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Table 1. Cont.

Species
Type of

Transposable
Element (TE)

Superfamily Class Mobility Region of
the TE

New
Sequence Reference

Solanum bul-
bocastanum Sore 1 SORE-1

family Class I autonomous LTR Sobo satDNa [6]

Solanum
tuberosus

Ty3/gypsy-
like

LTR-
Retrotransposon-

like
Class I autonomous LTR

St3-58;
St3-238; St18;

St3-294
[95]

Zea mays CRM1 and
CRM4

Centromeric
Retrotrans-
posons of

Maize (CRM)

Class I autonomous UTR regions
and LTR

CRM1TR e
CRM4TR
satDNA

[96]

Hordeum
vulgare BARE-1

BARE-1 retro-
transposon

family
Class I non-

autonomous LTR SSR [97]

Aegilops
speltoides Cereba Ty3-gypsy Class I autonomous ORF to gag CAA

microsatellite [98]

Secale cereale Crwydryn
Tnr1 MITE

Crwydryn
Tnr1/Stowaway

family

Class I
Class II

non-
autonomous

non-
autonomous

ORF to gag
-

E3900
satDNA
D1100

satDNA

[75]

Lathyrus
sativus

Ogre LTR-
retrotransposons

LTR-
Retrotransposon-

like
Class I autonomous Close to the

ORF to gag
nine

satDNAs. [99]

Chenopodium
album

aggregate

CACTA-Like
Jozin

CACTA
superfamily Class II non-

autonomous Tnp2 TPase CficCl-61-40
satDNA [4]

The MITE sequences experience burst events, which may lead to a dramatic increase
in the number of copies, resulting in the rapid accumulation of arranged units with highly
similar sequences in the chromosomes [100–102], as seen in the amphibian Xenopus tropi-
calis [74]. In the genome of X. tropicalis, the presence of a miDNA4-MITE that contains a
satellite DNA motif, demonstrates the synergic interplay between the MITE structure and
genomic context, which contributes to the emergence of the repetitive arrays of the new
satDNA. In this model, the birth of the satellite monomer within a MITE is followed by the
amplification of tandem repeats, with the higher recombination rates of the tandem arrays
of paralogous copies leading to the rapid homogenization of the repetitive arrays and, over
time, the generation of satDNA following the putative concerted evolution model [74].

Helitron elements (subclass II of the DNA transposons) also represent a source of the
spread of satDNA-like arrays in the genome. The transposition of these Class II elements
occurs through semi-replicative transposition, in which only one strand of the transposon is
transferred between genomic sites without duplicating the target site (TSD) upon insertion,
a process known as Rolling Circle Transposition, or RCT [2,9,103,104]. Analysis of the
RCT mechanism has revealed cases in which the rolling-circle transposases are unable to
recognize the termination sites located at the extremity of each TE, which results in the
transposition of fragments of the genomic DNA located in the immediate vicinity of the
sequence. This makes the TEs prone to the capture and propagation of a range of different
genomic sequences [2,105].

As satDNA may be formed by the tandem amplification of a whole TE, or only a part
of it, where fractions of short satDNA-like arrays would be expected to be found dispersed
throughout the genome as an intermediate stage of the emergence of satDNA from the
TEs, which are normally distributed in euchromatic regions [2,8,74,106]. In Crassostrea gigas,



Cells 2022, 11, 3373 8 of 17

for example, the genome assembly presents 13 clusters of satDNA-like tandem repeats,
which represent the central repeats of 11 non-autonomous elements belonging to the
Helentron superfamily of DNA transposons known as the CgHINE [2]. The genome-wide
distribution of this element in this species indicates that Helentrons are able to propagate
tandem repeats.

2.2. Are Certain Portions of a TE More Prone to the Generation of Tandem Repeat Sequences?

Although the entire sequence of a transposable element has the potential to act as the
substrate for the generation of new repetitive elements [61], we observed a prevalence of the
repetitive portions of these elements as the source of the monomeric units of tandem repeats.
The greater similarities between the monomeric units and the Terminal Inverted Repeats
(TIRs), Long Terminal Repeats (LTRs), and other non-coding regions of the transposable
elements highlights the importance of these naturally repetitive segments for the emergence
of new classes of repetitive DNA (Table 1; Figure 2).
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Figure 2. Schematic diagram of the different regions of transposable elements that may provide
the starting point of origin for new micro-, mini- or satellite DNA. LTR (Long Terminal Repeat);
GAG (GAG domain); POL (Reverse Transcriptase); ENV (Envelope Protein); UTR (Untranslated
Region); ORF (Open Reading Frame); TIR (Terminal Inverted Repeats). (Source: the authors/created
in Biorender.com, accessed on 5 September 2022).

The untranslated 5′ and 3′ (5′UTR and 3′UTR) extremities also serve as a source
of satellite DNA. The evidence available for the pea, Pisum sativum, indicates that the
satDNA PisTR-A originated through the amplification and homogenization of tandem
repeats present in the hypervariable 3′UTR of the Ty3/gypsy-like Ogre elements [59]. The
3′ terminal may also play a key role in this process, as observed in Drosophila melanogaster,
in which the emergence of new satDNA corresponded to the 3′ non-coding region of
the transposable element HeT-A [87], and in the cetaceans, the DNA of the common
satellite monomer is similar to the 3’-terminal portion of the mammalian L1 (LINE-1)
retrotransposon [82] (Figure 2).
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Open Reading Frames (ORFs) of TEs have also been found to be related to the satDNA
in Gallus gallus, with similarities in the sequences being observed among the regions of
the satDNA HinfI and the CR1 retrotransposon, which contains the partial ORF II of the
CR1 element [7] (Figure 2). In the rodent Phodopus roborovskii, the ORF II of a LINE-1
retrotransposon is 88% similar to a small region of the PROsat present in the genome [81].
In rye, Secale cereale, the E900 satDNA contains a fragment of a retrotransposon which
encodes a partial reading frame for the GAG-like protein of an LTR retrotransposon [75].
The GAG-like gene was also related to the CAA microsatellite in wheat, Aegilops speltoides,
and presented similarities with the upstream region of the Ty3/gypsy-like retroelement [98]
(Figure 2). Overall, then, the sum of the evidence indicates that any part of a transposable
element may provide a substrate for the generation of new sequences, and there does not
appear to be any conclusive evidence that specific portions of these elements are involved
preferentially in the generation of satellites or other types of tandem repeat.

3. Is the Centromeric Region a Hotspot of the Emergence of de novo satDNA Derived
from TEs?

Centromeric regions are favorable to the emergence and establishment of new families
of satellite DNA and are ideal models for studying the TEs as an evolutionary substrate
in chromosomal evolution [107,108]. Centromeres are gene-poor, and the majority of the
transcriptional activity observed in this region involves non-coding RNAs that interact in
the organization of the kinetochores [109].

Meiotic recombination is avoided in centromeric regions, which appears to be an
evolutionary strategy to avoid chromosome aneuploidy, given that crossovers in the vicin-
ity of the centromere make chromosomes more prone to mis-segregation [109,110]. The
centromeres are thus a cold spot for crossovers, making this chromosomal region prone to
the emergence of de novo satDNA from TEs. The mobile genetic elements inserted in these
regions cannot be deleted easily by crossovers, and thus accumulate in the centromeric and
pericentromeric regions [111].

Plant and animal centromeres are rich in TEs, and these sequences may sometimes be
highly specific and/or involved directly in the architecture of this chromosomal region. Two
species of beetle, Dichotomius schiffleri and Tribolium castaneum, have unusually extended
centromeres, which appear to be related to the prevalence of DsGypsy6, LINE-1, and
Helitron-like sequences in these structures [112,113]. In Poaceae species, the centromere is
enriched with a specific retrotransposon family known as the centromeric retrotransposon
(CR), which has highly conserved motifs, that are also found in their B chromosomes, when
present (see [114]). The CR elements and centromere connection may contribute to the
maintenance of the centromere/kinetochore complex, given that these sequences interact
with the kinetochore protein CENH3 [115].

Recent studies of neo-centromeres have established a new perspective for the un-
derstanding of the role of TEs in the emergence of new satDNA families. Talbot and
Hennikof [111] proposed a model which indicates an active role of the TEs in the evo-
lutionary emergence of neo-centromeres. De novo centromeres appear to arise from the
deposition of epigenetic markers in a particular region of the chromosome, followed by the
enrichment of repetitive sequences at this new site [116]. The transposons appear to play
an important role in the maintenance of the size of the region and the increase in the repeat
content of the neo-centromeres that do not have many tandem repeats during this initial
period [117].

Large numbers of CENP-A are detected flanking centromeres, but low levels of CENP-
A may spread to the non-canonical centromere regions, predisposing them to acquire a
potential centromeric function [118,119], and the insertion of TEs in an ectopic CENP-A site
may create favorable conditions for the evolution of new a centromeric complex [118].

New cycles of transposition activity increase the density of TEs and may result in in-
sertions of copies adjacent to the original, resulting in tandem duplications (tandem dimers,
trimers, or more repetitions), as observed in the Rice8 satDNA in centromere of rice [120],
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for example. Retrotransposons comprise approximately 70% of the functional centromeres
of D. melanogaster, and are composed of complex DNA rich in non-LTR retroelements
inserted within large blocks of tandem repeats [121]. Some plant centromeres are composed
of long arrays of satDNA interspersed with Gypsy LTR-retrotransposons [122–125], which
highlights the interplay of the different classes of repetitive DNA in the establishment and
maintenance of the centromere region.

Satellite DNA repeats derived from TEs in the centromere region have been identified
in a number of different species [3,61,121,126]. The centromeres of Zea mays are a good
example because it is composed of CRM1TR and CRM4TR satDNA, two tandem arrays
that were derived from an LTR-retrotransposon in at least two separate events [96]. The
repeat arrays of satellites in the centromeres of chromosomes 1, 2, 3, 5, 7, and 8 of the
potato, Solanum tuberosus, were also amplified from retrotransposon sequences [95]. In
the chicken karyotype, several centromere-specific types of satDNA are highly similar to
retrotransposons [127]. In the centromeres of Prunus species, a highly conserved monomer
unit of 166 bps has been identified from assembled genomes and sequencing reads, with
varying signal intensities in fluorescence in situ hybridization (FISH) experiments, which
indicates that the centromeric regions of this genus are enriched with this sequence [128].

The centromeric region of the Y chromosome of Drosophila melanogaster is composed
of 18HT satDNA, a satellite DNA derived from HeT-A and TART non-LTR retrotrans-
posons [87], the same elements that were co-opted to the telomeric function in Drosophila. In
the Drosophila obscura species group (Drosophila subobscura, D. guanche, and D. madeirensis), a
DNA transposon (SGM elements) was the substrate for the emergence of a species-specific
SGM satDNA that makes up the centromeric heterochromatin in D. guanche, in which the
SGM element appears to be inactive [85].

The subtelomeric heterochromatin also appears to be prone to the emergence of
tandem copies of transposable elements. Drosophila melanogaster, for example, has three
telomere-specialized retrotransposons (HeT-A, TART, and TAHRE) that have been co-opted
functionally to the organization of the chromatin and the maintenance of the telomere, and
resemble telomere extensions containing telomerase [129,130]. The subtelomeric region
of the D. melanogaster chromosomes presents a complex combination of potentially active
elements and truncated TEs arranged in a long array [129]. In Drosophila biarmipes, by
contrast, Helitron transposons may play an important role in the structure of the telomere,
and while full-length Helitrons can be observed in the telomeres, fragments are interspersed
within the abundant satellite sequences [129]. The richness of the repetitive arrays derived
from the TEs in the subtelomeric heterochromatin of Drosophila represents a promising
model for the study of the emergence of satellite DNA from TE elements and another
potential chromosomal hotspot for the formation of de novo satDNA from TEs.

4. Mechanisms of the Production of Repeats from TEs

Unequal crossovers are an important mechanism of the expansion of tandem arrays
and the homogenization of the satDNA by concerted evolution [131], although the absence
of canonical meiotic crossovers in the centromeric region would require a mechanism
that is independent of the emergence and evolution of the satDNA in this region. The
transposition process may cause a Double Strand Break (DBS) of the DNA, which the
DNA repair mechanism will attempt to fix, through alternative pathways, such as Non-
Homologous End Joining (NHEJ), Non-Allelic Homologous Recombination (NAHR), or by
Homologous Recombination (HR).

The NHEJ may contribute to the expansion of tandem arrays as a result of a single
transposition event. Microhomology-mediated NHEJ has the potential to give rise to
a wide range of chromosome events including duplications of sequences if it happens
between sister chromatids [132] This mechanism also plays an important role in finalizing
some TE-related instability events [133] and has been found with a dominant role in gene
duplications [134]. TSD sequences are identical; therefore, it provides microhomology
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making it possible for NHEJ to restore the genome back to its original state before the
insertion of a transportable element [135].

For example, Target Site Duplications (TSD) may be brought together by the NHEJ
mechanism following a “cut and paste” transposition event (Figure 3), which rejoins the
broken ends without the use of extensive homology [136,137]. As each TSD normally has
fewer than 10 bps, these dimers of low complexity can arise easily through polymerase
slippage and the subsequent expansion of the number of copies (Figure 3).
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September 2022).

Studies on TSD and TE insertions were performed in D. melanogaster [1], where it was
hypothesized that TEs organized in tandem could be generated through multiple insertions
at the same chromosomal site, which also presents a TSD. The authors concluded, analyzing
reads of the element known as P-element, that the junctions of the tandem repeats had the
same size as the TSD of the said element, and the consensus motif was found similar to the
TSD from other P-element insertions.

On the other hand, NAHR may also result in recurrent genome rearrangements, such
as inversions, translocations, deletions, or duplications, in sequences that are not in intra-
or inter-chromatid allelic positions, i.e., they are paralogous [138,139]. This mechanism
provides valuable insights into the expansion of repeat arrays to the emergence of new
satDNA, given that it depends on the position of the paralogous TE copies that will used
as the template for the repair of the chromatid that has suffered the DBS, which may
result in tandem duplications of the repetitive segments of the TE (Figure 3). Given this,
intra- or inter-chromatid NAHR may contribute to the expansion of the initial repeat
arrays in a manner similar to that of the unequal crossovers performed in the concerted
evolution model.

One other especially interesting pathway of double-strand DNA repair is the use of a
strand from a sister chromatid through Homologous Recombination (HR). Given either the
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existence of the repetitive elements that make up the molecular structure of the TEs (such
as LTRs and ITRs) or the greater similarities of the TSD regions, the repair of DBSs using
intrachromosomal HR mechanisms has the potential to generate tandem duplications in
these regions [140] which may cause repeat arrays of the TE to accumulate in this region, if
the Holliday junctions are processed to yield a crossover.

Similar results may also be obtained when a DBS is repaired by ectopic recombination,
in which the paralogous copies used as the template are from non-homologous chromo-
somes [141]. In this case, the resolution of the Holliday junctions in the crossover events
between dispersed repeats [142] will also result in the tandem duplications of the repetitive
portions of the TEs in the region of the DBS. The outcome of these mechanisms of DBS
repair is the formation of repeat arrays in the region of the DNA damage, which will be
a source of other mechanisms of sequence expansion, such as polymerase slippage, that
contribute to an increase in the number of monomers, leading to the emergence of satDNA
from TE segments.

Finally, the intrinsic mechanisms involved in the transposition events are prone to
the production of repeats derived from TEs. For example, the genesis of the Bari1 (Tc1-
mariner superfamily) repeat clusters in D. melanogaster was provoked by anomalous rolling
circle mechanisms and the subsequent reintegration within the Stalker LTR-retrotransposon,
which generated an 80-repeat organized in heterochromatic clusters [143].

5. Conclusions

Repetitive DNA sequences have long been studied because of their structural role
and impact on the genome of a range of different organisms. Here, however, we highlight
the importance of also focusing on the relationships among the different elements. The
possible presence of pre-existing transposable elements that serve as a substrate for the
emergence of new families of repetitive sequences reinforces the potential importance of
these elements in genome and karyotype remodeling during the evolutionary process.
Given this, a better comprehension of the evolutionary relationships of these elements may
be extremely valuable for a better understanding of the evolution of the eukaryote genome.
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