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Abstract. Ovarian cancer is a common malignancy and the
second leading cause of mortality among females with genital
tract cancer. At present, postoperative platinum drugs and
paclitaxel-based chemotherapy is the gold standard treat-
ment for ovarian cancer. However, patients who receive this
chemotherapy often develop cumulative toxic effects and are
prone to chemotherapy resistance. Therefore, it is necessary
to determine more effective treatment options that would be
better tolerated by patients. Recent studies have reported the
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therapeutic effects of numerous natural products in patients
with ovarian cancer. Notably, these natural ingredients do not
induce adverse effects in healthy cells and tissues, suggesting
that natural products may serve as a safe alternative treat-
ment for ovarian cancer. The antitumor effects of natural
products are attributed to suppression of cell proliferation and
metastasis, stimulation of autophagy, improved chemotherapy
sensitivity, and induction of apoptosis. The present review
focused on the antitumor effects of several natural products,
including curcumin, resveratrol, ginsenosides, (-)-epigallocat-
echin-3-gallate and quercetin, which are increasingly being
investigated as therapeutic options in ovarian cancer, and
discussed the molecular mechanisms involved in cell prolif-
eration, apoptosis, autophagy, metastasis and sensitization.
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. Introduction

Ovarian cancer ranks third after cervical and uterine corpus
cancer among gynecologic cancers and is the second leading
cause of mortality worldwide among females with reproduc-
tive tract malignancies (1). Histopathologically, the majority of
ovarian cancers are classified as epithelial ovarian cancer and
include serous, mucinous, endometrioid, transitional and clear
cell carcinomas (2). Epithelial ovarian cancer may metastasize
through intracavitary implantation and/or the hematogenous
and lymphatic routes. Intraperitoneal metastasis is the most
common route of dissemination (3,4). Patients are usually
asymptomatic in the early stages of the disease and ~70% of
patients with ovarian cancer are diagnosed at an advanced
stage (5). At present, surgery followed by platinum drugs and
paclitaxel-based chemotherapy is the gold standard treatment
to inhibit disease progression. However, patients who receive
this chemotherapy often develop cumulative toxic effects
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(including nephrotoxicity) and are prone to chemotherapy
resistance (6,7). To date, ovarian cancer is associated with a
poor prognosis (8); the 5-year survival rate of patients with
this malignancy remains significantly low to be satisfactory
in clinic. Therefore, newer drugs and novel treatment strate-
gies are warranted to improve the prognosis of patients with
ovarian cancer.

Owing to the high toxicity associated with conventional
antitumor drugs, plant-derived natural products are being
investigated as alternative or adjuvant treatments for a variety
of cancer types (9). Conventionally, natural products are
considered nutritional products and auxiliary medicine. Recent
studies have proven the antitumor effects of natural products
and demonstrated that they may reduce chemotherapy-induced
toxicity. These phytochemicals primarily include curcumin,
resveratrol, ginsenoside, quercetin, berberine and (-)-epigal-
locatechin-3-gallate (EGCG) (10). This review discusses
the antitumor effects of several natural products and the
molecular mechanisms of action of these agents in patients
with ovarian cancer, with regards to their roles in prolifera-
tion, apoptosis, autophagy, metastasis and sensitization. The
antitumor effects of several natural products and the molecular
mechanism in ovarian cancer are reviewed, which includes the
aspects of proliferation, apoptosis, autophagy, metastasis and
sensitization.

2. Curcumin

Turmeric, the root of the Curcuma longa plant, is widely
used in Indian curries and South Asian dishes, and has been
used as a traditional medicine for thousands of years in India
and China (11). Curcumin and its two related curcuminoids
(demethoxycurcumin and bisdemethoxycurcumin) constitute
the main active ingredients of turmeric. Reportedly, curcumin
and curcuminoids possess strong antitumor, antioxidant, and
anti-inflammatory properties owing to their interactions with
multiple molecular targets (12). The antitumor effect and
mechanisms of action of curcumin in ovarian cancer are listed
in Table I.

Anti-proliferative and pro-apoptotic activity. Excessive
proliferation and inadequate apoptosis are the two signifi-
cant characteristics of tumors, including ovarian cancer. The
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)
signaling pathway participates in multiple cellular process,
and activation of this pathway increases cell proliferation,
invasion, migration, survival and chemotherapy resistance in
ovarian cancer (13). The B-cell lymphoma-2 (Bcl-2) family
controls the release of cytochrome C from mitochondria
into the cytosol, where it binds to apoptotic protease acti-
vating factor-1, promoting the activation of caspase-9 then
caspase-3, which leads to the intrinsic apoptosis. The Bcl-2
family includes the pro-apoptotic proteins (including Bad
and Bax) and anti-apoptotic proteins (including Bcl-2, and
Bcl-x1) (14). Curcumin downregulated the expression of the
Bcl-2, while upregulating the expression of Bax and caspase-3
by repressing the PI3K/AKT pathway, leading to cell cycle
arrest in G2/M phase and increased apoptosis of ovarian
cancer cells (15). Concordantly, Watson et al (16) reported that
curcumin downregulated AKT phosphorylation, Bcl-2 and

survivin, so that curcumin activated the extrinsic and intrinsic
apoptotic pathways via activation of caspase-8, caspase-9 and
caspase-3 (16). Signal transducer and activator of transcrip-
tion-3 (STAT-3), is a transcription factor and signal transducer,
and the phosphorylated STAT-3 promotes tumorigenesis by
stimulating cell proliferation and preventing apoptosis (17).
Saydmohammed et al (18), reported that curcumin inhibited
STAT-3 phosphorylation, which suppressed ovarian cancer
cell growth (18). Treatment with curcumin suppressed
ovarian cell motility by inhibiting STAT-3 phosphorylation
by increasing interleukin (IL)-6 and IL-8 secretion (19). In
addition, Ca** homeostasis is necessary for cell survival, and
sarcoplasmic/endoplasmic reticulum Ca* transporting ATPase
(SERCA) regulates cellular Ca** flux from the cytosol to the
endoplasmic reticulum (ER) for storage (20). Seo et al (21),
reported that curcumin inhibited SERCA activity and
then disrupted Ca** homeostasis in ovarian cancer
cells. Subsequently, a high concentration of Ca®* in the cyto-
plasm promoted cell apoptosis (21).

MiRNAs (miRs), a class of short non-coding RNAs,
regulating gene expression post-transcriptionally via
binding to the 3'-untranslated regions of target mRNAs, are
essential in malignant phenotype and treatment response in
ovarian cancer (22). Du et al (23), reported that treatment
with dimethoxy-curcumin promoted the apoptosis and
inhibited the proliferation of ovarian cancer cells through
upregulating the levels of miR-551a. A luciferase assay
confirmed that miR-551a targeted insulin receptor substrate
2 (23), which had been validated to serve an anti-apoptotic
role (24). In addition, it was demonstrated that the combina-
tion of dihydroartemisinin and curcumin arrested the cell
cycle and promoted the apoptosis of ovarian cancer cells by
upregulation of miR-124 and downregulation of its target
midkine (25), which is significantly overexpressed in various
cancer types to promote tumorigenesis and progression (26).
Furthermore, curcumin promoted the apoptosis and inhib-
ited the proliferation of ovarian cancer cells by inducing the
expression of miR-9 (27).

Induction of autophagy. In ovarian cancer, autophagy serves
a dual role that it may serve as an adaptation to stress to
avoid cell death in cancer progression, while excessive
autophagy may lead to cell death. Increased autophagy
is also associated with resistance to chemotherapy (28).
Autophagy is a highly conserved process that involves the
formation of autophagosomes that engulf cellular proteins
and organelles, and delivers them to the lysosomes. The
mammalian target of the rapamycin (mTOR) signaling
pathway regulates cell proliferation, survival and autophagy.
The p70 ribosomal S6 protein kinase (p70S6K) is a major
effector of mTOR phosphorylation (29). Liu er al (30),
reported that curcumin inhibited the AKT/mTOR/p70S6K
pathway to induce apoptosis and protective autophagy in
ovarian cancer SKOV3 and A2780 cells, and treatment
with autophagy-specific inhibitors markedly enhanced
curcumin-induced apoptosis (30). Qu ez al (31), reported that
B19, a novel monocarbonyl analogue of curcumin, induced
autophagy and ER stress-mediated apoptosis in ovarian
cancer cells, and inhibition of autophagy with 3-methylad-
enine increased ER stress-mediated apoptosis (31). ER stress



ONCOLOGY LETTERS 20: 141, 2020

‘[oxelrjord 03 Qoue)SISAI

(901) 0aza ur pue (OCYL-EAONAS

(ov) ) PISIOARI pue “[-YIN PqIyu! ‘¢cd paren3aidn puB ¢AQMS) SUI [13D o[qeLeA urmnosmezy 610C ‘Iv 12 oevyZ
‘unye[dsIo 0] uoreznIsuas padnpur pue ‘sisojdode
pasearour ‘Aj1anoe Teuonduosuen) pue uorssaidxe uruo)ed-g (dDOYLTV PUB 08.TV)
(6€)  possaxddns ‘ -[oJA pue [X-[og JO uorssaidxa ay) paje[n3aIumo( SQUI [[9D  INY 0T 10 01 urunoIn)) 010C ‘7v 12 nderex
*SISB)SRIOW PAYIqIyul
pue ‘[-NVOA PUe 6-dINIA ‘C-dINIA JO uolssaidxa auy paje|
(9¢) nSoIumop ‘G- N PIIBATIORUI ‘SSaIS 9ANEPIXO passarddng (EAOMS) 2u1] [[3D INM G] UrunoINOAXOy)awapsig 9107 ‘1P 12 19
UOISBAUL
"paNqIyur pue ‘y v jo uone[Lioydsoyd poonpur-urord  ([-Vd PUB ¢-YVIAO ‘EAOMS) €10T ‘I 12 AT
(SE'¥€) Surgdnos qey pue 6-dINIA ‘+7dD pae[n3arumoq sautf [[2D - urunoIny '810T ‘1?12 20y
(1€) "ASeydoine pue ssans Y paILAnOy (0168OH) AUI[ [[2D N ST 01 ‘S 61d €10T ‘1P 12 0O
(01680OH pue
(0©) “yreap [[o0 onoydode paonpur pue AN[IGeIA [[90 paseaIda( 08LTV “€EAOS) sduI[ [[9D 9[qeLIeA urnaanyy 610T ‘v 32 1]
‘s1sojdode poonpur pue ‘uonersjrjord
(Lo PAQIUUI ‘TOXOH PUB L} V-d paseardop 6-yIu pasearou] (EAOMS) U1 [[9D IN" 09 urumaIng ¥10C ‘Iv 42 OvyZ
-sisoydode pajowoid pue ‘)sarre urmnoINd pue
(€0 9[9£ [[99 PAdNPUI “QUINPIL PASLAIAP ‘47 [-YIwt paje[nsaidn (EAOXS) duI[ [[9D - uruIsrwaLe-oIpAyIq L10T ‘v 32 ovYZ,
*SONSST} JOULBD UBLIBAO
“uonerojrjoxd pue (EAOMS ‘INd0Y9SOH
(€0 panqryur pue sisoidode pojoword egg-yrur pajendardn ‘0Y98OH ‘TSH) s3I [[9D S[qeLIeA urndINd-AXoy oW L10T ‘[P 32 ng
‘s1soydode pajowoad (1-vd ‘€AOJIS
(12 pue ‘siseisoowoy , &) pardnisip ‘ANANde Y OYHS PAqIyu] ‘PLLTHVAIN) S_U 119D N ST urumaing 910€T ‘v 12 09§
*AJITIOW [[99 UBTIBAO PIIQIYUI PUE ‘UOTIAIOS
(61)  8~TI pue 9-f passaddns ‘uonejLioydsoyd ¢-1vLS passarddng (€-4VDIAO “T1-Vd) saul] [[2D - urunoIny 010€ ‘Iv 12 038
“Knou [[90 passardar pue ‘¢-§OOS pue 9-7I (6T VOAO PU® Ot
(8D Jo uorssaxdxa oy payiquyut ‘uoneAroydsoyd ¢-[V.LS parqryuy VOAO ‘T¥9 HSOH) U] [[3D 9[qeLIeA urwnoImy - 010 ‘7v 42 poweyowpies
‘sisoydode 01 Aypiqudaosns
POSBAIOUI PUE ‘UIAIAINS PUR Z-[0g JO UOISSAIAX9 9Y) PIseaIdap (EAOYS ‘1DD0 ‘6TFVIAO
91) ‘urajoid [V pue uonejAioydsoyd I3V parenserumo(q ‘AFH) seut] [1°D J[qeLIeA urnoInD) 010T ‘1P 12 UOSIeA\
*JS1Ie 9[0AD [[90 JN/ZD PRdnpul pue ‘uornjersjrjoxd
oy panqryur ‘sisoydode pajowoid ¢g-[og pare[n3arumop
(98] ‘xeq pue ¢-osedsed pasearout ‘L V/¢MId pare[nsarumo( (EAOMS) U1 [19D N OF urumaIngz 910C ‘Iv J2 nX
(s3od) sSurpurj [OpOW I9OUBD UBLIBAQ asog UnunoINd JO W0 Ieak ‘roUIne ISILj

*I90UeD URLIBAO UI UTWNIJIND JO UOIOe JO SWSTueydaW pue 109JJ° Jowmnjinue ayJ, ' 9[qel,



YAN et al: ANTITUMOR EFFECTS AND MECHANISMS OF NATURAL PRODUCTS IN OVARIAN CANCER

Table I. Continued.

(Refs.)

Findings

Ovarian cancer model

Dose

Form of curcumin

First author, year

(41)

Upregulated LncRNA MEG3, downregulated miR-214, and

decreased cisplatin resistance.

Cell lines

1 uM

Curcumin

Zhang et al, 2017

(OVCAR-3 and SKOV3)

PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; Bcl-2, B-cell lymphoma-2; STAT-3, signal transducer and activator of transcription-3; SOCS-3, suppressor of cytokine signaling 3; IL,

interleukin; SERCA, sarcoplasmic/endoplasmic reticulum Ca2* transporting ATPase; miR, miRNA; p-AKT, phosphorylated AKT; FOXO1, forkhead box O1; ER, endoplasmic reticulum; NF-«xB, nuclear

transcription factor-kappa B; MMP, matrix metalloproteinase; FAK, focal adhesion kinase; VCAM-1, vascular cell adhesion molecule-1; MDR-1, multidrug resistance protein 1; LncRNA, long non-coding

RNA.

is referred to as the accumulation of unfolded or misfolded
proteins in the ER lumen due to physiological and patho-
logical conditions, which interfered with ER homeostasis
and proper protein folding (32).

Anti-metastatic activity. Ovarian cancer metastasizes to
adjacent organs via direct extension or through the dissemi-
nation of cancer cells that detach from the primary tumor (3).
A family of proteolytic enzymes, called matrix metal-
loproteinases (MMPs), promote the metastasis of ovarian
cancer by remodeling the tumor extracellular matrix (33).
Two recent studies reported that curcumin markedly down-
regulated CD44 (the cell surface receptor of hyaluronic acid),
MMP-9 and Rab coupling protein-induced phosphorylation
of focal adhesion kinase (FAK; associated with the stabi-
lization of actin and microtubule filaments, and regulating
cancer cell motility), and eventually inhibited the invasion
of SKOV3 cells (34,35). In addition, one study revealed that
bisdemethoxycurcumin inactivated the nuclear transcription
factor-kappa B (NF-kB) pathway by inhibiting oxidative
stress, thereby reducing the expression of metastasis-asso-
ciated proteins, including MMP-2, MMP-9 and vascular cell
adhesion molecule-1 (VCAM-1) in SKOV3 cells (36). The
VCAM-I1-integrin interaction was clarified to be involved in
the regulation of ovarian cancer cell invasion and metastatic
progression (37).

Sensitization. Resistance to chemotherapeutic agents is a
major barrier to the effective treatment of advanced ovarian
cancer. The molecular mechanisms associated with resis-
tance to chemotherapy in ovarian cancer include increased
activity of the drug efflux pump mediated by the multidrug
resistance protein 1 (MDR-1, also known as P-gp), increased
repair capacity of DNA damage, decreased drug intake,
and decreased apoptosis, as well as drug-induced cell cycle
arrest (38). Curcumin may increase the sensitivity of ovarian
cancer cells to therapeutic drugs. Yallapu et al (39), reported
that curcumin induced sensitization of cisplatin-resistant
ovarian cancer cells (A2780CP) to cisplatin by increasing
apoptosis. Curcumin treatment downregulated the expres-
sion of Mcl-1 and Bcl-xI, two anti-apoptotic proteins of
the Bcl-2 family, and suppressed the activity of -catenin,
a transcription factor that promoted the expression of cell
survival genes by interacting with the TCF transcription
factor (39). Zhao et al (40), reported that co-administration
of curcumin and paclitaxel exerted a good antitumor effect
in multi-drug resistant ovarian cancer cells (SKOV3-TR30)
and in ovarian tumor-bearing nude mice, since curcumin
reversed the resistance to paclitaxel by inhibiting the drug
efflux mediated by MDR-1 (40). Zhang et al (41) reported
that curcumin may resume LncRNA MEG3 levels in extra-
cellular vesicles from cisplatin-resistant ovarian cancer cells.
Upregulation of MEG3 reduced the expression of miR-214
in cells and in extracellular vesicles, thereby reducing cispl-
atin resistance (41). MiR-214 was a well-known miRNA in
drug resistance, which enhanced cell survival and induced
cisplatin resistance in ovarian cancer cells by directly down-
regulating the expression of phosphatase and tensin homolog
(PTEN), a negative regulatory molecule of the PI3K/AKT
pathway (42).
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3. Resveratrol

Resveratrol is a natural polyphenolic compound derived
from plants, including grapes, peanuts and Polygonum cuspi-
datum (43). Resveratrol possesses anti-inflammatory and
antitumor properties, and protects the heart, nerves and
kidneys (44). The antitumor effect and mechanisms of action
of resveratrol in ovarian cancer are listed in Table II.

Anti-proliferative and pro-apoptotic activity. The Warburg
effect describes that, under the condition of sufficient oxygen,
tumor cells are active in aerobic glycolysis (45). Through
aerobic glycolysis, a large number of metabolites may be
generated and plentiful biosynthesis may occur, which may
satisfy the rapid and unlimited growth of tumor cells (46).
Suppression of the Warburg effect is an effective way to treat
cancer (47). In the mouse model, resveratrol significantly
reduced glucose uptake by tumor cells (48). In ovarian cancer
cells, resveratrol inhibited the biosynthesis of hexosamine, and
interrupted protein glycosylation through activating glycogen
synthase kinase-3p (GSK3p), and eventually triggered ER
stress-mediated apoptosis (49). GSK3p is a kinase that
phosphorylated and inactivated glycogen synthase, the final
enzyme in biosynthesis of glycogen, which is the main form of
glucose storage (50). Tino et al (51) proved that the combina-
tion of resveratrol and acetyl resveratrol inhibited the growth
and metabolism of ovarian cancer cells more efficiently, and
this growth restriction was due to decreased NF-kB protein
and nuclear localization, which was responsible for vascular
endothelial growth factor (VEGF) secretion (51). Furthermore,
resveratrol downregulated the phosphorylation of AKT and
GSK3p in a dose-dependent manner in ovarian cancer cells, as
well as decreasing the activity of extracellular signal-regulating
kinase (ERK), which subsequently suppressed the expression
of cyclin D1, which facilitated cyclin-dependent kinases CDK4
or CDKG6 in promoting cell cycle progression (52).

Induction of autophagy. In ovarian cancer, a recent study
reported that resveratrol promoted autophagy and subsequent
apoptosis in ovarian cancer cells by triggering the production
of reactive oxygen species (53). Furthermore, it also revealed
that resveratrol induced autophagy through enhancing the
expression of Atg5, a key molecule for the elongation of the
autophagosome membrane, and promoting cleavage from
microtubule-associated protein 1 light chain 3 (LC3)-I to
LC3-II (53). LC3-I1, located on the membrane of autophago-
somes, is a specific marker protein for autophagic activity (54).
Beclin-1 mediates the localization of autophagy-related
proteins and regulates the formation and maturation of
autophagosomes by interacting with various proteins. Beclin-1
may also interact with the anti-apoptotic proteins of the
Bcl-2 family, exerting a crosstalk between apoptosis and
autophagy (55). Zhong et al (56) demonstrated that resveratrol
enhanced autophagy by promoting the expression of beclin-1
and LC3-II through inactivation of STAT-3, and significantly
induced growth arrest and death of ovarian cancer cells (56).
In addition, resveratrol promoted the expression of the
tumor suppressor gene, aplasia Ras homologue member I
(ARHI) (57), and inactivated the STAT-3 signal pathway in
ovarian cancer cells. Subsequently, resveratrol induced cell

apoptosis, increased autophagy activity, and induced growth
arrest (58). Concordantly, Ferraresi er al (59) reported that
resveratrol increased autophagy via upregulation of beclin-1
and LC3 through induced ARHI and inactivated STAT-3,
thereby attenuating the metastasis induced by IL-6 in ovarian
cancer cells (59). They also demonstrated that resveratrol
inhibited mTOR complex 1 by repressing AKT and activating
AMP-activated protein kinase (AMPK), which inhibited
protein synthesis and cell growth, and induced autophagy.
When the mTOR pathway was inhibited by resveratrol,
induced autophagy favored the survival of cells in the context
of insufficient nutrition, likely leading to a dormant state (60).

Anti-metastatic activity. Ovarian cancer is known to directly
metastasize to the peritoneal surface of adjacent organs (3).
A previous study demonstrated that resveratrol decreased
the level of cellular a5p1 integrin and enhanced hyaluronic
acid secretion to the extracellular matrix, which inhibited
the adhesion of ovarian cancer cells to the intestinal wall
and decreased metastasis (61). Under hypoxic conditions,
resveratrol may decrease the binding between ovarian cancer
cells and mesothelial cells by downregulating the expression
of VEGF, thereby preventing the migration of ovarian cancer
cells induced by lysophosphatidic acid (62). The high expres-
sion of VEGF was associated with metastasis in advanced
ovarian cancer (63).

Sensitization. A previous study has reported that resveratrol
induces autophagy and promotes apoptosis in ovarian cancer
cells (64). Therefore, resveratrol may improve chemosensitivity
and prevent tumorigenesis under conditions of autophagy
inhibitors (64). Aberrant activation of NF-kB may protect
cancer cells against the apoptosis induced by pharmacological
drugs, contributing toward drug resistance. Nessa et al (65)
suggested that resveratrol sensitized ovarian cancer cells to
the apoptosis induced by platinum drugs via downregulating
NF-kB (65). In addition, Engelke et al (66) reported that
resveratrol reversed the resistance of ovarian cancer cells to
cisplatin by modulating molecular targets, including the EGFR
or VEGFR family of receptor tyrosine kinases (66).

4. Ginsenosides

Ginsenosides constitute the major pharmacologically active
ingredient in ginseng, and possess antitumor and antioxidant
properties. In addition to enhancing immunity (67). Several
ginsenoside compounds, including Rbl1, Rgl, RG1, Rhl and
Rd, have been identified, and the majority of these, particu-
larly ginsenoside Rg3 and Rbl exhibit significant antitumor
activity (68). The effect and mechanisms of action of ginsen-
osides in ovarian cancer are list in Table III.

Anti-proliferative and pro-apoptotic activity. The Warburg
effect is essential for tumor growth and metabolism.
Li et al (69) reported that ginsenoside 20(S)-Rg3 down-
regulated phospho-STAT-3 and two metabolic enzymes,
hexokinase and pyruvate kinase, which inhibited the glycol-
ysis of ovarian cancer cells, thereby inhibiting the Warburg
effect and preventing tumor growth and metabolism (69).
A previous study reported that 20(S)-Rg3 may block the
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inhibition of miR-324-5p by H19. Increased miR-324-5p by
20(S)-Rg3 treatment inhibited the activity of pyruvate kinase
isozyme type M2, thereby inhibiting the Warburg effect (70).
Furthermore, Lu ez al (71) reported that ginsenoside 20(S)-Rg3
upregulated the expression of miR-603 in ovarian cancer cells
by downregulating the DNA methylation mediated by DNA
methyltransferase 3 alpha. Increased miR-603 directly targeted
hexokinase-2 mRNA and decreased hexokinase-2 expression.
Therefore, ginsenoside 20(S)-Rg3 inhibited the Warburg
effect, which was primarily manifested as a decreased lactate
production, glucose consumption and in vitro proliferation,
and weakened cell invasion and migration (71).

Autophagy induction. The effect of ginsenosides on autophagy
is controversial. Reportedly, ginsenoside 20(S)-Rg3 inhibited
autophagic flux by suppression of late-stage autophagosome
maturation or degradation, and eventually induced apoptosis
in cervical cancer cells (72). However, in ovarian cancer,
ginsenoside 20(S)-Rg3 enhanced autophagy by upregulating
autophagy-related molecules, including LC3-1I, Atg5 and
Atg7, thereby inhibiting the invasion and metastasis of ovarian
cancer cells (73).

Anti-metastatic activity. Hypoxia-inducible factor-1 (HIF-1),
ubiquitous in human and mammalian cells, is stable only
under hypoxic conditions, and the stabilization of HIF-1a
mediates tumor cell invasion and metastasis (74). The
epithelial-to-mesenchymal transition (EMT) usually occurs
prior to ovarian cancer metastasis, which decreases cell-cell
adhesion. Liu et al (75) reported that ginsenoside 20(S)-Rg3
decreased the expression of HIF-la by stimulating the
ubiquitin-proteasome pathway, and inhibited EMT process,
which was essential for metastasis (75). They also revealed
that ginsenoside 20(S)-Rg3 upregulated prolyl hydroxylase
domain protein 1 to cause degradation of HIF-1a under the
conditions of normal oxygen (76). Furthermore, ginsenoside
Rbl inhibited hypoxia-induced EMT by downregulating
miR-25 in ovarian cancer cells, which abrogated the suppres-
sion of miR-25 on the expression of EP300 (a transcriptional
activator of E-cadherin) and E-cadherin (an essential mole-
cule for adhesion between epithelial cells), thereby leading
to an anti-metastatic effect (77). E-cadherin is involved
in anchoring epithelial cells to each other by binding to
the actin microfilaments through o- and f-catenin in the
cytoplasm (78).

Sensitization. Drug resistance is a major clinical challenge
that interferes with successful cancer therapy. The membrane
transporter MDR-1 is located on the lipid rafts of the plasma
membrane, and increased MDR-1 activity is an important
contributor to multidrug resistance. Yun et al (79) reported
that ginsenoside Rpl repressed MDR-1 activity by redis-
tributing lipid rafts, which reversed resistance to antitumor
drugs, including doxorubicin (79). EMT is involved in drug
resistance, as well as in metastasis. Deng er al (80) reported
that the metabolite compound k of ginsenoside Rbl specifi-
cally inhibited cell growth by inhibiting the Wnt/B-catenin
signaling pathway and EMT process, and decreased the
resistance of ovarian cancer stem cells to cisplatin and
paclitaxel (80).

5. Quercetin

Quercetin is a natural polyphenolic compound abundantly
present in fruits and vegetables; notably, red onions contain
the highest levels of quercetin (81). Quercetin has a variety of
pharmacological actions, including antitumor, antioxidant and
anti-inflammatory activity, in addition to lowering blood pres-
sure and blood lipid levels. Quercetin-induced cytotoxicity is
rarely observed in healthy cells (82). The antitumor effects and
mechanisms of action of quercetin in ovarian cancer are listed
in Table I'V.

Anti-proliferative, pro-apoptotic and anti-metastatic activity.
Quercetin exerts antitumor effects in vitro and in vivo (83). It
was reported that quercetin inhibited the expression of survivin
protein,and maintained the cell cycle at the GO/GI stage, thereby
inhibiting the proliferation and promoting the apoptosis of
ovarian cancer cells (84). In addition, quercetin upregulated the
expression of miR-145, and then activated caspase-8, caspase-9
and caspase-3, which induced the apoptosis of ovarian cancer
cells (85). In line with this, Teekaraman et al (86) reported
that quercetin induced the intrinsic apoptosis in ovarian
cancer cells. This study revealed that quercetin decreased
the expression of anti-apoptotic proteins, Bcl-2 and Bel-xl,
while increasing the expression of the pro-apoptotic proteins,
Bax and Bad, leading to the activation of caspase-9 and
caspase-3 (86). In addition, Liu et al (87) reported that quer-
cetin induced apoptosis and protective autophagy through ER
stress, and the phospho-STAT-3/Bcl-2 signaling pathway was
involved in this pharmacologic action (87). With regards to
the role of quercetin in anti-metastasis, one study revealed
that 3,4'7-O-trimethylquercetin inhibited the invasion and
metastasis of ovarian cancer cells by decreasing the expression
of MMP-2 and urokinase plasminogen activator (uPA) (88).
MMP-2 was reported as an early regulator of metastasis, and
uPA was reported to promote metastasis in ovarian cancer
cells (88). However, the role of quercetin in autophagy in
ovarian cancer remains unknown.

Sensitization. Several studies have investigated the combined
treatment of quercetin and chemotherapy or radiotherapy in
ovarian cancer, due to the sensitization function of quercetin.
Wang et al (89), reported that quercetin aglycone induced
caspase-3 activation and poly-ADP-ribose polymerase (PARP;
a DNA repair enzyme) deactivation, which caused cell apop-
tosis and promoted the sensitivity of ovarian cancer cells to
cisplatin. Furthermore, quercetin inactivated the pro-survival
mitogen-activated protein kinase (MAPK)-ERK signal
pathway, downregulated cyclin D1 expression, and upregulated
p21 expression, thereby arresting cell cycle progression (89).
Yang et al (90) reported that quercetin increased the sensi-
tivity of ovarian cancer cells to cisplatin by inducing ER stress.
Furthermore, this study reported that quercetin significantly
inhibited STAT-3 phosphorylation, and then downregulated
Bcl-2 expression, attenuating the anti-apoptotic effect of
Bcl-2 (90). In line with this, Gong et al (91) reported that
quercetin enhanced the sensitivity to radiotherapy by the
aggravation of DNA damage and ER stress through acti-
vating p53, which led to increased p21 and Bax expression,
and decreased Bcl-2 expression (91). In addition, Yi ez al (92)
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Table V. The antitumor effects and mechanisms of action of berberine in ovarian cancer.

Form of

(Refs.)

Findings

Ovarian cancer model

Dose

berberine

First author, year

YAN et al: ANTITUMOR EFFECTS AND MECHANISMS OF NATURAL PRODUCTS IN OVARIAN CANCER

(103)

Interfered the expression of dihydrofolate reductase and thymidylate synthase,

and reversed cisplatin resistance.
Inhibited miR-21 expression, increased PDCD4 expression, and enhanced

5,10 uM  Cell line (OV2008)

Berberine

Marverti et al, 2013

(104)

Cell lines (SKOV3 and OVCAR3)

10 uM

Berberine

Liu et al, 2013

cisplatin sensitivity.
Increased cisplatin sensitivity via miR-93/PTEN/Akt pathway, and induced GO/

(106)

Cell line (A2780)

10 uM

Berberine

Chen et al, 2015

Glecell cycle arrest.

(96)
(98)

Induced necroptosis and apoptosis via upregulating caspase-3 and -8.

Cell line (OVCAR3)
Cell line (SKOV3)

100 uM
5uM

Berberine

Liu et al, 2019

Suppressed calcium-independent phospholipase A2 and cyclooxygenase-2,
decreased PGE2 synthesis, inhibited FAK phosphorylation, and inhibited

chemotherapy-induced repopulation.
Induced oxidative DNA damage, downregulated homologous recombination

repair, and increased sensitivity to PARP inhibitors.

Berberine

Zhao et al, 2017

(107)

Cell lines (A2780, HEY, SKOV3,

10 uM

Berberine

Hou et al, 2017

HO8910, HO8910PM and OVCAR3)

PDCD4, programmed cell death-4; miR, miRNA; PTEN, phosphatase and tensin homolog; AKT, protein kinase B; PGE2, prostaglandin E2; FAK, focal adhesion kinase.

verified that quercetin increased the sensitivity of SKOV3 cells
to tumor necrosis factor-related apoptosis inducing ligand
(TRAIL)-mediated apoptosis by upregulating the transcrip-
tion of death receptor 5 (DRS), the receptor of TRAIL (92). A
high expression of DR5 was associated with a poor prognosis
in patients with ovarian cancer (93).

6. Berberine

Berberine, an isoquinoline alkaloid, is the main bioactive
ingredient of Coptis chinensis. Its pharmacological activity
includes anti-inflammatory, antioxidant and antitumor
effects (94). The antitumor effects and mechanisms of action
of berberine in ovarian cancer are listed in Table V.

Anti-proliferative and pro-apoptotic activity. A previous
study revealed that berberine inhibited the proliferation of
tumor cells, and induced apoptosis and cell cycle arrest (95).
Berberine alone or combined with cisplatin may induce
ovarian cancer cells to arrest at the GO/G1 phase and enhance
the activity of cell death-associated proteins, including
caspase-8 and caspase-3, thereby promoting apoptosis and
necrosis (96). Prostaglandin E2 (PGE2) is a bioactive lipid
that promotes cell proliferation and tumor growth (97). The
chemotherapy drug VP16 promoted the synthesis of PGE, by
increasing the free arachidonic acid in ovarian cancer, which
led to the proliferation of surrounding non-apoptotic cells
and tumor repopulation. However, berberine inhibited the
two key enzymes (calcium-independent phospholipase A2
and cyclooxygenase-2) of PEG, synthesis in the tumor micro-
environment, which resulted in decreased synthesis of PEG,
and inhibited the phosphorylation of FAK, which inhibited
the chemotherapy-induced repopulation (98). Furthermore,
berberine served an antitumor role in ovarian cancer by
inhibiting the expression of the human ether a-go-go-related
potassium channel (hERGI1). The hERGI protein was
considered to be a key factor in tumorigenesis, and its high
expression level in ovarian cancer cells may be downregulated
by berberine treatment (99).

Autophagy induction and anti-metastatic activity. To date,
the role of berberine in autophagy induction and the inhibition
of ovarian cancer metastasis remains unclear. However, with
regards to other cancer types, berberine was reported to induce
autophagy and exhibited anti-metastatic action. Berberine was
demonstrated to inhibit the MAPK/mTOR/p70S6K and Akt
pathways in gastric cancer cells, thereby inducing cytostatic
autophagy and cancer cell cycle arrest (100). Berberine may
inhibit cell migration by downregulating matrix metal-
loproteinase-3 (MMP-3) in gastric carcinoma cells, thereby
exhibiting anti-metastatic activity (101). In addition, berberine
inhibited the metastasis of endometrial cells by downregu-
lating the expression of cyclooxygenase-2 (102).

Sensitization. Marverti et al (103) reported the effect of
berberine on sensitization in ovarian cancer. Berberine
inhibited the growth of cisplatin-resistant ovarian cancer
cells through suppressing the expression of dihydrofolate
reductase and thymidylate synthase, two enzymes that are
essential for DNA biosynthesis and thus important targets for
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chemotherapy (103). In another study, berberine increased the
expression of programmed cell death-4 (PDCD4) by inhib-
iting the expression of miR-21, a known molecule associated
with ovarian cancer cisplatin resistance, thereby increasing
apoptosis and enhancing cisplatin sensitivity (104). PDCD4,
an important tumor suppressor, was revealed to be associated
with the malignant phenotype of ovarian cancer (105). In
addition, overexpression of miR-93 was involved in cisplatin
resistance in ovarian cancer. Berberine increased the sensi-
tivity of ovarian cancer cells to cisplatin through inhibiting the
expression of miR-93, thereby upregulating the expression of
its target gene, PTEN (106). Hou ez al (107), demonstrated that
berberine induced apoptosis through increased DNA damage
and suppressed homologous recombination, thereby increasing
the sensitivity of ovarian cancer cells to PARP inhibitors (107).

7. (-)-Epigallocatechin-3-gallate

EGCG, a major component of green tea polyphenols, exhibited
marked anti-angiogenic, antioxidant, anti-inflammatory and
antitumor effects, among other beneficial pharmacological
actions. Bioinformatic analysis has demonstrated that EGCG
may affect a variety of signaling proteins in the cell cycle,
including Jun, NF-«xB, Bcl-2 and MMPs, and also inhibits
DNA replication (108). The antitumor effect and mechanisms
of action of EGCG in ovarian cancer are listed in Table V1.

Effects on proliferation, apoptosis and autophagy. EGCG
promoted the apoptosis of ovarian cancer cells by upregu-
lating the levels of tumor suppressor gene, p53, and cell cycle
inhibitor, p21WAFI1. As a result, EGCG arrested ovarian
cancer cells in the G1/S phase (109). Furthermore, EGCG
induced the expression of p21 in cells, thereby promoting
apoptosis and arresting these cells in the G2/M phase (110).
EGCG downregulated the expression of aquaporin 5 and then
downregulated NF-«kB, which subsequently induced apoptosis,
and inhibited the proliferation and metastasis of SKOV3
cells (111). However, the role of berberine in autophagy in
ovarian cancer remains unclear. In hepatocellular carcinoma,
EGCQG directly interacted with LC3-I protein and promoted
the synthesis of LC3-II through a series of reactions, thereby
increasing the autophagy activity of HepG2 cells (112).

Anti-metastatic activity. Overexpression of c-Myb in ovarian
cancer tissues often leads to a poor prognosis, since c-Myb
activates NF-kB and the STAT-3 signaling pathway, which
promotes tumor growth, invasion and chemotherapy resis-
tance. Tian et al (113) evaluated numerous natural products
and reported that EGCG significantly inhibited migration by
downregulating the expression of c-Myb in ovarian cancer
cells (113). Furthermore, EGCC inhibited the metastasis of
ovarian cancer cells by inhibiting the phosphorylation of c-Jun
and NF-«B, resulting in the decreased expression of VEGF
and the secretion of MMP-2 and MMP-9. Consequently, the
adhesion of cancer cells to extracellular matrix proteins was
weakened, and the supply of nutrients required for cell prolif-
eration was reduced (108).

Sensitization. Previous studies have revealed the effects of
EGCG combined with conventional chemotherapeutic drugs

in ovarian cancer. Chan et al (114) reported that EGCG
increased the cytotoxicity of cisplatin and enhanced its effi-
cacy by 3-6 fold. Specifically, EGCG increased the oxidative
stress of cisplatin-induced ovarian cancer cells through the
generation of more reactive oxygen species to induce cell apop-
tosis (114). Copper transporter 1 (CTR1) of tumor cells may
increase the uptake of cisplatin. However, cisplatin treatment
rapidly promotes CTR1 degradation, and decreased CTR1
is associated with cisplatin resistance. Wang et al (115,116)
reported that EGCG maintained the concentration of CTR1
in ovarian cancer cells, thereby increasing the cisplatin
sensitivity (115,116). Furthermore, in paclitaxel-resistant
ovarian cancer cells, the combination of EGCG and sulfora-
phane treatment induced apoptosis and cell cycle arrest by
damaging DNA and decreasing the expression of Bcl-2 and
human telomerase reverse transcriptase (W\TERT), the major
catalytic subunit of telomerase, which was involved in cancer
cell survival. The study suggested that EGCG may overcome
paclitaxel resistance (117).

8. Conclusions and perspectives

Although conventional chemotherapy is known to produce
positive initial effects in the majority of patients with ovarian
cancer, cumulative toxicities and drug resistance often lead
to the failure of conventional chemotherapy. Previous studies
have revealed that numerous natural products are less toxic
to healthy cells and inhibit tumor growth and progression to
prevent malignant tumors. The present review summarizes
the antitumor effects of natural products, primarily their role
in the stimulation of autophagy, induction of apoptosis and
cell cycle arrest, and the inhibition of cell proliferation and
metastasis. Therefore, the administration of natural products
(alone or in combination with other drugs) may be considered
a useful treatment strategy in patients with ovarian cancer.

However, the mechanisms of action of natural prod-
ucts as therapeutic agents for ovarian cancer are relatively
complex. The majority of previous studies have focused only
on activity at the cellular level, and only few animal models
have been developed. Further research is warranted to inves-
tigate the potential therapeutic efficacy of natural products in
experimental animal models and randomized clinical trials.
Accurate knowledge of the pharmacokinetic profile of each
natural product is essential to evaluate the in vivo effects of
the natural product.

The following issues require greater attention in future
studies: i) The exact mechanisms that contribute toward the
activity of natural products in ovarian cancer require further
detailed investigation; ii) experimental animal model studies
and randomized clinical trials should be performed to evaluate
the therapeutic efficacy of natural products in ovarian cancer;
iii) the effects of natural products combined with conventional
chemotherapy, target therapy or immunotherapy need to be
determined; and iv) novel methods should be developed to
isolate and identify bioactive compounds from a variety of
plants deemed suitable as anticancer agents.
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