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Like the other more well-characterized post-translational modifications (phosphorylation,
methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin
(Ub) protein to substrates has been shown to govern countless cellular processes. As
obligate intracellular parasites, viruses have evolved the capability to commandeer many
host processes in order to maximize their own survival, whether it be to increase viral
production or to ensure the long-term survival of latently infected host cells. The first evi-
dence that viruses could usurp the Ub system came from the DNA tumor viruses and
Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al.,
1990; Querido et al., 2001).Today, the list of viruses that utilize Ub includes members from
almost every viral class, encompassing both RNA and DNA viruses. Among these, there
are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination
and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many
of the large DNA viruses encode their own Ub modifying machinery. In this review, we
highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their
advantage.
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INTRODUCTION
In order to discuss the ways in which viruses exploit the host
Ub machinery, we must first provide a general outline of that
machinery. Prior to its conjugation to targeted proteins, Ub is first
activated via an ATP-dependent thioester linkage to an E1 enzyme
(reviewed in Schulman and Harper, 2009). Once activated, the
energy in that unstable bond is then used to couple the Ub moi-
ety’s C-terminal residue to the catalytic Cys residue of an E2 Ub
conjugating enzyme (reviewed in Pickart, 2001). Ub-loaded E2
enzymes are then ready to form conjugates between the Ub C-
terminal glycine and either Lys, Ser, Thr, Cys, or N-terminal-MET
residues within proteins to be ubiquitinated (Breitschopf et al.,
1998; Cadwell and Coscoy, 2005; Wang et al., 2007; Williams et al.,
2007). The specificity of that conjugation process is conferred by
the over 600 E3 Ub ligases encoded by the human genome (Li
et al., 2008). Thus far, four primary types of E3 ligases have been
described, and their sub-categorization is based on common struc-
tural features. The RING (really interesting new gene, reviewed in
Deshaies and Joazeiro, 2009) ligases, which are by far the most
commonly occurring E3s, serve as docking complexes that bring
E2 and target proteins within close proximity, whereupon the E2
catalyzes the transfer of Ub to the substrate protein. The primary
identifying feature of a RING domain is a conserved (Cys)3-His-
(Cys)4 sequence that coordinates a pair of zinc atoms to maintain
its structure. The plant homeodomain (PHD) ligases are struc-
turally related to the RING ligases and use what appears to be a
reversed set of residues [(Cys)4-His-(Cys)3] to coordinate a pair
of zinc atoms (reviewed in Bienz, 2006). PHD domains are found
in many chromatin-binding proteins, and once their similarity to
RING domains was noted, it was expected that at least a subset
of these would also function as E3s. However, thus far, only two

examples of PHD proteins with E3 activity have surfaced (Dul and
Walworth, 2007; Ivanov et al., 2007). The U-box (ubiquitin fusion
degradation, UFD2-homology domain) ligases were first identi-
fied in yeast (Koegl et al., 1999), and seven human genes encoding
such ligases have been identified (reviewed in Marin, 2010). A
subset of this family are referred to as E4 ligases, which are dis-
tinguished from E3 ligases by virtue of their specific targeting of
substrates that have already been modified with 1–3 ubiquitin
residues (Hoppe, 2005). Interestingly, U-box ligases are struc-
turally related to RING fingers, but this structure is maintained in
the absence of zinc-chelating residues (Aravind and Koonin, 2000;
Ohi et al., 2003). Therefore, based on structural features alone, the
RING, PHD, and U-box ligases can all be viewed as RING-like
variants. Finally, the HECT (homologous to E6-associated protein
C-terminus, reviewed in Rotin and Kumar, 2009) ligases harbor
their own catalytic cysteine residues to which Ub is first transferred
from an E2 enzyme. Once loaded, the HECT ligases themselves
catalyze target ubiquitination.

As initially described, lysines were the residues most fre-
quently modified via ubiquitination, and it was found that K48-
linked polyubiquitin chains were attached to proteins destined
for degradation via the 26S proteasome (reviewed in Hershko
and Ciechanover, 1998; Mayer, 2000). Since that time, it is now
appreciated that all seven Lys residues within Ub can be used
to build chains (Xu et al., 2009), and that this leads to Ub
polymers with extremely diverse topologies (reviewed in Koman-
der, 2009), further adding to ubiquitin’s flexibility as a post-
translational modification. It is important to note that ubiqui-
tination can be reversed by de-ubiquitinating (DUB) proteases,
so, like other post-translational modifications, Ub signals can
be precisely controlled. There are also examples of proteins that
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harbor Ub-binding motifs, which, in combination with Ub lig-
ases and DUBs, enable Ub to serve as a reversible protein-binding
surface that allows for regulated generation and subsequent dis-
assembly of protein complexes (reviewed in Hicke et al., 2005;
Dikic et al., 2009). Finally, the ubiquitin domain has been found
to be encoded within the linear sequence of larger proteins. While
several such ubiquitin-like domain (ULD) proteins have been
shown to be involved with protein degradation and proteasome
function, others participate in functions ranging from metabo-
lism to signal transduction, in both prokaryotes and eukaryotes
(reviewed in Burroughs et al.,2007; Grabbe and Dikic,2009). Thus,
the small ubiquitin domain and its cognate ubiquitin-binding
domains represent a pair of complimentary structural features
that have seen a great deal of use, reuse, and reassortment during
evolution.

There are of course many examples in which the host itself
uses Ub to limit viral production, particularly via the activation
of NF-κB (reviewed in Skaug et al., 2009). Likewise, in addition
to Ub, there are other Ub-like (UBL) proteins that are used to
modify and control cellular processes (reviewed in Hochstrasser,
2009). However, because it is the most extensively characterized
of the Ub-like proteins, we have chosen to focus upon Ub itself
and the ways in which viruses exploit this small protein at each
stage of the lifecycle. At the end of the review, we have pro-
vided a figure that integrates many of the examples discussed
herein.

VIRAL ENTRY AND NUCLEOCAPSID TRANSPORT
There have been no reports of a direct link between the Ub-
proteasome system (UPS) and viral binding to host cells. How-
ever, studies of several viral classes have shown that post-entry
steps such as nucleocapsid transport and/or disassembly are
impaired in the presence of proteasome inhibitors or in cell lines
expressing a temperature sensitive mutant of the Ub-activating
enzyme E1 (ts E1; see Table 1). A more direct role for the UPS
in influenza virus entry was shown when either depletion of
Epsin 1 or expression of a non-ubiquitinable Epsin 1 mutant

blocked clathrin-mediated viral transport (Chen and Zhuang,
2008). Interestingly, while the nucleocapsid transport of some
parvoviruses (minute virus of mice, MMV and canine parvovirus,
CPV) is sensitive to proteasome inhibitors (Ros and Kempf, 2004),
the entry of two other family members, bovine parvovirus (BPV)
and adeno-associated virus (AAV), were insensitive to proteasome
inhibitors (Yan et al., 2002). In fact, previous studies have shown
that AAV infections are enhanced by proteasome inhibitors in
a process whereby some portion of the intracellular AAV par-
ticles are ubiquitinated and degraded (Yan et al., 2002). All of
the studies using proteasome inhibitors suggest that the UPS is
important for both RNA and DNA virus entry, but the specific
viral and cellular players remain to be identified. One exception
is a recent report examining adenovirus entry, which has identi-
fied ubiquitination of the capsid protein VI as a key step in viral
transport to the nucleus. The VI protein contains a PPXY motif
(normally associated with viral egress, see below) that recruits a
member of the neural-precursor-cell-expressed, developmentally
down-regulated (Nedd4) family of E3 Ub ligases, and this inter-
action is necessary for the microtubule-dependent localization of
protein VI. Viruses expressing protein VI with a mutated PPXY
domain can exit endosomes, but are unable to transport to the
nucleus (Wodrich et al., 2010). Finally, the human immunodefi-
ciency virus (HIV)-1 accessory protein Vpr and its HIV-2/simian
immunodeficiency virus (SIV) homolog Vpx appear to improve
the ability of their cognate viruses to infect macrophages, and
for some time this was thought to be due to an improvement
in the translocation of the viral pre-integration complex to the
nucleus (references in Casey et al., 2010). However, more recent
work has determined that Vpx overcomes a macrophage-specific
restriction factor, and that this depends on Vpx’s association with
a Cullin (Cul) 4 E3 Ub ligase complex (see below, and Sharova
et al., 2008). While it remains to be seen whether Vpr counter-
acts the same factor in human cells, the observation that Vpx can
enhance dendritic cell and macrophage infection by HIV-1 sug-
gests that this will be the case (see references in Ayinde et al., 2010;
Table 1).

Table 1 | Viral entry/nucleocapsid transport.

Viral protein Virus Ubiquitin function modified Reference

Not known Corona: MHV feline infectious peritonitis virus

(FIPV), severe acute respiratory syndrome (SARS)

Nucleocapsid transport is sensitive to proteasome

inhibitors

Yu and Lai (2005),

Raaben et al. (2010b)

Not known Orthomyxo: influenza Nucleocapsid transport is sensitive to proteasome

inhibitor and ts E1 mutant

Widjaja et al. (2010)

Viral entry is blocked by knocking down Epsin 1 or

preventing ubiquitination of Epsin 1

Chen and Zhuang (2008)

Not known Parvo: MMV, CPV Nucleocapsid transport is sensitive to proteasome

inhibitor and ts E1 mutant

Ros and Kempf (2004)

Not known Herpes: Herpes simplex virus (HSV) Nucleocapsid transport is sensitive to proteasome

inhibitors

Delboy et al. (2008)

Capsid VI Adeno: Ad5 Ubiquitination of Capsid VI by Nedd4 E3 Ub ligase nec-

essary for microtubule-dependent nucleocapsid trans-

port to nucleus

Wodrich et al. (2010)

Vpx Retro: HIV-2/SIV Interacts with DCAF1/DDB1/Cul 4 E3 Ub ligase to

counteract macrophage-specific restriction factor

Sharova et al. (2008)
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PROTEASOME INHIBITORS IN VIVO
Because numerous in vitro studies have shown that multiple points
in the viral life cycle can be blocked with proteasome inhibitors,
their potential use as anti-viral agents has been an enthusiastic
topic of discussion. However, recent in vivo studies suggest no
clear consensus for the efficacy of these inhibitors. Several mouse
studies evaluating the proteasome inhibitor bortezomib, which is
clinically approved for multiple myeloma, found that lymphocytic
choriomeningitis virus (LCMV; Basler et al., 2009), mouse hepati-
tis virus (MHV; Raaben et al., 2010a), and human respiratory
syncytial virus (HRSV; Lupfer et al., 2010) each replicated better
in the presence of bortezomib, so much so that MHV and HRSV
hastened the mortality of infected mice. In contrast, Ma et al.
(2010) showed that treatment of MHV-infected mice (pneumoni-
tis model) with three different proteasome inhibitors (including
bortezomib) resulted in reduced viral replication and a 40% sur-
vival rate. While these studies are not directly comparable due to
the variety of viruses and mouse models employed, they suggest
that much more research is necessary before these inhibitors can
be approved for the treatment of viral infections.

VIRAL TRANSCRIPTION
There are relatively few examples in which viral transcription is
enhanced by manipulation of the UPS. The transactivator pro-
teins encoded by Epstein–Barr virus (EBV), HIV, and human T-
lymphotropic virus (HTLV) each appear to interact with the UPS,
and this results in the enhancement of transactivator function.
The EBV transactivator EBNA1 binds the Ub-specific-processing
protease 7 (USP7), a cellular DUB, and this augments binding
of EBNA1 to the viral oriP site. This interaction also results in
the deubiquitination of histone 2A at the oriP site (Sarkari et al.,
2009), although the relevance of this histone modification to
viral transactivation has not been evaluated. The HIV-1 trans-
activator Tat was shown to be ubiquitinated by Hdm2, which
did not result in degradation of Tat, but instead enhanced viral
transcription from the LTR (Bres et al., 2003). A more recent
paper found that basal (Tat-independent) transcription from the
HIV LTR requires Ski-interacting protein (SKIP) recruitment by
the histone H2B ring finger protein 20 (RNF20) Ub ligase (Bres
et al., 2009). Similar to Tat, the HTLV-1 transactivator Tax is also
monoubiquitinated (Chiari et al., 2004) and sumoylated (Nasr
et al., 2006). These modifications appear to enhance Tax’s ability
to activate NF-κB, which in turn is necessary for viral transacti-
vation and is also responsible for the oncogenic properties of the
virus (Nasr et al., 2006; Harhaj et al., 2007). Ubiquitination of
Tax C-terminal lysine residues is necessary for its role in bind-
ing and relocalizing IκB kinase (IKK) from the cytoplasm to
perinuclear regions, which in turn modulates NF-κB activation.
The sumoylation of Tax on overlapping lysine residues mediates
both the development of Tax nuclear bodies (NB) and com-
plete NF-κB activation (Nasr et al., 2006). This same group later
found that a single Tax molecule can be both ubiquitinated and
sumoylated, and that this differential modification is responsible
for shuttling Tax and IKK between the cytoplasm, NB, and the
centrosome (Kfoury et al., 2010). The UPS has also been impli-
cated in human cytomegalovirus (HCMV) viral transcription. A
delay in both early and late viral gene expression was observed

in the presence of proteasome inhibitors, which was likely due
to a block in viral RNA transcription. Tran et al. (2010) also
observed that the 19s proteasome subunit Rpn2 relocalizes to viral
replication centers in a viral DNA replication-dependent manner
(Table 2).

VIRAL REPLICATION
The use of proteasome inhibitors and ts E1 have been the main
tools used to link the UPS to the replication of members of sev-
eral virus families, including pox, paramyxo, hepadna, and picorna
(see Table 2). The importance of the UPS to DNA tumor viruses
such as adenovirus during their regulation of the cell cycle and
their inhibition of apoptosis are well known and are discussed in
detail below. Blanchette et al. (2008) have shown that the same
adenoviral E4orf6/E1B55k/Cul5 E3 Ub ligase complex responsi-
ble for degrading p53 and Mre11 is also necessary for viral mRNA
transport from the nucleus. However, the substrate(s) targeted
for ubiquitination in order to achieve this function have yet to
be elucidated. A more recent paper has described a novel use
of the UPS to enhance HIV replication (Zheng et al., 2011). In
a yeast two-hybrid screen using HIV integrase as the “bait,” the
cellular protein Ku70, which is involved in DNA repair, the non-
homologous end-joining pathway, transcription, apoptosis, and
telomere maintenance (reviewed in Downs and Jackson, 2004)
was identified (Studamire and Goff, 2008). Zheng et al. (2011)
show that Ku70 is incorporated into HIV virions and prevents the
proteasomal degradation of HIV integrase. Furthermore, if Ku70
is knocked down with siRNA, integrase levels are diminished and
viral replication is decreased (Table 2).

VIRAL LYTIC/LATENCY REGULATION
An important aspect of the herpesviral lifecycle is the regulation
of lytic replication and latency. There are now several examples
of UPS involvement in various aspects of this regulation. In par-
ticular, lytic reactivation of Kaposi’s sarcoma herpesvirus (KSHV)
from latency is regulated by at least two UPS-dependent mech-
anisms. The viral replication and transcription activator (RTA)
protein also acts as an E3 Ub ligase that ubiquitinates and degrades
its own repressors, including KSHV-RTA binding protein (K-RBP;
Yang et al., 2008) and hairy/enhancer-of-split related with YRPW
motif 1 (Hey1; Gould et al., 2009), which normally limit lytic
replication. Another KSHV protein required for lytic reactiva-
tion is the tegument protein ORF64, which has been identified
as a viral DUB (Gonzalez et al., 2009). ORF64 cleaves Ub from
both K48- and K63-linked chains and requires a specific cys-
teine for its DUB activity. While knockdown of ORF64 with
siRNA lowered lytic reactivation and lytic protein expression, a
direct role for DUB activity in this reactivation was not shown.
The murine gammaherpesvirus-68 (MHV68) ORF64 homolog
has also been identified as a viral DUB. Gredmark-Russ et al.
(2009) found that a virus expressing an ORF64 with an alanine
substitution for the critical active site cysteine was more rapidly
cleared than the wildtype virus in an in vivo mouse model. This
suggested an important role for DUB activity in viral replica-
tion and possibly persistence, although they observed no dif-
ferences in viral genome copy numbers (Gredmark-Russ et al.,
2009). Another MHV68 protein involved in viral persistence is
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Table 2 | Viral transcription, replication, and lytic/latent regulation.

Viral protein Virus Ubiquitin function modified Reference

EBNA1 Herpes: EBV Interaction with cellular DUB USP7 enhances EBNA1 binding to

oriP and induces ubiquitination of histones

Sarkari et al. (2009)

Tat Retro: HIV-1 Tat ubiquitination by Hdm2 enhances LTR activation Bres et al. (2003)

Tax Retro: HTLV-1 Tax ubiquitination is important for NF-κB activation Nasr et al. (2006), Harhaj et al. (2007)

Unknown Herpes: HCMV Early and late viral transcription is sensitive to proteasome

inhibitors

Tran et al. (2010)

Unknown Pox: vaccinia,

ectromelia and cowpox

Viral replication inhibited by proteasome inhibitors and ts E1

mutant

Satheshkumar et al. (2009),

Teale et al. (2009)

Unknown Paramyxo: HRSV Viral replication inhibited by proteasome inhibitors Lupfer and Pastey (2010)

Unknown Hepadna: hepatitis B

virus (HBV)

Viral replication inhibited by proteasome inhibitors Bandi et al. (2010)

Unknown Picorna: coxsackie Viral replication inhibited by proteasome inhibitors and Ub

knockdown

Wong et al. (2007)

E4orf6/E1B55k Adeno: Ad5 Forms complex with Cul5, which is necessary for viral mRNA

transport from nucleus

Blanchette et al. (2008)

Integrase Retro: HIV-1 Interacts with cellular DNA repair protein Ku70, which prevents its

own proteasomal degradation, thus enhancing viral replication

Zheng et al. (2011)

RTA Herpes: KSHV E3 Ub ligase activity degrades repressors, K-RBP, and Hey1

leading to lytic viral replication

Yang et al. (2008), Gould et al. (2009)

ORF64 Identified as viral DUB. May be involved in lytic reactivation Gonzalez et al. (2009)

ORF64 Herpes: MHV68 Identified as viral DUB. Virus with mutated DUB cleared faster

in vivo

Gredmark-Russ et al. (2009)

ORF73 Associates with ElonginC/Cul5/SOCS-like complex to ubiquitinate

and degrade RelA/NF-κB, which may facilitate viral persistence

Rodrigues et al. (2009)

LMP2A Herpes: EBV Ubiquitinated and degraded by c-Cbl E3 Ub ligase, thereby

preventing lytic replication and promoting latency

Ikeda and Longnecker (2009)

LMP1 Regulates lytic replication by inducing the cellular DUB A20, which

inactivates IRF7 via deubiquitination

Ning and Pagano (2010)

ORF73. Recent evidence suggests that ORF73’s abilities to both
assemble with an ElonginC/Cul5/suppressor of cytokine signaling
(SOCS)-like complex and effect the ubiquitination and degra-
dation of RelA/NF-κB may be responsible for maintaining viral
infection. In an in vivo mouse model, an MHV68 virus with a
mutation of the ORF73 SOCS-box motif was unable to induce
B-cell proliferation or set up a persistent infection, suggesting that
NF-κB plays a role in these processes (Rodrigues et al., 2009).
However, while the degradation of NF-κB also has the potential
to impact interferon (IFN) induction (see below), this was not
investigated.

An interesting twist on the role of the UPS in the regulation
of viral latency is provided by the herpesvirus EBV. The viral
latent membrane protein 2A (LMP2A) has been implicated in
the regulation of both EBV latency and oncogenesis through its
action as a B-cell receptor (BCR) mimic that constitutively acti-
vates the Lyn and Syk protein tyrosine kinases (reviewed in Portis
et al., 2004). To determine if LMP2A is regulated similarly to BCR,
Ikeda and Longnecker (2009) investigated the role that c-Cbl, an
E3 Ub ligase that negatively regulates B-cell signaling, might play
in LMP2A regulation. They discovered that LMP2A is ubiquiti-
nated and degraded in a c-Cbl-dependent manner and that the
Syk kinase is also degraded by c-Cbl in the presence of LMP2A.
In addition, when c-Cbl was knocked down with shRNA, LMP2A

induced lytic gene expression. Together with previous data show-
ing that LMP2A contains two PPXY motifs and recruits Nedd4
Ub ligase to degrade Lyn kinase (Ikeda et al., 2001), these find-
ings suggest that the cellular UPS is an important factor in the
maintenance of EBV latency. In a similar story, the EBV LMP1
protein also appears to modulate latency through its interaction
with the UPS. LMP1 stimulates the TNF receptor associated fac-
tor 6 (TRAF6) E3 ligase-dependent ubiquitination of IFN response
factor (IRF) 7, and this modification is required for the subsequent
phosphorylation of IRF7 by RIP1 kinase (Ning et al., 2008). If left
unchecked, this would lead to activation of lytic replication and
IFN induction. However, LMP1 was also recently shown to induce
the cellular DUB A20, which inactivates IRF7 via deubiquitina-
tion (Ning and Pagano, 2010). Whether these intricate regulatory
mechanisms are more advantageous for the cell or virus remains
to be determined.

CELL CYCLE REGULATION, INHIBITION OF APOPTOSIS AND
CELLULAR PROLIFERATION
The “high risk” oncogenic human papillomaviruses (HPV) pro-
vided the very earliest examples of viruses that utilize the host
UPS to destroy host proteins. The HPV-encoded E6 and E7 pro-
teins, which are best known for their ability to degrade p53 and
pRb, respectively, can efficiently induce cellular transformation
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(reviewed in Mammas et al., 2008). The goal of such activities is
presumably to extend the lifespan of infected cells, so that the virus
can either pursue a latent lifestyle or increase viral proliferation
prior to cell death. Since those initial observations,numerous other
viruses have been shown to follow a similar program (Table 3).

HUMAN PAPILLOMAVIRUSES E6
Human papillomaviruses E6 can function as an adaptor to redirect
the cellular E6-associated protein (E6AP) HECT ligase to target a
number of cellular proteins for proteasome-dependent degrada-
tion (see Table 3). Chief among these is p53, which appears to be
upregulated by the activities of HPV E7 (Demers et al., 1994, and
see below). E6 can also target a number of PDZ [post synaptic
density protein (PSD95), Drosophila disk large tumor suppressor
(DlgA), and zonula occludens-1 protein (zo-1)]-domain proteins
for degradation independently of E6AP, including human disks
large (hDlg), membrane-associated guanylate kinase with inverted

orientation 1, 2, and 3 (MAGI), and hScrib (Mammas et al.,
2008). More E6 targets continue to be discovered. For exam-
ple, E6 has recently been found to augment Wnt signaling in an
E6AP-dependent manner, suggesting that Wnts may play a role in
HPV carcinogenesis (Lichtig et al., 2010). In a search for the cel-
lular proteins targeted by E6 to stimulate Wnt signals, Rampias
et al. (2010) found that the cellular E3 ligase seven in absen-
tia homolog (Siah-1), which is known to promote beta-catenin
degradation via the UPS, is inhibited by the combination of HPV
E6 and E7. This provides evidence for what may be an interest-
ing example of a virus redirecting a cellular E3 ligase (E6AP) to
target another cellular E3 ligase (Siah-1). Yet another player in the
p53 pathway, the tumor suppressor Tat-interacting protein 60 kDa
(TIP60), is targeted for proteasome-dependent degradation by E6,
although this does not require E6AP (Jha et al., 2010). TIP60
was found to bind to the HPV major early promoter, recruiting
a cellular repressor of E6 expression in the process. Therefore,

Table 3 | Cell cycle regulation/inhibition of apoptosis/cell proliferation.

Viral protein Virus Ubiquitin function modified Reference

E6 Papilloma: HPV Interacts with HECT ligase E6AP to induce proteasomal

degradation of p53, Bak (Bcl-2 homologous antagonist/killer),

E6TP1 (E6 targeting protein 1), cMyc, MMP7 (matrix

metalloprotease 7), Mcm7 (minichromosome maintenance protein

7), NFX1 (nuclear transcription factor, X-box binding 1), and Siah-1

(seven in absentia homolog 1)

Reviewed in Banks et al. (2003),

Shackelford and Pagano (2004),

Mammas et al. (2008), Howie et al.

(2009), Lagunas-Martinez et al.

(2010), Rampias et al. (2010)

E7 Interacts with Cul2/ElonginBC/Rbx1 to induce degradation of pRB,

interacts with the cellular DUB USP11 to prevent its own

degradation, and induces Ub and degradation of TIEG1

Boyer et al. (1996), Huh et al. (2007),

Lin et al. (2008), Chang et al. (2010)

E2 Interacts with E3 Ub ligase APC and induces G2/M arrest Bellanger et al. (2005)

E5 Stabilizes EGF-R by preventing degradation via E3 Ub ligase c-Cbl

and induces Bax degradation, thereby inhibiting apoptosis

Zhang et al. (2005), Oh et al. (2010)

E4orf6 and E1B55k Adeno: Ad5 Complexes with E3 Ub ligase Cul5/ElonginB/C/Rbx1 to induce

degradation of p53, DNA ligase IV, and MRN DNA repair complex

proteins

Reviewed in Blanchette and Branton

(2009), Isaacson and Ploegh (2009),

Randow and Lehner (2009)

E4orf6 Adeno: Ad12 Interacts with E3 Ub ligase Cul2/Rbx1/ElonginC to induce Ub and

degradation of ATR activator protein TOPBP1

Blackford et al. (2010)

E4orf4 Adeno Activates E3 Ub ligase APC, leading to the enhanced degradation

of securin/Pds1, resulting in G2/M arrest

Mui et al. (2010)

BPLF1 Herpes: EBV DUB activity removes Nedd8 from Cul1 and Cul4a, thereby

stabilizing CDT1, which leads to S-phase

Gastaldello et al. (2010)

EBNA3c Induces Ub and degradation of pRb and p27 via E3 Ub ligase SCF

(Skp2) complex, and DUB activity prevents degradation of Cyclin

D1 promoting G1/S transition

Knight et al. (2005a), Saha et al.

(2009, 2011)

X Hepadna: HBV Interacts with DDB1 component of E3 Ub ligase Cul4a, resulting

in stabilization of PTTG1, a possible factor in hepatocellular

carcinoma

Martin-Lluesma et al. (2008), Molina-

Jimenez et al. (2010)

PACR Pox Inhibits APC E3 ligase complex, which may induce S-phase and

increased viral DNA replication

Mo et al. (2009)

Vpr Retro: HIV-1 Interacts with DCAF1/DDB1/Cul4 E3 Ub ligase, resulting in G2

arrest

References in Casey et al. (2010)

Large T Polyoma: SV40 Interacts with Fbw7, inhibiting the E3 Ub ligase

Skp1/Cul/Rbx1/Fbw7, which results in increased Cyclin E levels

Welcker and Clurman (2005)

E1A Adeno Interacts with Fbw7, inhibiting the E3 Ub ligase

Skp1/Cul/Rbx1/Fbw7, which may increase proliferation

Isobe et al. (2009)
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degradation of TIP60 serves to derepress both E6 expression as
well as cellular genes whose products limit p53-dependent apop-
tosis. As mentioned above, the cellular E6AP HECT ligase is
variably required for E6 phenotypes. A recent study examined
the requirement for E6AP in clinical HPV outcomes (Shai et al.,
2010). Using a transgenic mouse model of HPV oncogenic phe-
notypes, they found that while E6AP is dispensable for epithelial
hyperplasia and the limitation of DNA damage responses, E6AP
is absolutely required for cervical carcinomas. Therefore, while
this cellular E3 ligase may not be necessary for all E6 functions,
it still has an impact upon the most serious consequence of HPV
infection.

HUMAN PAPILLOMAVIRUSES E7
E7 is the other primary contributor to HPV-mediated transforma-
tion. Members of the cellular pRb/pocket protein family normally
function to control G1/S-phase progression by inhibiting the E2F
family of transcriptional activators, which in turn control the
transcription of S-phase promoters (Moody and Laimins, 2010).
The most well-characterized E7 function is to target pRb family
members for UPS-dependent degradation, thereby derepressing
E2F-dependent promoters (Boyer et al., 1996). At the same time,
E7 is a relatively unstable protein (Selvey et al., 1994) that has
been found to be ubiquitinated on its N-terminal residue and
then destroyed by the proteasome (Reinstein et al., 2000; Wang
et al., 2001). While E7 has been detected in complexes with several
E3 ligases (Kamio et al., 2004; Oh et al., 2004), of those, the only
E3 complex also shown to contain pRb is Cul2/ElonginBC/Rbx1
(Huh et al., 2007), suggesting that this is the Ub ligase respon-
sible for pRb degradation. Lastly, in what is perhaps an attempt
to counter the host’s efforts to destroy it, E7 also interacts with
the cellular DUB USP11, which leads to the stabilization of E7
(Lin et al., 2008). While E7 interacts with many cellular proteins
to dysregulate the host cell cycle, aside from pRb, few others have
been shown to be targeted for degradation. Chang et al. (2010)
have recently added to this list the transforming growth factor-
beta inducible early gene-1 (TIEG1), a transcription factor that
can induce apoptosis in carcinoma cell lines. E7 binds directly to
TIEG1, and TIEG1 is subsequently ubiquitinated and degraded
via the proteasome, further contributing to E7-induced cellular
transformation.

HUMAN PAPILLOMAVIRUSES E2
The HPV protein E2 is a DNA-binding protein that can both acti-
vate and repress the transcription of viral promoters (reviewed in
Lagunas-Martinez et al., 2010). Interestingly, HPV E2 normally
represses the transcription of the genes encoding E6/E7. However,
in cells infected with high risk HPV’s, the viral genome frequently
integrates into that of the host, and HPV E2 is inactivated in the
process. HPV E2 has also been shown to interfere with cellular
pathways in a Ub-dependent manner. For example, HPV E2 inter-
acts with the Cdc20 and Cdh1 substrate-specificity subunits of
the anaphase promoting complex (APC) E3 ligase. This inhibits
normal APC-dependent Cyclin B degradation, thereby leading to
G2/M arrest (Bellanger et al., 2005). It has recently been shown
that HPV E2 binds to Skp2, an F-box protein that serves as a
specificity determinant for the SCF complex. In this way, HPV

E2 is targeted for ubiquitination and subsequent proteasomal
degradation. However, Skp2 is itself a known APC target, and
APC-dependent Skp2 degradation is required to maintain cells in
G1. Because HPV E2 interferes with APC (see above), this suggests
a criss-crossing autoregulatory loop in which HPV E2 interferes
with APC, thus stabilizing Skp2 and promoting G1/S progression.
Once Skp2 reaches sufficient levels, Skp2/SCF ubiquitinates and
degrades HPV E2, which de-represses HPV E6 and E7 expression.
This combination tends to push the host cell toward S-phase, and
perhaps into transformation (Bellanger et al., 2010).

HUMAN PAPILLOMAVIRUSES E5
Although it has been shown to induce epithelial cell hyperpro-
liferation when overexpressed in transgenic mice (Maufort et al.,
2010), HPV E5 has primarily been characterized as a mere con-
tributor to E6/E7-driven transformation (reviewed in Moody and
Laimins, 2010). Due to its ER localization and proposed inhibi-
tion of endosome acidification, it is thought that HPV E5 impacts
the trafficking of proteins such as EGF-R, which enhances pro-
liferative cell signaling (Leechanachai et al., 1992; Straight et al.,
1995). A role for Ub in this process was provided by the obser-
vation that E5 binding to EGF-R prevents the receptor from
binding to the cellular E3 c-Cbl (Zhang et al., 2005), which is
involved in normal EGF-R receptor downregulation. This stabi-
lizes EGF-R and leads to constitutive signaling. In what appears
to be yet another Ub-dependent E5 phenotype, Oh et al. (2010)
have recently shown that the HPV16 E5 contribution to cervi-
cal cancer may lie in its ability to limit Bax-dependent apoptosis
of infected cells. Expression of E5 induced the degradation of
Bax in a UPS-dependent manner. E5 may therefore function
as an adaptor that targets cellular proteins for ubiquitination,
and this may be responsible for other established E5 activities
as well.

ADENOVIRUS
Like the high risk HPVs, adenoviral infection can also result
in host cell transformation. The primary culprits here are the
viral proteins E4orf6 and E1B55k, which combine to effect the
UPS-dependent degradation of host proteins related to cell cycle
regulation and DNA damage repair (see Table 3). E4orf6 func-
tions as an adaptor that links E1B55k to various Cul containing
E3 complexes. E1B55k then acts as a substrate recognition subunit
that redirects the new E3 complex to various cellular targets. The
prevention of apoptosis leads to the accumulation of DNA dam-
age within infected cells. To avoid cellular DNA damage responses,
adenovirus blocks the ATM (ataxia telangiectasia mutated) and
ATR (ATM and Rad3-related) pathways (Carson et al., 2003).
Most Adenovirus serotypes, including Ad5 and Ad12, prevent
the activation of the ATM pathway by inducing the degradation
of the MRN (Mre11, Rad50, and Nbs1) DNA damage complex
via the mechanism just described. However, it has recently been
shown that Ad5 and Ad12 prevent the activation of the ATR path-
way in different ways. Prior to the E4orf6/E1B55K-dependent
degradation of the MRN complex, Ad5 utilizes E4orf3 to mis-
localize and immobilize the MRN complex, which prevents ATR
activation (Carson et al., 2009). In contrast, Ad12 E4orf3 does
not appear to have this function. Instead, Ad12 E4orf6 (without
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E1B55k) interacts with a Cul2/Rbx1/ElonginC ligase to promote
the UPS-dependent degradation of the ATR activator protein
topoisomerase-ILβ-binding protein-1 (TOPBP1), thereby block-
ing ATR activation (Blackford et al., 2010). This observation of
differential Cul usage by adenoviruses has been extended even
further. In a recent survey of all adenoviral subgroups, it was
found that while all E4orf6/E1B55k pairs associate with Cul fam-
ily members, the particular Cul varies. Among the serotypes, Cul5
is most frequently bound, but some serotypes recruit Cul2, and
Ad16 E4orf6/E1B55k recruited both Cul2 and Cul5 equally well.
While all serotypes degraded DNA ligase IV, complexes from some
serotypes failed to degrade Mre11, p53, or integrin α3, suggest-
ing that the choice of Cullin may in part dictate which targets are
destroyed (Cheng et al., 2010).

Finally, the adenoviral protein E4orf4 is known to induce cell
death via a number of cell-type specific mechanisms (Robert et al.,
2002). One commonality amongst these mechanisms is the modi-
fication of the APC E3 ligase activity, although it has been reported
that E4orf4 can both reduce (Kornitzer et al., 2001) and induce
(Mui et al., 2010) APC activity to achieve this end. In the latter
case, E4orf4 expression led to degradation of the APC substrate
Pds1/securin, a protein that is required for the completion of mito-
sis. Thus, it appears that yet another adenoviral protein can, albeit
indirectly, redirect the host Ub system to target host proteins that
disrupt the cell cycle.

HERPESVIRUS
The herpesviral large tegument proteins harbor a cysteine pro-
tease catalytic site that shows little homology to known DUBs, but
nevertheless has been shown to display DUB activity (Kattenhorn
et al., 2005). As discussed above, the KSHV and MHV68 large tegu-
ment homologs (ORF64) have been implicated in the regulation
of the lytic/latent balance. Mutation of the active site residues in
the Marek’s disease virus homolog lowered viral replication and
reduced the number of T-cell lymphomas among infected chick-
ens (Jarosinski et al., 2007). A similar mutation introduced into
Pseudorabies virus likewise impaired viral replication and low-
ered virulence (Bottcher et al., 2008). A bioinformatics approach
was used to search the EBV genome for proteins encoding DUB
activity, revealing BSLF1, BXLF1, and the EBV large tegument pro-
tein BPLF1 (Sompallae et al., 2008). In a follow-up paper, the
same group focused on BPLF1 and found that it functions to
dysregulate the host cell cycle in an effort to promote viral DNA
replication (Gastaldello et al., 2010). This was shown to depend on
BPLF1’s ability to proteolytically remove the ubiquitin-like mod-
ifier protein NEDD8 from Cul1 and Cul4a. This in turn leads to
the stabilization of the Cul substrate CDT1, which then pushes
the host cell toward S-phase. The authors found a similar activity
encoded by the HSV and MCMV large tegument proteins, suggest-
ing that perhaps all herpesviruses utilize their tegument proteins
in this manner.

In addition to BPFL1, EBV encodes numerous other pro-
teins that contribute to cellular transformation. Among these is
EBNA3c, which is itself ubiquitinated (Knight et al., 2005b), and
targets pRb and p27 for degradation by recruitment of the SCF
(Skp2) E3 Ub ligase complex (Knight et al., 2005a; Saha et al.,
2009). EBNA3c has also been shown to have a DUB activity that

can remove Ub from itself. Interestingly, EBNA3c was found in
complexes with both p53 and Mdm2, the cellular E3 responsi-
ble for p53 ubiquitination. More recently EBNA3c was shown
to prevent the degradation of Cyclin D1, which overrides the
activity of the tumor suppressor pRb and thereby promotes
G1/S-phase transition (Saha et al., 2011). Thus, EBNA3c appears
to both positively and negatively modulate the ubiquitin sta-
tus of a number of proteins whose dysregulation can promote
tumorigenesis.

HEPADNAVIRUSES
Hepatitis B virus (HBV) is one of the primary causes of hepatocel-
lular carcinoma (HCC), and the viral protein HBx has been shown
to promote cell cycle progression via a number of mechanisms
(reviewed in Kew, 2011). While a role for ubiquitin was not ini-
tially appreciated, it was found that HBx binds to damage-specific
DNA-binding protein 1 (DDB1; Lee et al., 1995), and that numer-
ous HBx phenotypes depend upon this interaction (see references
in Martin-Lluesma et al., 2008). The later finding that DDB1 is a
part of Cul4a E3 ligase complex (Shiyanov et al., 1999) suggested
that HBx functions to interfere with such complexes, resulting in
many of the HBx phenotypes. One recent paper has shown that
HBx stabilizes the proto-oncogene pituitary tumor-transforming
gene 1 (PTTG1) protein, which is known to be overexpressed in
HCC (Molina-Jimenez et al., 2010) and which has previously been
shown to bind to and inhibit p53 (Bernal et al., 2002). However,
whether PTTG1 ubiquitination is directly or indirectly inhibited
by HBx remains to be determined.

POXVIRUS
Unlike the other viruses described in this section, the members
of the poxvirus family are not well known for their ability to
interfere with the host cell cycle. However, there have been sev-
eral reports noted for vaccinia (Koziorowska et al., 1971; Puckett
and Moss, 1983; Yoo et al., 2008). Poxviruses are presumed to
manipulate the host ubiquitin system via (a) their ankyrin-like
proteins, which have been found to interact with Cul1 ligase com-
plexes, (b) their BTB-Kelch proteins, which interact with Cul3
ligase complexes (reviewed in Shchelkunov, 2010), and (c) their
conserved p28 proteins that are E3 ligases (Huang et al., 2004).
Amongst these, only the Myxoma M-T5 ankyrin repeat protein
has been shown to affect the cell cycle, and it does so by overcom-
ing the G0/G1 arrest that normally takes place in infected cells.
However, a direct role for ubiquitin in this process has not been
shown (Johnston et al., 2005). Interestingly, several poxviruses
were recently found to encode a RING domain protein referred
to as poxvirus APC/cyclosome activator (PACR), which inhibits
the function of the APC E3 ligase complex (Mo et al., 2009). PACR
is homologous to the RING domain protein APC11, which is the
APC subunit responsible for binding to Ub-charged E2 ligases.
That same group’s subsequent finding that PACR competes with
APC11 for binding to the APC complex suggests that PACR is a
dominant negative inhibitor of the APC complex (Mo et al., 2010).
Because APC normally functions to maintain cells in a quiescent
state, the authors suggest that PACR-dependent inhibition of APC
may promote viral DNA replication by pushing host cells toward
S-phase.
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HUMAN IMMUNODEFICIENCY VIRUS-1
The small accessory proteins encoded by HIV-1 (and variably by
HIV-2 and SIV) include Vif, Vpu, and Vpx/Vpr. Each of these
proteins has been shown to function as adaptors for various
Cul-based E3 ligase complexes, which, at least in the case of Vif
and Vpu, have clear benefits for the virus with respect to repli-
cation and egress (see below). Among the numerous activities
attributed to Vpr, only a subset has been shown to depend upon
Vpr’s ability to associate with the DDB1-Cul4 associated factor
1 (DCAF1), which functions as the specificity determinant for a
Cul4 E3 ligase complex (see references in Casey et al., 2010). In
the mid-1990s, several laboratories observed that Vpr induces a
G2 cell cycle arrest in dividing cells (Jowett et al., 1995; Rogel et al.,
1995). While the benefit to the virus remains unclear, many other
groups subsequently found that this activity is dependent upon
Vpr’s engagement of the DCAF1/DDB1/Cul4 Ub ligase. However,
due to the Vpr-induced change in the levels of a large number
of host proteins, which includes transcription factors, cytokines,
and chemokines (see references in Casey et al., 2010), some have
argued that the G2 arrest is a mere byproduct of those changes.
In support of this notion, one group has shown that Vif can also
arrest cells in G2 (DeHart et al., 2008), and others have found that
DCAF1 is itself required for normal S-phase progression (McCall
et al., 2008). These findings suggest that the titration of host Ub
ligases may result in G2 arrest, and perhaps other Vpr phenotypes
as well.

VIRAL BUDDING
One of the more intriguing aspects of the viral lifecycle is the man-
ner in which enveloped viruses acquire their membranes. After
the assembly of viral proteins at host membranes, the subsequent
formation of a mature viral particle requires the deformation of
the membrane, gathering it around the viral particle, culminating
in an energetically unfavorable “pinching-off” event that sepa-
rates the viral envelope from the host membrane. Although there
appear to be examples of viruses that rely solely on their own inte-
gral membrane proteins to accomplish this feat (reviewed in Chen
and Lamb, 2008), many other viruses instead require both Ub and
the host vacuolar protein sorting (VPS) machinery (reviewed in
Martin-Serrano, 2007). The general story that has emerged is that
viral budding proceeds in a manner analogous to that in which
ubiquitinated membrane proteins destined for lysosomal degra-
dation are recognized by the host VPS machinery, packaged into
multivesicular bodies (MVB; reviewed in Davies et al., 2009), and
then delivered to lysosomes. For those viruses whose budding
is VPS-dependent, their viral Gag or matrix proteins are found
to harbor so-called late budding domains (L-domains), which
are short motifs that function as binding sites for various VPS
components. L-domains are so named because mutations within
these motifs lead to the formation of viral particles with mem-
branes that have failed to complete the budding process. There
appear to be three primary classes of L-domains; PT/SAP, which
interacts with tumor susceptibility gene 101 (Tsg101), a compo-
nent of the VPS complex endosomal sorting complex required for
transport-I (ESCRT-I), PPXY, which interacts with members of
the Nedd4 family of Ub ligases, and YPDL, which interacts with
apoptosis-linked-gene-2 product, ALG-2–interacting protein X,

(ALIX; reviewed in Chen and Lamb, 2008; Calistri et al., 2009).
Remarkably, L-domains appear to be interchangeable, and in some
cases, a single Gag/Matrix protein will encode more than one
L-domain. Once an L-domain is recognized by its cognate VPS
component(s), it is thought that the ESCRT machinery (including
ESCRT-I, -II, and -III) is recruited to supply the force necessary for
virus budding. A role for Ub in this process first came from studies
showing that retroviral Gag proteins were ubiquitinated (Putter-
man et al., 1990; Ott et al., 1998). Likewise, proteasome inhibitors
have been shown to prevent budding (Patnaik et al., 2000; Schubert
et al., 2000; Strack et al., 2000). The finding that PPXY L-domains
bind Nedd4 E3 ligases further supported a role for ubiquitination.
In an effort to determine if L-domains are themselves ubiquiti-
nated, several groups have mutated all lysines within the vicinity
of L-domains, and while this inhibits budding in some cases (Spi-
del et al., 2004; Gottwein et al., 2006), in others, it has little effect
(Zhadina et al., 2007). However, because Ser, Thr, and Cys residues
are now recognized as alternate “ubiquitin acceptors,” many of the
earlier studies that solely focused on lysine will perhaps need to be
revisited.

RETROVIRUSES
In an attempt to clarify the requirement for Ub in retroviral bud-
ding, Zhadina and Bieniasz (2010) have recently engineered a
foamy virus Gag protein that generates VLPs when provided with a
variety of L-domains. When Nedd4-dependent PPXY motifs were
inserted, they found that budding occurred, and that Gag was not
ubiquitinated in the process. Because catalytically active Nedd4
ligases were required, their data suggests that if Gag is not ubiq-
uitinated, a cellular protein(s) is instead targeted. However, when
they generated Gag variants without an L-domain, but that were
directly fused to Ub, budding was efficient, and depended upon
an intact Vps system. This somewhat perplexing result hints at
the plasticity of the system, and indicates that as long as ubiqui-
tination occurs in the vicinity of the L-domain, budding can take
place. Similar results have also been obtained for HIV-1 by Weiss
et al. (2010) who find that a number of Nedd4 ligases, including
yeast Rsp5, will promote VLP formation when targeted to Gag,
but that budding does not correlate with the ability of these ligases
to ubiquitinate Gag. The identity of at least one cellular ubiquiti-
nation target is perhaps suggested by Sette et al. (2010) who have
recently provided evidence that ALIX binds to HIV-1 Gag, recruits
Nedd4.1, and is then itself ubiquitinated by Nedd4.1 to promote
egress.

FILOVIRUSES
Like the retroviral Gag proteins, the VP40 matrix proteins encoded
by both Ebola (Harty et al., 2000) and Marburg (Urata et al.,
2007) viruses can form VLPs in the absence of other viral pro-
teins. Ebola VP40 harbors both PPXY and PT/SAP L-domains,
and appears to engage both Nedd4 and Tsg101, respectively (Tim-
mins et al., 2003). On the other hand, Marburg virus encodes only
a PPXY motif. Interestingly, it has been shown that while deletion
of the PPXY motif severely limits Marburg VLP formation, co-
expression of the viral nucleoprotein (NP), or glycoprotein (GP)
with the VP40 PPXY mutant rescues budding (Urata et al., 2007).
In that same paper it was found that Tsg101 is recruited to VP40 in
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a PPXY-dependent manner, providing a unique example of non-
PT/SAP-dependent Tsg101 interaction. This same group has more
recently shown that the Marburg VP40 PPXY motif also interacts
with Nedd4 (Urata and Yasuda, 2010). Coupled with their earlier
data, this result indicates that the filoviruses require both Nedd4
and Tsg101 for VLP formation, and that at least in the case of
Marburg, NP and/or GP may also play a role in recruiting those
proteins.

PARAMYXOVIRUSES
The paramyxoviruses are another group of enveloped RNA viruses,
which appear less consistent in their use of L-domains and the
MVB apparatus. For example, parainfluenza virus 5 (PIV5) bud-
ding requires matrix (M), nucleocapsid (NP), and spike glyco-
proteins (Schmitt et al., 2002), none of which appear to encode
obvious L-domain sequences. However, PIV5 budding has been
shown to depend on the host VPS machinery, as well as to be sensi-
tive to proteasome inhibitors, suggesting commonalities between
the retro- and filoviral budding pathways (Schmitt et al., 2005).
Interestingly, the PIV5 M protein was found to harbor a unique
FPIV L-domain that was discovered via complementation of an
HIV-1 PTAP Gag mutant (Schmitt et al., 2005). Mutation of that
motif in a recombinant PIV5 virus led to drops in viral titers by
five orders of magnitude compared to the wildtype, demonstrat-
ing the importance of this sequence to viral production. However,
it remains to be seen if the PIV5 FPIV motif functions as a bind-
ing site for either ESCRT components or Nedd4 ligases. While
present in some paramyxoviruses, the FPIV motif is not observed
in the M proteins from measles, Sendai, and Nipah virus, sug-
gesting variability in paramyxoviral budding pathways. Support
for this notion comes from studies of Nipah virus, which encodes
an M protein that is necessary and sufficient for VLP production
(Ciancanelli and Basler, 2006). Wang et al. (2010) have recently
shown that prior to budding from the host plasma membrane, the
Nipah M protein must first pass through the nucleus. Treatment
of infected cells with proteasome inhibitors trapped M protein
within the nucleus, and like PIV5, lowered viral titers substantially,
suggesting that ubiquitination is involved in M protein traffick-
ing. The authors went on to provide evidence that M protein is
monoubiquitinated on four separate residues, including a lysine
within a putative bipartite nuclear localization signal, and that this
same lysine is likely to be ubiquitinated in order for M protein to be
exported from the nucleus. They finished by showing that Nipah
virus release was sensitive to levels of the proteasome inhibitor
bortezomib that are readily achievable in human patients. While
the precise mechanisms are not known, it is clear that Ub plays
a role in the Nipah virus lifecycle. However, because proteasome
inhibitors appear to block upstream events (e.g., M protein release
from the nucleus), a specific role for Ub in Nipah budding is less
certain.

RHABDOVIRUSES
Similar to other Gag/Matrix proteins discussed above, the vesicular
stomatitis virus (VSV) M protein can promote VLP formation in
the absence of other viral proteins (Harty et al., 1999), and this has
been shown to depend upon a PPXY motif within the M protein
(Craven et al., 1999). As one might expect for PPXY L-domain

proteins, VSV M protein was found to bind Nedd4 E3 ligases,
and proteasome inhibitors limit viral release, suggesting that Ub
is involved (Harty et al., 2001). However, unlike other viruses that
utilize PPXY L-domains, VSV budding does not appear to depend
upon either Tsg101 or downstream players in the ESCRT pathway
(Irie et al., 2004), indicating that the combination of an L-domain
and a Ub-dependent budding mechanism is not a guarantee of
dependence upon the host VPS pathway.

ARENAVIRUSES
The Lassa virus matrix protein (Z) alone results in the production
of VLPs, and harbors both PTAP and PPXY L-domains (Perez et al.,
2003; Eichler et al., 2004). Similar to other enveloped RNA viruses,
it has been demonstrated that budding of Lassa virus Z-protein
VLPs is dependent upon Tsg101 and other ESCRT components
(Urata et al., 2006). However, while the New World Tacaribe virus
Z protein also promotes VLP budding, it harbors no obvious L-
domain sequences and is not dependent upon Tsg101 (Urata et al.,
2009). Nevertheless, Tacaribe Z-protein budding was still shown
to require downstream Vps components, and so it is likely that
arenavirus budding will, in general, depend upon the host MVB
pathway.

DNA VIRUSES
While not all enveloped viruses bud through the plasma mem-
brane, they are still faced with the same mechanistic problems.
HBV budding can be subcategorized into the formation of either
non-infectious subviral particles (SVP, composed of only the three
viral envelope proteins), or fully infectious particles (recently
reviewed in Patient et al., 2009), each of which appears to bud
through cytoplasmic membranes. Interestingly, release of infec-
tious HBV from cells has been shown to depend on the host VPS
pathway (Kian Chua et al., 2006; Lambert et al., 2007; Watanabe
et al., 2007). Moreover, the HBV core protein harbors a PPXY
motif that has been shown to interact with Nedd4 (Rost et al.,
2006), implicating a role for ubiquitination. Mutation of the two
Lys residues within the core protein had no effect on budding
(Garcia et al., 2009), but, as described above, alternate Ub acceptor
residues may instead be targeted. Members of the herpesviridae
appear to sequentially bud first through the inner nuclear mem-
brane and then again through the TGN membrane (reviewed in
Mettenleiter et al., 2009). The release of both Herpes simplex virus
1 (HSV-1; Calistri et al., 2007; Crump et al., 2007; Pawliczek and
Crump, 2009) and HCMV (Tandon et al., 2009) particles has been
shown to require components of the MVB pathway, suggesting that
this may be a common theme among the herpesviruses. However,
the details regarding their use of Ub in these budding events awaits
further experimentation.

VIRAL RELEASE
The recent identification of Tetherin (BST-2/CD317/HM1.24) as
an IFN-induced anti-viral factor that restricts the egress of HIV-
1 and other enveloped viruses by tethering mature virions to the
host cell surface (Neil et al., 2008; Jouvenet et al., 2009) has revealed
additional viral countermeasures that require the assistance of the
UPS. The ability of the HIV-1 accessory protein Vpu to enhance
viral release has been known for quite some time, however the
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mechanism for this function was not clear. Viral egress appeared
to be separable from Vpu’s prominent role in inducing the ER-
associated proteasomal degradation of the HIV-1 receptor, CD4
(Schubert and Strebel, 1994; Schubert et al., 1996), although some
viral release enhancement has been attributed to CD4 depletion
(Bour et al., 1999). However, recent evidence suggests that, simi-
lar to the situation with CD4, Vpu acts as a substrate recognition
factor for an SCF Ub ligase complex to target Tetherin for down-
regulation (Van Damme et al., 2008; Douglas et al., 2009; Goffinet
et al., 2009; Iwabu et al., 2009; Mangeat et al., 2009; Mitchell et al.,
2009). Several studies by our group and others have concluded
that in contrast to CD4, Vpu promotes the degradation of Teth-
erin within the lysosome (Douglas et al., 2009; Iwabu et al., 2009;
Mitchell et al., 2009), although under certain conditions proteaso-
mal degradation has been observed (Goffinet et al., 2009; Mangeat
et al., 2009; reviewed in Douglas et al., 2010). A recent paper sug-
gests that Vpu-mediated ubiquitination of Tetherin can occur on
all lysine and non-lysine Ub targets in the cytoplasmic tail (Tokarev
et al., 2010). Before this tethering function was known, our group
had identified BST-2 in a proteomics screen for targets of the viral
Ub-ligase K5 of the gammaherpesvirus KSHV (Bartee et al., 2006).
Later we showed that K5 induces ubiquitination of Tetherin’s
cytosolic lysines, which leads to both its lysosomal degradation
and the enhancement of KSHV egress (Mansouri et al., 2009).
Other viruses, such as HIV-2 (Douglas et al., 2009; Le Tortorec
and Neil, 2009), SIV (Jia et al., 2009; Zhang et al., 2009), and Ebola
(Kaletsky et al., 2009) also express antagonists of Tetherin, but
there is no evidence thus far to indicate that they utilize the UPS
for this function.

As discussed previously, adenoviruses express the E4orf6 and
E1B55k proteins that complex with cellular E3 Ub ligases to
degrade cellular proteins involved in apoptosis and cell cycle reg-
ulation. A recent proteomics study looking for new substrates of
E4orf6 and E1B55k/Cul5 found numerous host proteins that were
both up- and down-regulated. One of the substrates identified was
α3 integrin, which was degraded in the presence of the Adenoviral
proteins (Dallaire et al., 2009a). This same group showed that α3
integrin degradation promotes cell detachment from the extra-
cellular matrix and that this may contribute to viral release and
spreading (Dallaire et al., 2009b).

EVADING INNATE IMMUNE MECHANISMS
The interface between viruses and the host innate immune
responses has also provided numerous examples in which viruses
harness the UPS. IFN is the host’s first line of defense against
viral infection and there are numerous examples in which viruses
employ the UPS to block either IFN production or its anti-viral
effects. The following section is sub-divided into the main steps of
the IFN pathway that are targeted by various viral classes, with an
emphasis on the most recent evidence for viral misappropriation
of the UPS to subvert anti-viral immunity (Table 4).

DOWNREGULATION OF FACTORS LEADING TO IFN PRODUCTION
The host cell has a variety of viral sensing mechanisms that
ultimately trigger IFN production (recently reviewed in Kan-
neganti, 2010). This signaling cascade begins with several classes
of pattern-recognition receptors (PRRs) including the Toll-like

receptors (TLRs), Retinoic acid inducible gene-I (RIG-I)-like
receptors (RLRs), and the nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs). Signaling through these
molecules in turn leads to the activation of NF-κB, IRF3, and IRF7,
which promote IFNα/β expression. Many viruses have evolved
mechanisms that utilize the UPS to degrade specific players within
these pathways, thereby limiting IFN production.

Retinoic acid inducible gene-I
In an effort to inhibit IFN activation, influenza and HBV uti-
lize Ub-dependent mechanisms to target RIG-I either directly or
through its downstream effector the mitochondrial anti-viral sig-
naling protein (MAVS). In order to initiate the anti-viral signaling
cascade,RIG-I must first be ubiquitinated by the E3 ligase tripartite
motif (TRIM) protein 25. The influenza NS1 protein interacts with
TRIM25, thereby preventing the ubiquitination of RIG-I. Gack
et al. (2009) suggest that NS1 works by blocking the oligomeriza-
tion of TRIM25, which is critical for its E3 ligase activity. The HBV
X protein (HBx) was recently found to inhibit IFN-β production
by interacting with MAVS, leading to its ubiquitination and protea-
somal degradation (Wei et al., 2010). One particular MAVS lysine
mutant exhibited increased IFN-β activation, suggesting that this
is the residue targeted for HBx-dependent ubiquitination. How-
ever, the particular E3 Ub ligase involved in this process has not
been identified.

IFN response factors
Other common viral targets degraded with the help of the UPS to
limit IFN production are IRF3 and IRF7. Examples can be found
among the flaviviruses, reoviruses, and herpesviruses. Bovine viral
diarrhea virus (BVDV) and classical swine fever virus (CSFV) are
flaviviruses that encode NPro, a papain-like protease that acts as
an IFN antagonist by binding and inducing the polyubiquitina-
tion and subsequent degradation of IRF3 (Hilton et al., 2006;
Chen et al., 2007a). However, NPro protease activity does not
appear to be required for this function. Moreover, NPro from
CSFV was itself degraded in a UPS-dependent manner in the
absence of IRF3 (Seago et al., 2010). Whether NPro acts as a Ub
ligase or recruits a cellular Ub ligase remains to be determined.
The rotavirus NSP1 protein has also been shown to block IFN
production by inducing the degradation of IRF3, IRF5, and IRF7
(reviewed in Sherry, 2009). Graff et al. (2007) showed that the
NSP1 zinc-binding domain is important for IRF3 degradation,
and their data suggests that NSP1 may be acting as an E3 Ub
ligase. Herpesviruses have also been shown to inhibit IFN activa-
tion by interfering with IRFs. As discussed above, the KSHV RTA
protein can function as both a transcriptional activator and an
E3 ligase. In addition to its other targets (see above), RTA also
induces the ubiquitination and degradation of IRF7 (Yu et al.,
2005). HSV encodes the multifunctional protein ICP0, which has
been shown to interfere with several stages of the IFN pathway,
including the prevention of IRF3 and IRF7 activation (reviewed
in Paladino and Mossman, 2009). ICP0 E3 Ub ligase activity has
been implicated in this function. However, recent data indicates
that inhibition of signal transducer and activator of transcrip-
tion (STAT) or IRF3 pathways does not enhance the replication
of ICP0-deleted viruses (Everett et al., 2008). These results suggest
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Table 4 | Evasion of the host immune system.

Immune

pathway

Viral protein Virus Ubiquitin function modified Reference

RIG-I NS1 Orthomyxo: influenza Interacts with E3 Ub ligase TRIM25, preventing

the ubiquitination of RIG-I

Gack et al. (2009)

X Hepadna: HBV Induces Ub and degradation of MAVS Wei et al. (2010)

NPro Flavivirus: BVDV and

CSFV

Induces Ub and degradation of IRF3 Hilton et al. (2006),

Chen et al. (2007a)

NSP1 Reo: rotavirus Induces the degradation of IRF3, IRF5, and IRF7 Reviewed in Sherry (2009)

IRFs RTA Herpes: KSHV Induces the ubiquitination and degradation of

IRF7

Yu et al. (2005)

ICP0 Herpes: HSV ICP0 E3 Ub ligase activity may prevent IRF3 and

IRF7 activation

Everett and Orr (2009),

Paladino and Mossman (2009)

Vif and Vpr Retro: HIV-1 Induces the Ub and degradation of IRF3 Okumura et al. (2008)

NF-κB NSP1 Reo: rotavirus Induces the Ub and degradation of βTrCP, which

in turn regulates NF-κB activation

Graff et al. (2009)

CP77 Pox: cowpox Blocks the nuclear translocation of NF-κB Chang et al. (2009)

P Paramyxo: measles Transcriptionally upregulates DUB A20, which

inhibits NF-κB activation

Yokota et al. (2008)

Unknown Orthomyxo: influenza Onose et al. (2006)

Core Flavivirus: Hepatitis C Nguyen et al. (2006)

ICP0 Herpes: HSV Interacts with and redirects DUB USP7 to the

cytoplasm where it binds and deubiquitinates

TRAF6

Daubeuf et al. (2009)

STATs NS5 Flavivirus: dengue Induces Ub and degradation of STAT2 Ashour et al. (2009)

Paramyxo: HPIV2 Complexes with DDB1/Cul4a E3 Ub ligase, lead-

ing to Ub and degradation of STAT2

Parisien et al. (2002)

V Paramyxo: PIV5 Complexes with DDB1/Cul4a E3 Ub ligase, lead-

ing to Ub and degradation of STAT1

Didcock et al. (1999)

Paramyxo: mumps Complexes with DDB1/Cul4a E3 Ub ligase, lead-

ing to Ub and degradation of STAT1 and STAT3

Ulane et al. (2003)

NS1 and NS2 Paramyxo: RSV Complexes with Cul2/ElonginC E3 Ub ligase,

leading to Ub and degradation of STAT2

Spann et al. (2004),

Elliott et al. (2007)

MHC-1 and T-cell

activation

markers

US2 and US11 Herpes: HCMV Targets MHC-1 for ERAD Wiertz et al. (1996a,b)

K3 and K5 Herpes: KSHV E3 Ub ligase activity induces Ub and lysosomal

degradation of MHC-1, CD1d and IFNγ; K5 also

induces degradation of ICAM, B7.2, MICA, MICB,

and AICL

Coscoy and Ganem (2000, 2001),

Ishido et al. (2000b),

Sanchez et al. (2005), Li et al. (2007),

Thomas et al. (2008)

mk3 Herpes: MHV68 E3 Ub ligase activity induces Ub and proteasomal

degradation of MHC-1

Stevenson et al. (2000),

Boname and Stevenson (2001)

M153R Pox: myxoma E3 Ub ligase activity induces Ub and degradation

of CD4 and MHC-1

Mansouri et al. (2003)

E5 Papilloma Downregulates MHC-1 and CD1d, possibly

through interaction with calnexin

Gruener et al. (2007),

Miura et al. (2010)

APOBEC Vif Retro: HIV-1 Interacts with E3 Ub ligase Cul5/ElonginBC/Rbx1

to induce Ub and proteasomal degradation of

APOBEC3G and 3F

Marin et al. (2003), Sheehy et al.

(2003), Yu et al. (2003)

ICP0 Herpes: HSV E3 Ub ligase activity induces Ub and proteasomal

degradation of PML and SP100

Boutell et al. (2002),

Gu and Roizman (2009)

PML disruption EBNA1 Herpes: EBV Induces degradation of PML through interaction

with DUB, USP7 and protein kinase, CK2

Sivachandran et al. (2010)

pp71 Herpes: HCMV Induces proteasomal degradation of Daxx, per-

haps via sumoylation

Saffert and Kalejta (2006),

Hwang and Kalejta (2009)

E1B55k Adeno: Ad5 Induces Ub and proteasomal degradation of Daxx Schreiner et al. (2010)
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that ICP0’s role in subversion of the IFN response may be sec-
ondary to its involvement in promyelocytic leukemia (PML) and
sp100 degradation (see below; Everett and Orr, 2009). Lastly, HIV-
1 has been shown to downregulate IRF3 protein levels in infected
cells, and Okumura et al. (2008) have provided evidence that this is
due to the action of the HIV-1 E3 Ub adaptor proteins Vif and Vpr
(Okumura et al., 2008). However, while ectopically expressed Vpr
and Vif were shown to induce IRF3 ubiquitination and degrada-
tion in transfected 293T cells, IRF3 degradation was still observed
in T-cells infected with an HIV-1 vpr/vif double mutant. Recent
work from another group has confirmed IRF3 downregulation by
HIV-1, and while their data supported a significant role for Vpr
in that process, Vif did not appear to have an effect (Doehle et al.,
2009).

NF-κB
NF-κB activation provides yet another route to IFN production
and is thus a target for several viral antagonists. In addition to its
ability to degrade IRF3 (see above), the rotavirus NSP1 protein
also mediates the ubiquitination and degradation of the cellular
E3 Ub ligase F-box protein beta-transducin repeating contain-
ing protein (βTrCP), which regulates NF-κB activation via the
degradation of the NF-κB inhibitor IκB (Graff et al., 2009). This
provides an interesting example of a single virally encoded Ub
ligase targeting two separate mechanisms for IFN activation. The
cowpox host-range protein CP77 has also been found to inhibit
NF-κB activation. CP77 contains both an F-box motif that medi-
ates binding to the SCF complex and a series of ankyrin repeats
responsible for binding to NF-κB. While it was expected that CP77
would simply serve as an adaptor targeting NF-κB for ubiquitina-
tion by the SCF complex, no CP77-dependent ubiquitination or
degradation of NF-κB was observed (Chang et al., 2009). Curi-
ously, both the CP77 F-box and ankyrin repeats are required in
order to prevent NF-κB nuclear translocation. Because NF-κB was
not directly targeted for ubiquitination/degradation, the authors
propose that CP77 somehow sequesters NF-κB to prevent its acti-
vation and nuclear translocation (Chang et al., 2009). Measles
virus appears to exhibit a cell-type specific suppression of NF-
κB activation, which is active in monocytes but not epithelial cells
(Indoh et al., 2007). This activity is mediated by the viral P protein,
which has been shown to transcriptionally upregulate the cellular
DUB A20, thus leading to the inhibition of NF-κB-dependent IFN
induction via the deubiquitination of TRAF6 (Yokota et al., 2008).
As described in a previous section, A20 induction by EBV LMP1
was shown to inhibit IRF7, which consequently prevents IRF7-
dependent IFN induction (Ning and Pagano, 2010). Influenza
(Onose et al., 2006) and hepatitis C (Nguyen et al., 2006) have also
been shown to inactivate NF-κB via A20 induction. Therefore,
multiple viruses appear to utilize this cellular DUB as a means
to inhibit two separate IFN-induction pathways. Finally, HSV
appears to hijack a different cellular DUB to evade the immune
system. The viral transcriptional activator ICP0 has been shown to
interact with and redirect the cellular DUB USP7 to the cytoplasm
where it deubiquitinates TRAF6 and IKKγ, which are required
for activation of the canonical NF-κB pathway (Daubeuf et al.,
2009).

DOWNREGULATION OF IFN SIGNALING MOLECULES (STATS)
Once IFN is produced, it binds to the IFN-receptor on neighboring
cells, thereby activating the STAT signaling cascade that ultimately
results in the transcriptional activation of many anti-viral IFN-
stimulated genes (ISGs). This makes targeting STATs another
common means by which viruses ablate the IFN response. For
example, both the flaviviruses and paramyxoviruses have evolved
UPS-dependent methods to eliminate STATs. The Dengue virus
NS5 polymerase interacts with STAT2, leading to STAT2 ubiqui-
tination and proteasome-dependent degradation. NS5 is initially
expressed as part of a single polyprotein that is cleaved by viral
and host proteases into more than 10 individual proteins. Inter-
estingly, NS5 alone can interact with STAT2, but does not induce
degradation except in the context of the polyprotein (Ashour et al.,
2009). It is not known whether a cellular Ub ligase is involved or if
the proteolytic processing of the viral polyprotein somehow leads
to the degradation of STAT2. NS5 has also been shown to pre-
vent IFN-induced phosphorylation of STAT2, although this does
not appear to involve the UPS (Mazzon et al., 2009). The antag-
onism of IFN by paramyxoviruses is more complicated due to
the varied targeting of multiple STATs by different viral family
members. For example, among the rubulavirus genus, the human
parainfluenza type 2 (HPIV2) V protein directs the ubiquitina-
tion and degradation of STAT2 (Parisien et al., 2002), while the
PIV5 V protein induces the degradation of STAT1 (Didcock et al.,
1999). In addition, the Mumps V protein targets both STAT1
and STAT3 (Ulane et al., 2003). Although the targets are var-
ied, it appears that the V proteins from these three viruses are
all able to form similar E3 Ub ligase complexes with DDB1 and
Cul4A, which are referred to as V protein-dependent degradation
complexes (VDC; Ulane and Horvath, 2002). Respiratory syncy-
tial virus (RSV), a paramyxovirus from the pneumovirus genus,
does not encode a V protein homolog. However STAT2 is still
degraded in a UPS-dependent manner that requires the viral NS1
and NS2 proteins (Spann et al., 2004). It has since been discovered
that the RSV NS1 protein interacts with ElonginC and Cul2 to
direct the ubiquitination and degradation of STAT2 (Elliott et al.,
2007).

DOWNREGULATION OF IFN-INDUCED PROTEINS
Interferon is responsible for activating many anti-viral genes.
Therefore, those viruses that fail to avoid early IFN signaling still
have many opportunities to circumvent downstream anti-viral
events.

MHC-1, MHC-like molecules, and T-cell activation markers
The most well-characterized IFN-induced anti-viral target known
to be downregulated by many virus classes is MHC-1. The host
uses MHC-1 as a means to present viral antigens at the cell
surface for recognition by cytotoxic T-cells. In response, viruses
have developed numerous ways to evade this immune surveillance
mechanism. Several members of the herpesvirus family have been
shown to usurp the UPS to downregulate MHC-1 and in some
cases T-cell activation markers from the cell surface. For example,
the HCMV US2 and US11 gene products act in the ER to tar-
get MHC-1 for Ub-dependent ER-associated degradation (ERAD;
Wiertz et al., 1996a,b). ERAD is normally used by the cell to
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eliminate misfolded proteins from the ER. US2 and US11 are
not Ub ligases. Instead, they target MHC-1 for dislocation from
the ER into the cytoplasm, where MHC-1 is then subjected to
proteasomal degradation. Interestingly, although both viral pro-
teins function similarly, they appear to interact with different Ub
ligases and translocation machinery complexes. Studies of US11-
mediated MHC-1 dislocation facilitated the initial identification
of cellular components of the normal ERAD pathway, including
Derlin 1, SeL1L, VIMP, p97 ATPase, AUP1, and UbxD8 (Lilley
and Ploegh, 2004; Ye et al., 2004; Mueller et al., 2006, 2008). The
E3 Ub ligases associated with Derlin1 are HRD1 and gp78 (Lilley
and Ploegh, 2005), however it has not been confirmed whether
these ligases are involved in the US11-mediated downregulation
of MHC-1. In contrast, US2 mediates MHC-1 dislocation through
interactions with the signal peptide peptidase (SPP; Loureiro et al.,
2006) and the E3 ligase TRC8 (translocation in renal carcinoma;
Stagg et al., 2009). The gammaherpesviruses also target MHC-1 for
degradation, although they accomplish this task by encoding their
own E3 Ub ligases. KSHV encodes the E3 Ub ligases K3 and K5,
also known as modulators of immune recognition 1 and 2 (MIR1
and MIR2), respectively, which target MHC-1 for ubiquitina-
tion and subsequent lysosomal degradation (Coscoy and Ganem,
2000; Ishido et al., 2000b). Using a proteomics approach, several
groups have recently demonstrated that K5 decorates surface-
associated MHC-1 with a mixed-linkage ubiquitin chain, and
that this stimulates the Epsin1-dependent endocytosis and sub-
sequent lysosomal degradation of MHC-1 (Boname et al., 2010;
Goto et al., 2010). Although they are 40% homologous to one
another, K3 and K5 do not target the same molecules. K3 can
downregulate all classes of MHC-1, HLA-A, B, C, and E, while
K5 is specific for HLA-A and B (Ishido et al., 2000b). In con-
trast, K3 and K5 can each downregulate the IFNγ receptor (Li
et al., 2007). While the removal of MHC-1 from the cell sur-
face may be a good strategy to prevent cytotoxic T-cell killing,
it can also increase the likelihood of being targeted by NK cells,
which eliminate cells with low MHC-1 surface expression. The
differential targeting of MHC-1 molecules by K3 and K5 may be
one mechanism for the virus to block CTL killing without overtly
activating NK cells. In addition, K5 has been shown to downreg-
ulate ICAM-1 and B7.2, which are costimulatory molecules for
both T-cell and NK cell activation (Coscoy and Ganem, 2001),
thus preventing NK cell killing (Ishido et al., 2000a). To further
protect cells from NK cytotoxicity, K5 has also been shown to
downregulate the NKG2D ligands MHC class I-related chain A
(MICA), MICB, and the ligand for NKp80, activation-induced C-
type lectin (AICL; Thomas et al., 2008). CD1d, another NK and
T-cell activation marker, is downregulated by both K3 and K5,
which decreases CD1d-restricted T-cell activation (Sanchez et al.,
2005). MHV68, the mouse homolog of KSHV, only encodes mK3,
which has also been shown to downregulate MHC-1 (Stevenson
et al., 2000). However, instead of resulting in lysosomal MHC-1
degradation, mK3 appears to function in the ER via interaction
with the transporter associated with antigen processing protein
(TAP; Lybarger et al., 2003; Wang et al., 2005), thereby target-
ing MHC-1 for proteasomal degradation (Boname and Stevenson,
2001). Similarly, the retroperitoneal fibromatosis-associated her-
pesvirus (RFHV) also encodes a single K3/K5 homolog referred

to as rfK3, which appears to downregulate MHC-I and ICAM,
but not B7.2, in a Ub-dependent manner (Harris et al., 2010).
Members of the Poxviridae also encode their own Ub ligases. The
rabbit myxomavirus M153R protein contains a RING-CH domain
and appears to downregulate both MHC-1 and CD4 in a manner
reminiscent of MHC-1 downregulation by K3 and K5 (Mansouri
et al., 2003), suggesting a common immune evasion strategy for
the large DNA viruses.

The HPV E5 protein has recently been shown to downregu-
late the T-cell activation factor CD1d in a proteasome-dependent
manner. E5 has been proposed to accomplish this by inhibiting the
calnexin-dependent trafficking of CD1d (Miura et al., 2010). Inter-
estingly, E5 has also been demonstrated to downregulate MHC-1
(Ashrafi et al., 2005). However, this has been attributed to E5’s
interaction with the vacuolar ATPase, which leads to endosome
acidification and retention of MHC-1 in the Golgi. This has also
been one of the proposed models for E5’s retention of EGF-R as
described above. However, like CD1d, MHC-1 also binds to E5 and
calnexin in the ER, and E5 can only mediate MHC-1 downregula-
tion in calnexin-expressing cells (Gruener et al., 2007), suggesting
a potential role for the UPS in HPV’s immune evasion strategies.

An interesting caveat to emerge from the study of these viral
Ub ligases is their ability to target non-lysine residues for ubiq-
uitination. KSHV K3 ubiquitination of MHC-1 provided the first
report of an E3 Ub ligase targeting a cysteine for ubiquitination
via a thioester linkage (Cadwell and Coscoy, 2005). Subsequent
studies have revealed that K5 also targets MHC-1 cysteine residues
(Cadwell and Coscoy, 2008), and that mK3 conjugates ubiquitin to
MHC-1 serine and threonine residues via ester bonds (Wang et al.,
2007). Interestingly, data from a recent mK3 study suggests that
while the RING-CH domain of these viral Ub ligases plays a role
in targeting non-lysine residues, sequences outside the RING-CH
domain are also required for this altered specificity (Herr et al.,
2009).

Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3
The apolipoprotein B mRNA editing enzyme catalytic
polypeptide-like 3 (APOBEC3) genes encode a family of cytidine
deaminases, several of which have been shown to be part of an
innate anti-retroviral defense that inhibits retroviral replication
(Sheehy et al., 2002). Of the family members, APOBEC3G and
3F appear to have the highest anti-viral activity. These enzymes
are incorporated into nascent virions where they subsequently
deaminate cytosines in the minus DNA strand generated via
reverse transcription. This action results in G to A transitions
in the genomic retroviral RNA, which leads to potentially lethal
nonsense and missense mutations. Aside from the “mutator” phe-
notype, some groups have shown that APOBEC3 might have other
deleterious effects on the virus, as mutants without deaminase
activity still show anti-retroviral activity (reviewed in Neil and
Bieniasz, 2009). The lentiviral family of retroviruses express the
Vif accessory protein that counteracts this restriction by induc-
ing the ubiquitination and subsequent proteasomal degradation
of APOBEC3G (Marin et al., 2003; Sheehy et al., 2003). Vif har-
bors a unique SOCS-box motif that allows Vif to complex with
the Cul5/ElonginBC/Rbx1 E3 Ub ligase (Yu et al., 2003, 2004).
There is currently some debate as to whether Vif induces the
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direct ubiquitination of APOBEC (Iwatani et al., 2009) or if
Vif is itself ubiquitinated and acts as a suicide molecule that
delivers APOBEC to the proteasome (Dang et al., 2008). Most
recently, one group has demonstrated the Vif-dependent polyu-
biquitination of an APOBEC mutant devoid of lysine residues
(Shao et al., 2010). They later showed that in the absence of
lysines, the APOBEC N-terminal-MET residue is targeted for
ubiquitination (Wang et al., 2011). This same group has shown
that APOBEC degradation can occur without simultaneous Vif
degradation, weighing against a Vif suicide model (Shao et al.,
2010).

DISRUPTION OF THE PROMYELOCYTIC LEUKEMIA NUCLEAR BODIES
The PML protein was first identified and named for its role in
acute promyelocytic leukemia (APL). The PML protein normally
aggregates with other proteins (Daxx, ATRX, SP100, and SUMO)
in the nucleus, forming distinct structures that have been shown
to be involved in many cellular functions, including cell cycle
regulation, DNA damage repair, apoptosis, transcriptional reg-
ulation, and IFN response to viral infection (see references in
Everett and Chelbi-Alix, 2007). APL results from a chromoso-
mal translocation at the PML locus. This gives rise to a pair of new
PML–retinoic acid receptor fusion proteins, neither of which allow
for the formation and assembly of functional PML NB (Melnick
and Licht, 1999). Herpesviruses and adenoviruses express pro-
teins that disrupt the PML NBs, thus preventing IFN-induced
anti-viral responses and resulting in enhanced viral transcrip-
tion and replication (reviewed in Everett and Chelbi-Alix, 2007).
For simplicity, we discuss all the examples of PML NB disrup-
tion in this section, although the impact that these have on viral
functions is varied. HSV-1 encodes ICP0, which induces the dis-
ruption of PML NBs via degradation of the complex proteins PML
and SP100. This degradation is proteasome dependent and relies
on the ICP0 RING domain E3 Ub ligase function (Boutell et al.,
2002; Gu and Roizman, 2009). EBV disrupts PML NBs through
the action of the viral transactivator EBNA1, in a process that
leads to the development of nasopharyngeal carcinoma (Sivachan-
dran et al., 2008). A recent study suggests that EBNA1’s disruption
of PML NBs requires its interaction with host proteins includ-
ing the USP7 DUB and the CK2 protein kinase (Sivachandran
et al., 2010). The phosphorylation of PML by CK2 is impor-
tant for PML’s subsequent polyubiquitination and proteasomal
degradation (Scaglioni et al., 2008). Sivachandran et al. (2010)
hypothesize that EBNA1 enhances CK2’s effect on PML, but also
requires USP7 binding for complete PML NB disruption. The role
that USP7 plays here is not clear, given that its catalytic domain is
not required (Sivachandran et al., 2010). Daxx is a host-encoded
transcription repressor that can inhibit viral gene expression, and
is yet another PML NB component targeted for degradation by
viruses. The HCMV tegument protein pp71 induces the protea-
somal degradation of Daxx, thereby relieving the IFN-induced
inhibition on viral immediate early (IE) gene expression (Saffert
and Kalejta, 2006). While no cellular Ub ligase has been impli-
cated, data has been put forth suggesting that the pp71-mediated
degradation of Daxx (Hwang and Kalejta, 2007) may instead
involve SUMOylation (Hwang and Kalejta, 2009). However, a

Daxx mutant that is inefficiently SUMOylated was still degraded
by pp71 and exhibited no difference in IE gene expression (Hwang
and Kalejta, 2009). It has recently been shown that adenovirus
E1B55K also targets Daxx for ubiquitination and proteasomal
destruction (Schreiner et al., 2010). Schreiner et al. (2010) found
that knocking down Daxx via siRNA enhanced Ad5 replication,
and that unlike E1B55K’s other Ub-dependent functions, E4orf6
was not required.

UNKNOWN FUNCTIONS
There are many examples of virus-specific effects on the UPS that
we have not described here in detail because their advantage to
the virus has not yet been determined. However, we have included
them along with references in Table 5. It is expected that as these
“unknown functions”are resolved, they will contribute to the ever-
increasing number of instances whereby viruses utilize the host
ubiquitin system (Table 5).

SUMMARY
As this review has hopefully made abundantly clear, viruses depend
upon ubiquitin at virtually all points within the lifecycle (see
Figure 1). The prevalence of ubiquitin in normal cellular processes
makes this unsurprising; by simply co-evolving with their hosts,
viruses have had to learn to“speak” the ubiquitin language fluently
in order to maintain their high level of control in infected cells.
This can be accomplished via more or less elegant means; viruses
with limited coding capacity can utilize small adaptor proteins
to redirect or modify the activity of cellular ligases, while more
complex viruses can encode their own E3 ligases and DUBs. In
many cases, viral manipulation of ubiquitin is required to specif-
ically fend off host countermeasures, while in others ubiquitin
must be harnessed for viral replication functions. Additionally,
although we have focused on ubiquitin in this review, it is read-
ily apparent that viruses can manipulate the other ubiquitin-like
modifiers as well (see examples presented in Isaacson and Ploegh,
2009).

While much of the current ubiquitin literature has focused on
events involving lysine-targeted polyubiquitination of targets and
their subsequent degradation via the UPS, the recognition that (a)
non-lysine residues can be targeted and (b) that ubiquitination
itself comprises myriad different topological variants with a vast
array of non-degradation outcomes is already leading the field to
cast a wider net regarding ubiquitin-dependent phenotypes. The
development of new proteomics tools (recently reviewed in Shi
et al., 2011) has greatly enhanced our ability to detect and study
these events, and such methods will in all likelihood continue to
improve.

Many of the current examples of viral manipulation of the
host ubiquitin system relate to aspects of innate immunity that
must be overcome, but it is clear that many cellular process that
are normally controlled by ubiquitin such as the cell cycle or the
MVB pathway can be readily reprogrammed to benefit a virus.
This unfortunately does not provide many new drug-able tar-
gets, as alterations made to any existing, ubiquitin-dependent host
processes by small molecules will likely lead to other off-target
pathologies. However, in those situations where a viral adaptor
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FIGURE 1 | A schematic overview depicting examples of viral

interference with the host ubiquitin system. Included here are cases in
which either the E3 ligases or specific targets are known. With the exception
of the cellular DUBs shown in green, the Cullin proteins shown in purple, and
the various Cullin complex members shown in gold, cellular proteins are
shown in blue. All viral proteins are shown in red. Ub, ubiquitin. The box at the

top contains the relatively few cases in which HECT ligases are utilized. The
remainder of the examples shown depend upon RING-family ligases. In the
majority of cases shown, ubiquitination leads to degradation of the target
protein. When degradation is not the outcome, or when ubiquitination of
normal targets is prevented, the resulting phenotype has been annotated.
See main text for specific references.
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Table 5 | Role of UPS in unknown viral functions.

Viral protein Virus Ubiquitin function modified Reference

K5 Herpes: KSHV Induces Ub and degradation of ICAM in endothelial cells, which

may inhibit T-cell recruitment

Manes et al. (2010)

Induces Ub and degradation of CD31/PECAM-1 in endothelial

cells, which may affect adhesion and migration

Mansouri et al. (2006)

Induces Ub and degradation of ALCAM and Syntaxin-4 Bartee et al. (2006)

Induces Ub and lysosomal degradation of MHC-1 related mole-

cule, HFE, which may effect iron balance

Rhodes et al. (2010)

ICP0 Herpes: HSV E3 RING domain required for ICP0 incorporation into virions, and

subsequent post-entry delivery of virions to the nucleus

Delboy et al. (2010),

Delboy and Nicola (2011)

VP22 major tegument protein also required for ICP0 virion

incorporation

Maringer and Elliott (2010)

E3 RING domain required to dismantle microtubule network may

be involved in virion assembly or egress

Liu et al. (2010)

UL56 Induces Ub and subsequent relocalization of Nedd4 to vesicles Ushijima et al. (2008, 2009)

P28 Pox E3 Ub ligase activity targets Ub to viral replication factories Huang et al. (2004),

Nerenberg et al. (2005)

BTB-BACK-Kelch (BBK) Adaptors connecting Cul3 complexes to target substrates Wilton et al. (2008);

Shchelkunov (2010)

M148R, M149R, MNF

(Myxoma Nuclear

factor), and M-T5

Pox: myxoma Virulence factors that potentially modulate UPS Blanie et al. (2010)

EVM002, EVM005,

EVM154, and EVM165

Pox: ectromelia F-box proteins; EVM002 interacts with E3 Ub ligase

Skp1/Cul1/Roc1

Van Buuren et al. (2008)

PLPro Coronavirus: SARS DUB activity removes Ub and ISG15 from proteins, separable

from IFN antagonism function

Clementz et al. (2010)

Rep Parvovirus: AAV Rep proteins Ub and possible degradation by Ad5

E4orf6/E1B55k/Cul5 E3 ligase complex

Nayak et al. (2008),

Farris et al. (2010)

Orf3 Circovirus: porcine Interacts with PirH2 E3 Ub ligase, preventing interaction with

p53, thus leading to apoptosis

Liu et al. (2007),

Karuppannan et al. (2010)

Vpr Retro: HIV-1 Interacts with DCAF1/DDB1/Cul4 E3 Ub ligase, inducing Ub and

proteasomal degradation of the uracil-DNA glycosylase UNG2

Ahn et al. (2010)

protein is used to link a host protein to a Ub-ligase complex, the
physical interface between the viral protein and the host protein
may provide us with an interaction that can safely be inhibited
or prevented. In the near term, the catalytic sites of the virally

encoded DUBs present the most attractive therapeutic targets and
they are in fact the subject of intense investigation by numerous
groups (Chen et al., 2007b, 2009; Ratia et al., 2008; Ghosh et al.,
2010).
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