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Abstract
Purpose: To determine the most accurate similarity metric when using an inde-
pendent system to verify automatically generated contours.
Methods: A reference autocontouring system (primary system to create clinical
contours) and a verification autocontouring system (secondary system to test
the primary contours) were used to generate a pair of 6 female pelvic struc-
tures (UteroCervix [uterus + cervix], CTVn [nodal clinical target volume (CTV)],
PAN [para-aortic lymph nodes], bladder, rectum, and kidneys) on 49 CT scans
from our institution and 38 from other institutions. Additionally, clinically accept-
able and unacceptable contours were manually generated using the 49 internal
CT scans.Eleven similarity metrics (volumetric Dice similarity coefficient (DSC),
Hausdorff distance, 95% Hausdorff distance, mean surface distance, and sur-
face DSC with tolerances from 1 to 10 mm) were calculated between the ref-
erence and the verification autocontours, and between the manually generated
and the verification autocontours. A support vector machine (SVM) was used to
determine the threshold that separates clinically acceptable and unacceptable
contours for each structure. The 11 metrics were investigated individually and
in certain combinations. Linear, radial basis function, sigmoid, and polynomial
kernels were tested using the combinations of metrics as inputs for the SVM.
Results: The highest contouring error detection accuracies were 0.91 for the
UteroCervix, 0.90 for the CTVn, 0.89 for the PAN, 0.92 for the bladder, 0.95 for
the rectum, and 0.97 for the kidneys and were achieved using surface DSCs
with a thickness of 1, 2, or 3 mm. The linear kernel was the most accurate and
consistent when a combination of metrics was used as an input for the SVM.
However, the best model accuracy from the combinations of metrics was not
better than the best model accuracy from a surface DSC as an input.
Conclusions: We distinguished clinically acceptable contours from clinically
unacceptable contours with an accuracy higher than 0.9 for the targets and
critical structures in patients with cervical cancer; the most accurate similarity
metric was surface DSC with a thickness of 1, 2, or 3 mm.

KEYWORDS
auto-contour, deep learning, similarity metrics

This is an open access article under the terms of the Creative Commons Attribution License,which permits use,distribution and reproduction in any medium,provided
the original work is properly cited.
© 2022 The Authors.Journal of Applied Clinical Medical Physics published by Wiley Periodicals,LLC on behalf of The American Association of Physicists in Medicine.

J Appl Clin Med Phys. 2022;23:e13647. wileyonlinelibrary.com/journal/acm2 1 of 13
https://doi.org/10.1002/acm2.13647

mailto:drhee1@mdanderson.org
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/acm2
https://doi.org/10.1002/acm2.13647


2 of 13 RHEE ET AL.

1 INTRODUCTION

Autocontouring systems using deep learning algorithms
are widely available and have achieved great success,
but it is almost impossible to develop a flawless auto-
contouring system. The AAPM Task Group 275 recently
reported that failures in detecting contouring errors in
treatment targets and normal structures are the largest
and seventh largest risk factors in radiotherapy plan-
ning, respectively,1 and this risk will remain the same
for autocontouring systems without an automatic con-
touring error detection system. To reduce the risk from
contouring errors, automatic contouring error detection
methods have been studied by several research groups.
For example, Chen et al.2 extracted the geometric fea-
tures of organs and developed machine learning–based
contouring error detection models for normal structures
in the head and neck. McIntosh et al.3 used image fea-
tures to train a conditional random forest algorithm to
detect contouring errors in thoracic structures.Hui et al.4

used contour shapes in principal component and Pro-
crustes analysis to detect contouring errors in pelvic
structures. We previously demonstrated5 that calculat-
ing the Dice similarity coefficient (DSC) between two
independently generated contours can be used to detect
errors in one of the contours.

In this work, we extended our previous study; we have
calculated multiple quantitative metrics, instead of just
utilizing DSC, to measure the similarity between two
independently generated contours and used these met-
rics to provide quality assurance (QA) for the target and
normal structure contours necessary for radiotherapy
planning for cervical cancer.Cervical cancer was specif-
ically chosen to test our QA method,because it was one
of the first few sites where we have more than one auto-
contouring system independently developed in our clinic.

In this study, we hypothesized that if a contour is clini-
cally unacceptable (i.e., the contour cannot be used clin-
ically based on an experienced radiation oncologist’s
judgment), the discrepancy between the clinically unac-
ceptable and a clinically acceptable contour will be sub-
stantial. This discrepancy can be quantified using the
similarity metrics of the two contours, and errors in con-
tours can be automatically reported by analyzing these
metrics. With this method, we could automatically detect
errors in an autocontour using another autocontour from
an independent system. Even if both autocontours fail
simultaneously, it is very unlikely that they will fail sim-
ilarly based on our previous study with head-and-neck
normal structures5; thus, the discrepancy between the
two contours will still be substantial.

This study examined how to optimally flag incorrect
contours by evaluating 11 different comparison met-
rics and evaluating different approaches to combining
these metrics. The advantage of this method is that we
could utilize any two independently developed autocon-
touring systems to perform contour QA. Commercial
autocontouring systems are prevalent and many clinics

have their own in-house autocontouring systems nowa-
days. On the other hand, developing a classification
algorithm for clinically acceptable and unacceptable
contours is challenging as it requires numerous clini-
cally unacceptable contours, which are clinically rare.
Moreover, our QA method will be more useful with more
advanced autocontouring systems, as less frequent fail-
ures in secondary autocontours would reduce false pos-
itives (clinically acceptable reference contours classified
as clinically unacceptable due to failure in secondary
autocontours); the performance of autocontouring sys-
tems is improving rapidly with advanced deep learning
architectures and accumulated clinical data overtime.6

2 METHODS

To evaluate our QA method, we tested 11 quantitative
metrics on 6 structures in the female pelvis:UteroCervix
(uterus + cervix), CTVn (nodal clinical target volume
[CTV]), PAN (para-aortic lymph nodes), bladder, rectum,
and kidneys, which are the fundamental normal struc-
tures to create intensity-modulated radiation therapy or
volumetric modulated arc therapy radiation treatment
plans for cervical cancer. The femurs were excluded
as our autocontouring systems barely failed for these
structures unless there are imaging artifacts caused
by high-density materials (e.g., hip implants). As the
imaging artifacts can be separately managed by an
independent artifact detection algorithm,7 we did not
include the femurs in this study.

2.1 Two deep learning–based
autocontouring systems

The reference autocontouring system, which was used
to generate the contours for clinical use, was developed
in our previous study.8 The verification autocontouring
system, which was used to test the clinical acceptability
of the contours from the reference system, was devel-
oped by Rigaud et al.9 The two autocontouring sys-
tems were developed using the two independent training
datasets, and the training datasets were created using
the same contouring guideline.

As the nodal CTV and the PAN were not available in
the original verification system, we trained the autocon-
touring models for the 2 structures using 140 CT scans
to match all the structures. We used V-Net10 and FCN-
8s11 architectures to train the nodal CTV and the PAN,
respectively, to optimize the performance of the auto-
contouring system as described in our previous study.8

2.2 Data acquisition for the machine
learning model

To train an algorithm to distinguish between clinically
acceptable and unacceptable contours, we needed
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F IGURE 1 Examples of manually generated, clinically acceptable (green) and unacceptable (red) contours for the (a) UteroCervix, (b)
bladder, (c) right kidney, and (d) rectum. (e) The reference autocontour (yellow) was clinically unacceptable when the verification autocontour
(blue) was clinically acceptable. (f) Both the reference and the verification autocontours were clinically unacceptable

reference and verification contours in the same patients
and organs. We created both reference and verification
autocontours on 49 CT scans from MD Anderson (inter-
nal data) and 38 CT scans from 3 hospitals in South
Africa (external data).Then, the reference autocontours,
the ones that will be clinically used, were evaluated
to determine whether they are clinically acceptable.
For these 49 internal and 38 external CT scans, the
quality of each reference autocontour was scored by
one experienced radiation oncologist and one radiation
oncology resident at MD Anderson.They each reviewed
a subset of the contours and scored the contours as
either needing no edits, minor edits, or major edits. For
the contours scored as needing minor edits, revisions
were preferred but not mandatory for the contours to be
clinically acceptable, so the contours scored as needing
major edits were considered clinically unacceptable
contours.

Furthermore, clinically acceptable and unacceptable
contours for the 49 internal CT scans were manually
created as reference contours by radiation oncology
residents at MD Anderson. The clinically unacceptable
contours were manually introduced to mimic a potential
error that can be made by a human or a deep learning
algorithm as a result of a lack of experience or an

unclear soft tissue border, as illustrated in Figure 1. As
most of the reference autocontours from the internal
and external CT scans were clinically acceptable, the
number of clinically unacceptable contours was not suf-
ficient to determine the robust thresholds. These manu-
ally generated contours were added to the dataset to fill
this gap and, therefore, enable the model to distinguish
clinically acceptable and unacceptable contours more
robustly.

Then, the quantitative metrics were calculated
between the verification and the reference autocon-
tours for the internal and external dataset, between the
verification autocontours and the clinically acceptable
manual contours for the internal dataset, and between
the verification autocontours and the clinically unaccept-
able manual contours for the internal dataset, as shown
in Figure 2a. In total, this resulted in 185 calculated
data points per metric per structure from the 4 sets of
data. Each set of data was split equally into three for
threefold cross-validation, as shown in Figure 2b. The
results presented in this paper are the average of the
threefold cross-validation results.

We chose the 49 internal CT scans from a subset
of the training dataset of the verification autocontour-
ing system. As a result, all the verification contours for
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F IGURE 2 (a) Diagram demonstrating the data acquisition process for automatic contour QA model development and (b) demonstrating
that each set was split equally into three for threefold cross-validation. QA, quality assurance

those 49 internal CT scans were clinically acceptable.
This provided the distributions of the similarity between
clinically acceptable verification contours and clinically
acceptable manual contours, clinically unacceptable
manual contours, and the reference autocontours.

2.3 Quantitative metrics

To quantify the similarities between the paired contours,
we used four widely used conventional metrics for con-
tour comparison studies: DSC,12 Hausdorff distance13

(HD_100), 95% Hausdorff distance (HD_95), and mean
surface distance14 (MSD). We also tested the surface
DSC, as suggested by Nikolov et al.15 (code available at
https://github.com/deepmind/surface-distance), with 1-,
2-, 3-, 4-, 5-, 7-, and 10-mm shell thicknesses. All of the
metrics were calculated for the 3D contours; therefore,
we obtained one metric per patient per structure.

The definition of surface DSC with the tolerance τ is

Surface_DSC (X, Y, 𝜏) =

|
|
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X ∩ Y 𝜏

B
|
|
|
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where A and B are the volumes defined by the reference
and the verification contours, X and Y are the surfaces
of the volumes A and B , respectively, and X𝜏

B includes
the border region of the surface X and the border region
consists of all of the points that are within the toler-
ance distance τ from the surface X. Based on the defini-
tion, if the tolerance is too high (e.g., 50 mm) or too low
(e.g., 0.1 mm), the surface DSC value will be insensitive
to change in contours at all or too sensitive to a sub-
pixel level change,respectively.Therefore,the tolerances

within a reasonable range were tested. The acronym for
the surface DSC with n-mm tolerance is represented as
SDSC_n in this paper.

2.4 Error detection model with support
vector machine

We used a support vector machine (SVM),16,17 a
machine learning classification algorithm, to determine
the optimized hyperplane that distinguishes clinically
acceptable and unacceptable contours from the training
dataset. We then applied this SVM model to the vali-
dation dataset to calculate the SVM model (i.e., hyper-
plane) performance. We chose the SVM classification
algorithm because it was the best performing machine
learning algorithm for this task in our preliminary study
and is computationally fast. Furthermore, SVM is one
of the most intuitive classification algorithms,18 making
it easy to interpret the derived hyperplane.

We tested various combinations of metrics to find
the best metrics for the contouring error detection SVM
model. We first tested the SVM models derived from the
11 quantitative metrics individually (single-metric anal-
ysis) with the linear kernel, as this is the only kernel
possible for a 1D input. We tested the values of the
penalty parameter C from 1 to 50 and applied the best
value to calculate the final accuracies.To provide a more
comprehensive evaluation of the performance, we also
performed an ROC analysis and calculated the area
under the ROC curve (AUC) on each metric and each
structure.

We also tested combinations of the 11 quantitative
metrics on the basis of the results of the single-metric
analysis (multi-metric analysis). The combinations

https://github.com/deepmind/surface-distance
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TABLE 1 List of the combined metrics used in the multi-metric analysis

Name Metrics used Description

DSC_HD DSC, HD_100 Most used quantitative metrics

Three_SDSC SDSC 1, 2, 3 mm Top three SDSC from single-metric analysis

Five_SDSC SDSC 1, 2, 3,4, 5 mm Top five SDSC from single-metric analysis

Four_metrics DSC, HD_100, HD_95, MSD Four conventional quantitative metrics

Five_metrics DSC, MSD, SDSC 1, 2, 3 mm Two most effective conventional metrics + three most effective
SDSCs

Seven_metrics DSC, MSD, SDSC 1, 2, 3, 4, 5 mm Two most effective conventional metrics + five most effective
SDSCs

Nine_metrics DSC, MSD, SDSC 1, 2, 3, 4, 5, 7, 10 mm Two most effective conventional metrics + all SDSCs

All_metrics DSC, HD_100, HD_95, MSD, SDSC 1, 2, 3, 4, 5, 7, 10 mm All available metrics

Abbreviations: DSC, Dice similarity coefficient; HD, Hausdorff distance; MSD, mean surface distance; SDSC, surface Dice similarity coefficient.

tested are presented in Table 1. We tested linear, poly-
nomial (with degree = 3), radial basis function, and
sigmoid kernels in a multi-metric analysis.

3 RESULTS

3.1 Single-metric analysis

The average accuracy (probability of differentiating
the contour status correctly) of the threefold cross-
validation results is shown in Figure 3 for the 11
quantitative metrics that were tested individually with
an SVM algorithm using a linear kernel with various
penalty parameters, C, from 1 to 50. Overall, SDSC_1,
SDSC_2, and SDSC_3 were the most accurate indica-
tors in detecting contouring errors. The penalty param-
eters C = 10 gave the best results for these 3 metrics
on average, although there were no substantial differ-
ences between the penalty parameters in between 3 and
50. Therefore, we presented all the accuracies with the
penalty parameter C = 10.

The highest accuracy result was higher than 0.9
for the UteroCervix (0.91 ± 0.05 with SDSC_1), the
nodal CTV (0.90 ± 0.03 with SDSC_1 and SDSC_2),
the bladder (0.92 ± 0.03 with SDSC_3), the rectum
(0.94± 0.04 with SDSC_1),and the kidneys (0.97± 0.03
with SDSC_2) and almost 0.9 for the PAN (0.89 ± 0.04
with SDSC_3).

The accuracy decreased as the tolerance for the sur-
face DSC increased after 3 mm. DSC and MSD also
accurately predicted the clinical acceptability of the con-
tours. On the other hand, HD_100 and HD_95 were not
as accurate as the other metrics.

To investigate the stability of each metric in response
to small changes in the threshold, we calculated the
average of the thresholds for four major metrics (DSC,
SDSC_1, SDSC_2, and SDSC_3) over the structures
and calculated the accuracy using the average thresh-
olds on each structure (0.75, 0.30, 0.54, and 0.69 for
DSC, SDSC_1, SDSC_2, and SDSC_3, respectively).

The changes in the thresholds could exceed 20%,
but the overall accuracy barely changed, as shown in
Table 2. The accuracy was only reduced by a couple
of percent in most cases. In the worst case, the accu-
racy was reduced by 8% when the threshold changed
by 21.7% for the PAN. Although the change in thresh-
olds might have decreased the specificity (probability of
a clinically acceptable contour given that the contour is
acceptable) and increased the sensitivity (probability of
a clinically unacceptable contour given that the contour
is unacceptable) or vice versa, the overall accuracy did
not fluctuate according to small changes in the thresh-
old.Furthermore,the accuracies,sensitivities,and speci-
ficities with SDSC_2 were calculated in three different
scenarios: Accuracy was maximized with the SVM, sen-
sitivity was fixed to be 0.90, and sensitivity was fixed to
be 0.95, as shown in Table 3. Compared to the maxi-
mized accuracy, the accuracy was dropped by 6.5% and
12.0% on average when sensitivity was fixed to be 0.90
and 0.95, respectively.

To evaluate the performance more comprehensively,
the ROC curves were generated on each metric and
each structure, and AUCs were calculated, as shown in
Table 4. Again, SDSC_1, SDSC_2, or SDSC_3 was the
best metric to predict the clinical acceptability of con-
tours, and HD_100 and HD_95 were not good indica-
tors. The ROC curves for SDSC_2, the best indicator to
detect contouring errors based on the AUCs, are pre-
sented in Figure 4.

3.2 Multi-metric analysis

We chose combinations of two (DSC_HD) and four
(Four_metrics) widely used similarity metrics for con-
touring studies and the top three and top five most
effective surface DSC metrics (Three_SDSC and
Five_SDSC) from the single-metric analysis. Further-
more, the top 5, 7, and 9 most effective metrics from
the single metric analysis (Five_metrics, Seven_metrics,
and Nine_metrics), and all 11 metrics (All_metrics)
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F IGURE 3 Average accuracies of the contour QA model with an individual metric for each structure with various penalty parameters, C.
The error bar represents ±1 standard deviation from threefold cross-validation. QA, quality assurance

TABLE 2 Changes in accuracy when applying the average threshold of various structures instead of optimal thresholds for each structure

Change in
accuracy
(∆Threshold) (%) UteroCervix CTVn PAN Bladder Rectum Kidneys

DSC 0.82 → 0.79
(4.5%)

0.87 → 0.88
(1.5%)

0.87 → 0.76
(17.0%)

0.88 → 0.86
(3.7%)

0.88 → 0.88
(9.8%)

0.94 → 0.87
(11.4%)

SDSC_1 0.91 → 0.91
(9.5%)

0.90 → 0.91
(2.0%)

0.83 → 0.81
(18.3%)

0.89 → 0.90
(7.5%)

0.94 → 0.93
(8.8%)

0.93 → 0.92
(2.9%)

SDSC_2 0.89 → 0.89
(0.2%)

0.90 → 0.89
(0.2%)

0.86 → 0.79
(20.2%)

0.91 → 0.90
(0.4%)

0.94 → 0.93
(10.8%)

0.97 → 0.93
(20.5%)

SDSC_3 0.88 → 0.88
(0.0%)

0.74 → 0.74
(1.2%)

0.88 → 0.80
(21.7%)

0.92 → 0.90
(8.1%)

0.92 → 0.92
(8.9%)

0.96 → 0.93
(15.4%)

Abbreviations: CTVn, nodal CTV; DSC, Dice similarity coefficient; PAN, para-aortic lymph nodes; SDSC, surface Dice similarity coefficient.
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TABLE 3 Overall accuracies, sensitivities, and specificities with maximized accuracy through the SVM, fixed sensitivity of 0.90, and fixed
sensitivity of 0.95 when surface DSC with a thickness of 2 mm was used

SDSC_2 Maximize accuracy Sensitivity ≥0.90 Sensitivity ≥0.95
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

UteroCervix 0.89 0.79 0.94 0.90 0.90 0.90 0.86 0.95 0.81

CTVn 0.90 0.78 0.97 0.80 0.91 0.74 0.72 0.96 0.59

PAN 0.86 0.68 0.95 0.67 0.90 0.56 0.62 0.95 0.46

Bladder 0.91 0.79 0.97 0.85 0.90 0.83 0.79 0.95 0.72

Rectum 0.94 0.86 0.97 0.89 0.90 0.88 0.79 0.96 0.72

Kidney 0.97 0.90 0.99 0.97 0.90 0.99 0.97 0.95 0.97

Abbreviations:CTVn,nodal CTV;DSC,Dice similarity coefficient;PAN,para-aortic lymph nodes;SDSC,surface Dice similarity coefficient;SVM,support vector machine.

TABLE 4 AUCs of each structure and each metric

AUC (95% CI) UteroCervix CTVn PAN Bladder Rectum Kidneys

DSC 0.92 (0.89–0.94) 0.92 (0.89–0.95) 0.86 (0.82–0.89) 0.92 (0.90–0.94) 0.92 (0.89–0.94) 0.97 (0.95–0.99)

HD_100 0.85 (0.81–0.88) 0.75 (0.71–0.79) 0.75 (0.70–0.80) 0.93 (0.90–0.95) 0.81 (0.76–0.84) 0.91 (0.88–0.93)

HD_95 0.87 (0.83–0.89) 0.83 (0.79–0.86) 0.70 (0.65–0.74) 0.96 (0.94–0.97) 0.83 (0.80–0.86) 0.95 (0.92–0.97)

MSD 0.93 (0.91–0.95) 0.92 (0.89–0.94) 0.84 (0.80–0.88) 0.97 (0.96–0.98) 0.92 (0.89–0.94) 0.96 (0.93–0.98)

SDSC 1 mm 0.96 (0.94–0.97) 0.93 (0.90–0.95) 0.90 (0.87–0.93) 0.95 (0.93–0.97) 0.96 (0.94–0.98) 0.95 (0.92–0.97)

SDSC 2 mm 0.96 (0.94–0.97) 0.93 (0.91–0.95) 0.89 (0.86–0.92) 0.96 (0.94–0.97) 0.96 (0.95–0.98) 0.97 (0.95–0.99)

SDSC 3 mm 0.95 (0.93 – 0.96) 0.93 (0.90–0.95) 0.87 (0.83–0.91) 0.97 (0.96–0.98) 0.95 (0.92–0.97) 0.97 (0.95–0.99)

SDSC 4 mm 0.93 (0.91–0.95) 0.92 (0.89–0.94) 0.85 (0.80–0.89) 0.97 (0.95–0.98) 0.93 (0.90–0.96) 0.96 (0.94–0.98)

SDSC 5 mm 0.92 (0.89–0.94) 0.91 (0.88–0.94) 0.83 (0.79–0.88) 0.97 (0.95–0.98) 0.92 (0.88–0.94) 0.95 (0.93–0.97)

SDSC 7 mm 0.90 (0.87–0.93) 0.89 (0.86–0.92) 0.81 (0.76–0.85) 0.96 (0.94–0.97) 0.89 (0.85–0.92) 0.94 (0.92–0.96)

SDSC 10 mm 0.88 (0.85–0.92) 0.85 (0.81–0.88) 0.80 (0.75–0.84) 0.91 (0.88–0.94) 0.85 (0.81–0.89) 0.91 (0.88–0.94)

Note: 95% CI for AUCs were derived with the bootstrapping method with n = 2000.
Abbreviations: AUC, area under the ROC curve; CI, confidence interval; CTVn, nodal CTV; DSC, Dice similarity coefficient; HD, Hausdorff distance; MSD, mean surface
distance; PAN, para-aortic lymph nodes; SDSC, surface Dice similarity coefficient.

were tested in the multi-metric analysis. Similar to the
single-metric approach, the penalty parameters C
around 10 gave the best results on average, although
there were no substantial differences between the
penalty parameters in between 3 and 50. Therefore,
we presented all the accuracies here with the penalty
parameter C = 10.

The SVMs with four kernels on different combina-
tions of metrics were trained; the results are shown in
Figure 5. We found the optimized values for some ker-
nel parameters (kernel coefficient gamma and degree of
the polynomial kernel) from a couple of structures and
applied them to the rest of the structures. Most of the
kernels had similar performance, but the sigmoid kernel
substantially underperformed compared to the other ker-
nels. On average, the model performance with the radial
basis function and polynomial kernels fluctuated more
with the choice of the metrics than was observed with
the linear kernel.

The highest accuracy with the linear kernel was
higher than 0.9 for the UteroCervix (0.90 ± 0.02
with Five_metrics), the bladder (0.92 ± 0.02

with Four_metrics), the rectum (0.95 ± 0.03 with
Five_metrics), and the kidneys (0.97 ± 0.02 with
Five_SDSC) and just below 0.9 for the nodal CTV
(0.89 ± 0.04 with Three_SDSC) and the PAN
(0.88 ± 0.03 with Nine_metrics). The overall accu-
racies, sensitivities of detecting erroneous contours,
and specificities for the single- and multi-metric analy-
ses with the linear kernel are presented in Tables 5–7.

4 DISCUSSION

In this study, we demonstrated that errors in a con-
tour can be detected by being compared with another
independently generated contour. By choosing appro-
priate similarity metrics and using the SVM clas-
sification algorithm, we were able to achieve an
accuracy higher than 0.9 for most of the structures.
Furthermore, we reported the optimized thresholds
from our dataset in Table 2 so that anyone can use
these thresholds for their QA system for the pelvic
structures.
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F IGURE 4 The ROC curves with a surface DSC with a tolerance of 2 mm, the best metric to predict the clinical acceptability of the
automatically generated contours. DSC, Dice similarity coefficient

From this study, we showed that the surface DSC with
a tolerance of 1–3 mm is the best similarity metric to
detect contouring errors. Using combinations of multi-
ple metrics did not improve the accuracy of detecting
contouring errors. This could be because we did not
have enough data to fine-tune the thresholds to substan-
tially improve the results of the single-metric approach.
In addition, because most of the metrics are already
strongly correlated with each other, the classification
model might have not been able to learn useful infor-
mation from the additional metrics. In any case, using
a single metric to flag incorrect contours performed as
accurate as or even more accurate than did combina-
tions of multiple metrics and makes it easier for users to

interpret the results. Furthermore, considering the vari-
ations in the sizes and shapes of the structures used in
this study, the single-metric approach should be feasi-
ble for most of the structures in various treatment sites.
Therefore, we believe that the single-metric approach,
especially using the surface DSC metric, is the best
approach to detect contouring errors utilizing two auto-
contouring systems and is expandable to other treat-
ment sites. Although preliminary, this work indicates that
an SDSC_2 threshold of 0.54 may be a reasonable
starting point for a wide variety of structures.

In the single-metric analysis, we found that the vol-
umetric DSC and MSD are effective indicators for
determining the similarity between the two contours in
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F IGURE 5 Average accuracies of the SVM model with multiple metrics for each structure. The error bar represents ±1 standard deviation.
Four different kernels (linear, polynomial, rbf, and sigmoid) were tested. rbf, radial basis function; SVM, support vector machine

terms of error detection. On the other hand, the HDs
(HD_100 and HD_95) often failed to detect contouring
errors in our QA method, demonstrating that most real-
istic contouring errors were not caused by a substantial
failure in a single or small part of the contour and pos-
sibly explaining why the surface DSC was very effective
at detecting contouring errors. As the surface DSC only
compares the volume of the shell, the metric may indi-
cate the overall similarity between the two contours near
the surface. MSD is similar, but any small discrepancy
between the two contours in each calculation point can
contribute to the MSD. On the other hand, the surface
DSC is more effective as the user can choose the

tolerance value and anything below the tolerance will
not contribute to reducing the surface DSC. For the sur-
face DSC with a tolerance higher than 5 mm, however,
the accuracy decreased substantially; thus, it is recom-
mended to use the surface DSC with a tolerance of less
than 5 mm to compare two contours in future studies.

One of the weaknesses of this study is that the
49 internal CT scans were from the training dataset
of the verification autocontouring system, although
38 external CT scans were independent from it. This
makes the most of the verification autocontours to be
accurately predicted on the internal CT scan and, there-
fore, substantially reduces the false positives (clinically
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TABLE 5 Overall accuracies from the single-metric and multi-metric analyses, when SVM was used with the linear kernel

Single-metric UteroCervix CTVn PAN Bladder Rectum Kidneys

DSC 0.82 0.87 0.87 0.88 0.88 0.94

HD_100 0.78 0.72 0.71 0.85 0.75 0.86

HD_95 0.77 0.76 0.66 0.87 0.76 0.91

MSD 0.87 0.88 0.85 0.91 0.89 0.95

SDSC 1 mm 0.91 0.90 0.83 0.89 0.94 0.93

SDSC 2 mm 0.89 0.90 0.86 0.91 0.94 0.97

SDSC 3 mm 0.88 0.88 0.89 0.92 0.92 0.96

SDSC 4 mm 0.89 0.88 0.87 0.91 0.91 0.95

SDSC 5 mm 0.88 0.88 0.87 0.89 0.89 0.94

SDSC 7 mm 0.85 0.87 0.87 0.89 0.86 0.92

SDSC 10 mm 0.80 0.79 0.83 0.86 0.78 0.86

Multi-metric

DSC + HD_100 0.82 0.87 0.86 0.86 0.88 0.94

Three_SDSC 0.89 0.89 0.87 0.91 0.94 0.97

Five_SDSC 0.89 0.88 0.87 0.92 0.95 0.97

Four_metrics 0.89 0.88 0.85 0.92 0.90 0.96

Five_metrics 0.90 0.88 0.87 0.92 0.95 0.97

Seven_metrics 0.89 0.87 0.87 0.92 0.95 0.97

Nine_metrics 0.89 0.87 0.88 0.92 0.95 0.97

All_metrics 0.88 0.88 0.86 0.92 0.94 0.97

Abbreviations: CTVn, nodal CTV; DSC, Dice similarity coefficient; HD, Hausdorff distance; MSD, mean surface distance; PAN, para-aortic lymph nodes; SDSC, surface
Dice similarity coefficient; SVM, support vector machine.

TABLE 6 Overall sensitivities from the single- and multi-metric analyses, when SVM was used with the linear kernel

Single-metric UteroCervix CTVn PAN Bladder Rectum Kidneys

DSC 0.59 0.67 0.68 0.69 0.70 0.71

HD_100 0.46 0.33 0.32 0.66 0.22 0.47

HD_95 0.46 0.53 0.00 0.72 0.33 0.65

MSD 0.74 0.73 0.65 0.78 0.78 0.82

SDSC 1 mm 0.82 0.76 0.72 0.76 0.87 0.73

SDSC 2 mm 0.79 0.78 0.68 0.79 0.86 0.90

SDSC 3 mm 0.74 0.74 0.71 0.78 0.81 0.82

SDSC 4 mm 0.77 0.73 0.69 0.76 0.77 0.74

SDSC 5 mm 0.74 0.70 0.67 0.69 0.69 0.71

SDSC 7 mm 0.67 0.64 0.68 0.68 0.59 0.61

SDSC 10 mm 0.53 0.41 0.58 0.57 0.31 0.29

Multi-metric

DSC + HD_100 0.61 0.67 0.68 0.69 0.68 0.71

Three_SDSC 0.77 0.76 0.71 0.77 0.87 0.87

Five_SDSC 0.77 0.73 0.69 0.80 0.87 0.89

Four_metrics 0.80 0.73 0.64 0.82 0.77 0.87

Five_metrics 0.82 0.73 0.71 0.80 0.87 0.89

Seven_metrics 0.80 0.73 0.69 0.80 0.87 0.89

Nine_metrics 0.80 0.73 0.69 0.80 0.87 0.89

All_metrics 0.82 0.73 0.66 0.82 0.83 0.87

Abbreviations: CTVn, nodal CTV; DSC, Dice similarity coefficient; HD, Hausdorff distance; MSD, mean surface distance; PAN, para-aortic lymph nodes; SDSC, surface
Dice similarity coefficient; SVM, support vector machine.
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TABLE 7 Overall specificities from the single- and multi-metric analyses, when SVM was used with the linear kernel

Single-metric UteroCervix CTVn PAN Bladder Rectum Kidneys

DSC 0.94 0.98 0.97 0.96 0.94 1.00

HD_100 0.94 0.93 0.90 0.93 0.96 0.95

HD_95 0.92 0.89 0.93 0.94 0.93 0.97

MSD 0.93 0.96 0.95 0.98 0.93 0.98

SDSC 1 mm 0.95 0.97 0.89 0.95 0.97 0.97

SDSC 2 mm 0.94 0.97 0.95 0.97 0.97 0.99

SDSC 3 mm 0.94 0.96 0.98 0.99 0.97 0.99

SDSC 4 mm 0.94 0.96 0.97 0.99 0.97 1.00

SDSC 5 mm 0.94 0.98 0.98 0.99 0.97 1.00

SDSC 7 mm 0.94 0.99 0.98 0.99 0.96 1.00

SDSC 10 mm 0.94 1.00 0.96 1.00 0.96 1.00

Multi-metric

DSC + HD_100 0.92 0.98 0.96 0.94 0.95 1.00

Three_SDSC 0.94 0.96 0.95 0.98 0.97 0.99

Five_SDSC 0.94 0.96 0.97 0.98 0.98 0.99

Four_metrics 0.93 0.96 0.96 0.98 0.96 0.98

Five_metrics 0.94 0.96 0.96 0.98 0.98 0.99

Seven_metrics 0.93 0.95 0.97 0.98 0.98 0.99

Nine_metrics 0.93 0.95 0.98 0.98 0.98 0.99

All_metrics 0.91 0.96 0.96 0.98 0.98 0.99

Abbreviations: CTVn, nodal CTV; DSC, Dice similarity coefficient; HD, Hausdorff distance; MSD, mean surface distance; PAN, para-aortic lymph nodes; SDSC, surface
Dice similarity coefficient; SVM, support vector machine.

acceptable reference contours classified as clinically
unacceptable).From our preliminary study,the false pos-
itives mostly occurred when the verification contours
were unacceptable, whereas the reference contours
were acceptable. This reduction in false positives prob-
ably overestimated the performance of the QA method
with the given autocontouring systems. Yet, a high false-
positive rate misleads the SVM algorithm determining
the accurate thresholds. The algorithm is incorrect
for false positives as it does not correctly predict the
status of the reference contour. However, the algorithm
could have been correct with the same exact pair of
contours with the reference and the verification con-
tours swapped. Having a high false-positive rate would
make the thresholds to be more generous, as shown
in Figure 6, and results in increasing false negatives
(clinically unacceptable reference contours classified as
clinically acceptable), the least desired situations in any
automatic contouring QA methods. This is an inherent
limitation of an automatic contouring QA method using
scalar quantities, and we intentionally decreased false-
positive rates and overestimated the overall accuracy to
overcome the limitation.Fortunately,having a high false-
positive rate is not critical in a clinical scenario. We will
provide both reference and verification contours to the
users when the discrepancy between the two contours
is substantial, and the user will select the better contour.

F IGURE 6 False positives can make the thresholds more
generous (blue dashed lines) than the desired thresholds (brown
dashed lines) and result in having more false negatives in clinical
situations

If both contours were provided for the false-positive
case, the user can quickly review the reference contour
and use it as is. Therefore, we believe that deriving the
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F IGURE 7 The surface DSC distributions of the clinically acceptable and unacceptable kidney contours with (left) and without (right) the
manually generated contours. The thresholds can be confidently determined with the manual contours, whereas the threshold can be anywhere
between the blue and red dashed lines without the manual contours due to insufficient amount of data. DSC, Dice similarity coefficient

more accurate thresholds for the contouring QA method
outweighs calculating the more accurate performance
that is specific to our autocontouring systems datasets.
Moreover, as we currently implement and test this sys-
tem clinically, we will reassess the performance of the
QA system with independent data in the future.

Another concern in this study was that the majority of
the unacceptable contours were manually introduced to
mimic a potential error that can be made by a human or a
deep learning algorithm. Consequently, the distributions
of the metrics and the derived accuracies in this study
might not fully reflect the actual performance of the con-
tour QA model on the autocontouring systems.However,
in our preliminary study, the metric points corresponding
to both the clinically acceptable and unacceptable con-
tours near the thresholds were not sufficient, as shown
in Figure 7.The thresholds could have been chosen any-
where in between the red and blue dashed lines on the
right part of Figure 7, when the manual contours were
not included. Therefore, predicting the verification auto-
contours on its training dataset and adding the manual
contours helped us determine more robust metrics for
the contour QA models.

As our automatic contouring QA method is not per-
fect, it is still mandatory for experts to review all the con-
tours.However,an automatic contouring QA method can
provide a second opinion on both manually and auto-
matically generated contours and potentially detect the
errors that experts might miss. Furthermore, the per-
formance of the contouring QA method is improved as
the performance of the verification autocontouring sys-
tem is improved. With the rapid advancement of deep
learning architectures for semantic segmentation tasks,
we are observing great progress in autocontouring sys-
tems, and they will eventually achieve human-level per-

formance in the near future. At that point, the contouring
QA method will detect almost all the contouring errors
except for the subtle failures. Moreover, Cao et al.19

showed that suboptimal contours from an autocontour-
ing system do not lead to systematic differences in dosi-
metric plan quality compared to that with the manually
generated contours.This tells us that if we can avoid any
substantial contouring errors, the final plan would not be
significantly different from the plan generated with flaw-
less contours.With all that,a proper use of our automatic
contouring QA method can contribute to the safety of
radiation treatment.

5 CONCLUSIONS

We demonstrated that the discrepancy between two
independently generated contours is a strong indica-
tor of an error in one of the contours. The most accu-
rate similarity metric to detect contouring errors was sur-
face DSC with a tolerance of 1, 2, or 3 mm. With this
approach, we were able to achieve the error detection
accuracy higher than 0.9 for most of the targets and crit-
ical structures in the female pelvis. The contouring QA
method can be used to automatically detect errors in
autocontours to reduce the risks associated with the use
of automated radiotherapy tools.We will validate this QA
method in other sites and structures in the future.
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