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Abstract
During infancy, the human brain rapidly expands in size and complexity as neural networks mature and new information is 
incorporated at an accelerating pace. Recently, it was shown that single electrode EEG in preterms at birth exhibits scale-
invariant intermittent bursts. Yet, it is currently not known whether the normal infant brain, in particular, the cortex maintains 
a distinct dynamical state during development that is characterized by scale-invariant spatial as well as temporal aspects. 
Here we employ dense-array EEG recordings acquired from the same infants at 6 and 12 months of age to characterize brain 
activity during an auditory oddball task. We show that suprathreshold events organize as spatiotemporal clusters whose 
size and duration are power-law distributed, the hallmark of neuronal avalanches. Time series of local suprathreshold EEG 
events display significant long-range temporal correlations (LRTCs). No differences were found between 6 and 12 months, 
demonstrating stability of avalanche dynamics and LRTCs during the first year after birth. These findings demonstrate that 
the infant brain is characterized by distinct spatiotemporal dynamical aspects that are in line with expectations of a critical 
cortical state. We suggest that critical state dynamics, which theory and experiments have shown to be beneficial for numer-
ous aspects of information processing, are maintained by the infant brain to process an increasingly complex environment 
during development.
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Introduction

Studies on early human development, in both preterm and 
term newborns, have revealed structural aspects of early 
human brain growth using magnetic resonance imag-
ing (MRI) (Kostović and Judaš 2006; Hüppi et al. 1998; 

Kostović and Judaš 2008), diffusion tensor imaging (DTI) 
(Hüppi and Dubois 2006), and histological preparations 
(Kostović and Judaš 2006, 2008). Converging quantitative 
EEG and volumetric MRI analyses demonstrating significant 
correlation between early higher brain activity levels and 
increased brain volumes in preterm newborns (Benders et al. 
2015), support the idea that neuronal growth and survival is 
sensitive to early network activity.

Whereas the mentioned studies have focused on early 
developmental changes in brain growth and brain activity 
from a broader point of view, recent studies have taken these 
investigations a step further by examining stability in neu-
ronal network function, essentially, the role of brain activity 
in homeostasis (Prinz et al. 2004; Bucher et al. 2005; Marder 
and Goaillard 2006). Homeostasis and dynamical regulation 
of brain networks require detection of scale-invariant neu-
ronal bursts of activity. The most common scale-invariant 
dynamics in cortex are neuronal avalanches (Beggs and 
Plenz 2003) and to date they have been demonstrated in 
adult humans in EEG (Meisel et al. 2013; Allegrini et al. 
2010; Benayoun et al. 2010), ECoG (Dehghani et al. 2012; 
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Solovey et al. 2012; Priesemann et al. 2013), MEG (Palva 
et al. 2013; Shriki et al. 2013), and fMRI (Tagliazucchi et al. 
2012).

Rapidly accumulating evidence supports the hypothesis 
that cortical dynamics in humans exhibit scale-invariant fea-
tures that change with altered states such as sleep depriva-
tion (Meisel et al. 2013, 2017a, b) and epilepsy (Arviv et al. 
2016). In infants, scale-invariant neuronal activity has been 
observed in the single electrode EEG of preterm infants as 
early as 12 h after birth (Roberts et al. 2014). Importantly, 
deviations from scale-invariant neuronal activity tracks 
recovery from the burst suppression induced by hypoxia and 
predicts recovery from early hypoxic insult (Iyer et al. 2015). 
This suggests that measures of scale-invariant dynamics may 
serve as potential biomarkers for early detection of concur-
rent risk and/or disease in infants.

However, the time course and the evolving characteristics 
of scale-invariant cortical dynamics over normative devel-
opment are unknown. Further, it is also not clear to what 
degree brain dynamics are stable during the first year of 
life when the infant brain dramatically expands in size and 
changes in connectivity, a challenge posited by Marder and 
colleagues and other researchers (Prinz et al. 2004; Bucher 
et al. 2005; Marder and Goaillard 2006). As mentioned, neu-
ronal avalanches have been identified in clinical populations 
using a local single electrode EEG (Roberts et al. 2014), 
but to examine avalanche dynamics across typical devel-
opment with a more holistic perspective, multi-site record-
ings of cortical activity that allow global and local analyses 
would be more appropriate (Grieve et al. 2003; Odabaee 
et al. 2013).

The focus of the present study, in which dense-array EEG 
data was recorded while infants listened to tone-pairs pre-
sented in a passive oddball paradigm, was twofold: (1) to 
explore ongoing neocortical activities for potential neuronal 
avalanche dynamics, and (2) to identify the degree of stabil-
ity of avalanche dynamics over the course of 6 months of 
development.

Materials and methods

Participants

Participants in the current study were a subset of children 
who had participated in a larger longitudinal study that 
assessed the effects of early auditory processing skills 
on later language and cognitive development (Benasich 
et al. 2006; Choudhury et al. 2007; Choudhury and Bena-
sich 2010; Benasich and Choudhury 2012). Infants were 
recruited from local newspapers, birth announcements, and 
pediatric clinics. The infant group consisted of 19 typically 
developing full-term, normal birthweight infants (11 males, 

8 females) with no reported family history of developmental 
language disorders (DLD). They were tested longitudinally 
at each of seven ages from 6 months through 48 months of 
age using both behavioral and electrophysiological assess-
ments. For the purpose of the present study, only the 6- 
and 12-month EEG recordings were used. This study was 
approved by the Institutional Review Board of Rutgers Uni-
versity, and conducted in accordance with the 1964 decla-
ration of Helsinki. Informed consent was obtained from all 
parents following a full explanation of the experiment and 
prior to their child inclusion in the study.

EEG stimuli and recording

The EEG was recorded following our infant protocol 
(Musacchia et al. 2015) while the infants were awake and 
comfortably seated on their parent’s lap in a sound-attenu-
ated and electrically shielded chamber. Silent videos were 
played on a monitor to engage the infant’s attention and min-
imize movements. If the infant lost interest in the video, an 
experimenter played a silent puppet show or used quiet toys. 
EEG was recorded from 62 scalp sites using the Geodesic 
Sensor Net (Electrical Geodesics Inc., Eugene, OR). The 
signal was sampled at 250 Hz, referenced on-line to the ver-
tex and band-pass filtered at 0.1–100 Hz. For the avalanche 
analysis, EEG recordings were re-referenced to an average 
(whole head) reference. The auditory stimuli used were com-
plex tone-pairs, each tone 70 ms in duration. The first block 
presented was a fast-rate block with an interstimulus interval 
(ISI) of 70 ms. The second block was a slow-rate block with 
300 ms ISI. Between the blocks, a short period of 3–4 min of 
ongoing spontaneous activity without auditory stimulation 
was recorded. Tone-pairs were presented in a passive odd-
ball paradigm with the standard pair (100–100 Hz) presented 
85% of the time and the deviant pair (100–300 Hz) ran-
domly presented 15% of the time. Preliminary examination 
of the spontaneous block showed power-law behavior but 
included high fluctuations in the avalanche profile that low-
ered the level of confidence required for this type of analysis. 
However, note that it has been demonstrated that evoked 
responses do not affect power-law statistics and that evoked 
data preserves the signature of neuronal avalanches (Yu et al. 
2017). Thus, for the purpose of this study, only results from 
the fast-rate (70 ms ISI) condition are reported because: (1) 
the duration of that block allowed the continuous data points 
necessary to conduct the avalanche analysis and, as men-
tioned, (2) given the high fluctuation in avalanche profile 
observed in the spontaneous block, our confidence in the 
stability and reliability of that analysis was low. The average 
duration of the EEG recording was 12 min for each child for 
the 70 ms ISI condition. For a more detailed description of 
the stimuli and paradigm used, please refer to Benasich et al. 
(2006). Several noisy channels were identified for a subset of 
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the subjects; they were removed and interpolated via auto-
matic channel rejection (EEGLAB) (Delorme and Makeig 
2004) using the Kurtosis measure. In particular, 2 channels 
at 6 months and 3 channels at 12 months were interpolated 
for the subject reported here (subject #14). As suggested by 
Odabaee et al. (2013), due to the spatial specificity of infant 
data, a high number of EEG channels is required to have a 
precise and reliable analysis. Here, however, we have 62 
channels and the average ratio of interpolated channels is 
very low ( ∼ 3% ). Time series were broken into six frequency 
bands: delta ( � ; 0.5–4 Hz); theta ( �; 4–8 Hz); alpha ( �; 8–13 
Hz); beta ( �; 13–30 Hz); low gamma ( �L; 30–48 Hz), and 
high gamma ( �H; 48–70 Hz). In addition to the six frequency 
bands, the full frequency band was also examined. MAT-
LAB Signal Processing Toolbox and in-house functions 
were used for filtering the data (R2016; The Mathworks, 
Natick, MA).

Avalanche detection

Neuronal avalanches are defined as spatiotemporal clusters 
of neuronal activity within intervals less than a specific time 
regardless of electrode location (Beggs and Plenz 2003; 
Gireesh and Plenz 2008; Benayoun et al. 2010; Dehghani 
et al. 2012). Super-thresholded negative (or positive) peaks 
are defined as events in our analysis, and we performed four 
steps to identify events, and define neuronal cluster to ana-
lyze them in the infant EEG:

1.	 z-transform the EEG time series at each electrode, i.e., 
subtract the mean and divide by the standard deviation 
(SD).

2.	 Set successive thresholds as multiples of SD ranging 
from 2 to 4 in steps of 0.25 and identify threshold cross-
ings as shown in Fig. 1a. Mark peak time and peak 
amplitude of the z-normalized suprathreshold EEG 
potential for cluster calculations.

3.	 Define a separation time, Δt , between two consecutive 
suprathreshold events. Analyze neuronal clusters for a 
range of Δt.

4.	 Identify a neuronal cluster as consecutive events com-
posed of all channels, in which the time interval between 
peaks across changes was smaller than Δt (Fig. 1). This 
method has been previously used by Benayoun et al. 
(2010). In an identified neuronal cluster, avalanche size 
is defined as the number of super-thresholded negative 
(or positive) peaks (i.e., events) and avalanche dura-
tion is defined as the time distance between the first and 
last event in that cluster (note that size and duration are 
dimensionless).

Our method identifies spatiotemporal avalanches as con-
secutive periods of activity separated by more than Δt (as 

illustrated in Fig. 1). This method differs from the ava-
lanche algorithm (standard method), originally introduced 
by Beggs and Plenz (2003), which considers an avalanche 
as a sequence of time bins Δt with activity bracketed by 
at least two time bins without activity (Fig. 1b). As illus-
trated in Fig. 1, the two methods lead to a slightly different 
partitioning of activity into temporal clusters. Using the 
interval method allowed us to easily make an average over 
all inter-event intervals, and select an appropriate time 
span to choose Δt . Moreover, this method provides more 
precise statistics on the time scales, leading to higher reso-
lution/more accurate plots of the data. Due to the noisy 
nature of EEG data, the results from the two methods are 
similar, but not completely overlapping. Nonetheless, we 
found no significant difference ( P < 0.05 ) between the 
exponents derived from each method. Thus, we decided, 
in the interest of clarity and readability, to only report the 
results from the interval method.

Fig. 1   Brain activity and definition of avalanches. a EEG time course 
of five electrodes. Peak time and peak amplitude are extracted from 
suprathreshold negative (or positive) EEG deflections that cross a 
constant threshold set at a multiple of the EEG SD (all here were neg-
ative). Schematic highlighting differences in avalanche identification 
using b the interval method and c the standard method. The stand-
ard method identifies one avalanche based on four consecutive active 
bins, whereas the interval method identifies two avalanches based on 
two events exhibiting a time interval > 400 ms
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It was previously shown that power-law behavior in ava-
lanche sizes does not depend on the choice of separation 
time for a wide range of Δt s. In fact, scaling analysis for 
Δt has been demonstrated to collapse avalanche power-laws 
(Beggs and Plenz 2003; Petermann et al. 2009; Yang et al. 
2012). Similarly, power-law behavior in avalanche dynamics 
has been demonstrated to be largely threshold independent 
(Petermann et al. 2009; Dehghani et al. 2012; Tagliazucchi 
et al. 2012).

Size and duration distributions of avalanches

It has been shown that avalanche distributions in size, s, and 
duration, t, exhibit a power-law behavior (Beggs and Plenz 
2003; Shew et al. 2009; Friedman et al. 2012),

where p is the probability density function of the associ-
ated variables. To study the type of function underlying the 
avalanche distributions in size and duration obtained from 
the infant EEG, we used the maximum likelihood estimation 
(MLE) defined for an arbitrary distribution function (Clauset 
et al. 2009) as

where f (xi) is the probability of ith data point. The �, �,… 
are the hypothetical model’s parameters and if chosen cor-
rectly, the likelihood will be maximized. Hence, we can 
choose any hypothetical model for distribution and find 
the model’s parameters by maximizing the likelihood. The 
maximization of the likelihood can be accomplished by 
maximizing its logarithm. Therefore, if the distribution is a 

(1)
{

p(s) ∝ s−�

p(T) ∝ T−� ,

(2)L(�, �,…) =

N∏

i=1

f (xi, �, �,…),

power-law, we can calculate the logarithm of the likelihood 
for different exponents and find the corresponding exponent 
for the maximum likelihood. The normalized equation for 
discrete power-law distribution with low and high cutoff is:

where � is exponent and A is normalization factor:

Using Eqs.  (2) and (3), the logarithm of likelihood for 
power-law distribution is:

where N is the number of data point between cutoffs.
The selection of low and high cutoffs, i.e., xmin and xmax 

affects the model estimation, and we will introduce a rational 
method for choosing them. Nevertheless, there are other dis-
tributions which show a semi-line on bi-logarithmic axes, 
such as exponential distribution and log-normal distribution 
(see Fig. 2a). We can also fit these distributions by the MLE 
method and find the model parameters. The probability den-
sity function (PDF) of an exponential distribution is:

where � is the model’s parameter. Using Eq. 2, logarithm of 
likelihood for the exponential distribution is:

(3)f (x) = A(�, xmin, xmax)
(
1

x

)�

,

(4)
A(�, xmin, xmax) =

1
∑xmax

x=xmin

�
1

x

�� .

(5)

l(�) ≡
Log(L(�))

N
= − Log

(
xmax∑

x=xmin

(
1

x

)�
)

−
�

N

N∑

i=1

Log(xi),

(6)f (x) = �e−�x, x ≥ 0,

Fig. 2   a Typical distribution of three models in a bi-logarithmic 
scale. Distributions show a line in a specific range of x while the 
exponential and log-normal models decrease faster in the tail. b The 
Kolmogorov–Smirnov test computed between the typical model and 
data cumulative distribution. The maximum distance between the 

cumulative distribution function is used as the criteria for the differ-
ence between distributions. c The estimation method of fitting range. 
The low cutoff is set to 2 and the high cutoff is determined by the 
probability of the avalanches. The high cutoff is the largest occur-
rence with p(x) > 0.01
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For log-normal distribution, the probability density func-
tion is:

where � and � are model’s parameters. The logarithm of 
likelihood is:

The MLE method does not provide a quantitative value 
describing the accuracy of the hypothetical model. There-
fore, a method of comparing different models was needed. 
By calculating a P value for each model, we can reject 
the inappropriate models. Here, we used the Kolmogo-
rov–Smirnov (KS) test to calculate the difference between 
the distributions driven by the model and that of the experi-
ment, i.e., fitting error (Marshall et al. 2016) which is indi-
cated by KSD . The KS relation is:

where CDF stands for the cumulative distribution function. 
By reproducing 1000 realizations to obtain P < 0.001 with 
the model distribution, we can estimate the KS difference 
between the model and generated datasets, i.e., KSG . The 
KS between two typical distributions is illustrated in Fig. 2b.

The P value was defined as the number of reproduced 
ensembles we obtain KSG ≥ KSD over all ensembles. If this 
P value has a large value, it implies that the fitting error is 
due to the random nature of the experiment, but if the P 
value is lower than 0.1, we can reject the model.

To evaluate the fitting parameters, low and high cutoffs 
must be specified. To keep the largest number of avalanches, 
we set the low cutoff xmin at 2 for size and duration distribu-
tions, and since the number of avalanches depends on the 
value of the threshold, which varies from one channel to 
another (see section “Avalanche detection”), we neglected 
rare avalanches that had a probability less than 0.01 when 
choosing the high cutoff. Therefore, xmax is the largest ava-
lanche with p(x) ≥ 0.01 . The method is illustrated in Fig. 2c.

(7)l(�) = Log(�) − �

N∑

i=1

xi

N
.

(8)f (x) =
1

√
2��x

e
−

(Log(x)−�)2

2�2 ,

(9)

l(�,�) = −
Log(2�)

2
− Log(�) −

N∑

i=1

log(xi)

N

−

N∑

i=1

(Log(xi) − �)2

2N�2
.

(10)KS(f , g) = Max|CDF(f ) − CDF(g)|,

Randomized controls of event cluster distributions

To investigate whether the observed power-law behavior was 
due to the methodology used, or could be attributed to the 
intrinsic correlation inherent in the data, we created rand-
omized controls and repeated our analysis. For visual compari-
son, we plotted the avalanche size and duration of the original 
data and the randomized data in Fig. 7.

Method 1: randomizing the time intervals

As shown in Fig.  1.a, first suprathreshold events were 
detected. Suppose some events with the occurrence times 
= {4.6, 6.7, 9.8, 16.7, 22.5} with results events’ intervals = 
{2.1, 3.1, 6.9, 5.8}. Random values were assigned to each 
occurrence time. These random values were drawn from a 
uniform distribution in the range of zero and the length of 
the signal. New randomized occurrence times = {13.7, 6.2, 
22.9, 18.6, 17.3}. Then the set was sorted by new occur-
rence times, and we will have the new intervals = {7.5, 3.6, 
1.3, 4.3}. This approach preserved the number of events for 
each time series, yet, abolishes the corresponding inter-event 
intervals and thus correlations between time series.

Method 2: randomizing the original time series

The original data were shuffled entirely, i.e., we shuffled y 
values of the original EEG signal into different time points 
and suprathreshold events were detected from the new shuf-
fled signal; this procedure changed both correlations and the 
number of events in the signal, therefore, the distribution 
of intervals and the number of events in the shuffled signal 
were different from the original signal.

Detrended fluctuation analysis

The presence of neuronal avalanches is in line with criti-
cal state dynamics in which neuronal events exhibit long-
range temporal correlations (LRTC) (Chialvo 2010). To 
study LRTCs between suprathreshold EEG events, we use 
detrended fluctuation analysis (DFA) (Kantelhardt et al. 
2002) (see “Avalanche detection” for more details). We ana-
lyze the EEG suprathreshold events time series collected 
from all channels of all infants. In particular, events are col-
lected at their occurrence times from all channels and for 
each subject to form a single time series (note that simul-
taneous events add up to a single large event, and then the 
interval between events are calculated).

To conduct the DFA analysis, first, the cumulative time 
series of given data x is calculated:

(11)Y(i) ≡

i∑

k=1

[xk − x̄], i = 1, 2,…N.
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Then, the series of non-overlapping segments of length 
s which we refer to as scale is driven from the cumulative 
signal. The signal is detrended and the variance of � th seg-
ment of length s is calculated as follows:

Average of the variances over segments gives the fluctua-
tion function which can be calculated as follows:

The fluctuation function can be fitted with a power func-
tion of scales as F(s) ∝ sh and h is the Hurst exponent. A 
Hurst exponent 0.5 < h < 1 demonstrates the existence of 
LRTC while h = 0.5 is corresponding to the uncorrelated 
signal (Parish et al. 2004; Benayoun et al. 2010).

The de-identified EEG data, documentation, and all code 
used in these analyses will be made available upon request 
to M.Z. and/or A.A.B.

(12)F2(s, �) ≡
1

s

s∑

i=1

{Y[(� − 1) × s + i] − y�}
2.

(13)F(s) ≡

{
1

Ns

Ns∑

�=1

F2(s, �)

}1∕2

.

Statistical tests

We used two different statistical analyses throughout the 
study; (1) in order to select the best fit model for distri-
butions, we calculated a P value for each model using KS 
test, based on procedures used in Clauset et al. (2009). The 
details of the KS test are described in “Size and duration 
distributions of avalanches”. ( 2) to explore if there is a sig-
nificant difference between avalanche distributions across 
age groups, we deployed the common Student’s t test on 
exponents corresponding to the distributions and report the 
P values; P < 0.05 indicates the significant difference.

Results

To identify scale-invariant features in the infant data, we 
applied avalanche analysis in size and duration for different 
thresholds ranging from 2 to 4 times the standard devia-
tion (SD) for each channel in the full frequency band (i.e., 
over the entire uncategorized frequency band, i.e., 0.1–100 
Hz). In Fig. 3a–d, we show the exemplary distributions of 
size and duration for subject #14 at 6 and 12 months of 
age, respectively. Distributions display a straight line in a 
double-logarithmic scale, and remarkably, the slopes for dif-
ferent distributions are independent of the thresholds. The 
straight lines of the distributions in the double-logarithmic 

Fig. 3   Avalanche distributions 
in size s, and duration, t for 
subject #14 a, b at 6 months, c, 
d at 12 months. Different color 
lines refer to different values 
of the threshold. The distribu-
tions display a straight line for 
a range of s and t in double-
logarithmic scales. The lines 
have the same slope for different 
thresholds, which demonstrates 
the robustness of power-law 
distributions against changes in 
the threshold
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coordinate suggest a power-law organization of neuronal 
avalanches robust to threshold variation.

In order to find the best model for describing these dis-
tributions, we calculated the parameters using the MLE 
method (Clauset et al. 2009) for each model and rejected 
inappropriate models based on P values.

P values of the power-law model in most cases were larger 
than 0.1, while the two exponential and log-normal models 
had very small P values. Specifically, the P value is zero for 
the exponential model, which indicates the minimum likeli-
hood. Indeed, within the fitting range, the exponential model 
is not an appropriate model for the distributions since the tail 
of the distribution falls rapidly (see Fig. 2a in “Materials and 
methods”). Although the likelihood of the log-normal model 
is comparable to that of the power-law model, its P values 
were lower than the threshold and similar to the exponential 
model, we rejected log-normal models. We conclude that 
power-law is the model that best describes the empirically 
obtained avalanche distributions (see Fig. 4).

In Fig. 5a,b, we plot avalanche size and duration distri-
butions for different Δt s. We show that distributions in the 
range of 16 ≤ Δt ≤ 32 ms are similar and conclude that the 
power-law behavior is independent of Δt for this range. For 
our following analysis, we set Δt = 24 ms.

To evaluate a potential dependency of the power laws on 
the frequency content of the signal, we applied the avalanche 
analysis to different frequency bands. As shown in Fig. 5c, d, 
power-laws were found in the broad frequency band, � , �L , 
and �H frequency bands. In contrast, avalanches calculated 
from low-frequency bands � , � , and � deviated from power-
laws. Table 1 shows P values for the power-law model of 
avalanche distribution in size and duration for all frequency 
bands of subject #14 at 12 months.

We evaluated the P values and likelihood ratio of ava-
lanche size and duration distributions for all subjects at 6 
and 12 months, respectively, for a chosen threshold � = 2.75 
SD and temporal resolution of Δt = 24 ms shown in Fig. 6. 
For most subjects, the avalanche size and duration were 
best described by a power-law distribution. The average 
exponent of the avalanche size distribution in 6-month-old 
infants was � = 1.540 ± 0.075 and for 12-month-olds was 
1.545 ± 0.121 . These values were very close to the mean-
field exponent of size distribution, i.e., � = 1.5 (Sethna et al. 
2001), whereas the average of duration distribution expo-
nents, � is 1.777 ± 0.156 for 6-month-olds, and 1.761 ± 0.151 
for 12-month-olds which differed from the mean-field value 
� = 2 (Sethna et al. 2001). Paired t tests revealed no signifi-
cant difference across ages ( P = 0.886 for avalanche size, 
and P = 0.762 for duration distributions).

Analysis of shuffled controls is presented in Fig. 7 and 
Table 2. The distributions of event clusters obtained from 
shuffled data displayed an exponential function and signifi-
cantly deviated from a power-law distribution. We conclude 

that the emergence of power-law behavior in the infant EEG 
arises from the correlations across EEG electrode sites and 
that those correlations were destroyed by shuffling. Table 2 
provides quantitative details on P value analysis of distribu-
tions in size and duration.

In order to extract the statistical features of peak inter-
vals, we calculated the distribution of peak intervals for dif-
ferent thresholds as depicted in Fig. 8a. The distributions 
exhibit a straight line in bi-logarithmic coordinate; resem-
bling each other for different thresholds. These distributions, 

Fig. 4   Model parameters for avalanche distributions. a The exponent 
of avalanche distribution in size and duration for subject #14 at 6 
months and at 12 months for different thresholds. The exponents are 
robust against changing the threshold. P value and likelihood for dif-
ferent models for the distribution of b, c size and d, e duration of ava-
lanches at 6 and 12 months, respectively. The P value for exponential 
and log-normal models are below 0.1 and these models are rejected. 
The power-law model has larger likelihood in most cases and is con-
sidered as the best fit model for distributions. Please note that the 
error bar for each parameter is too small to be plotted
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in agreement with previous studies, represent power-law 
behavior in the peak interval of activities (Zare and Grigo-
lini 2012, 2013). The average distribution over all subjects 
is shown in the inset of Fig. 8a. The average distributions 
reflected very similar behavior and there was no significant 
difference between the two age points.

Neuronal avalanches are suggestive of critical dynam-
ics which support the emergence of long-range temporal 
correlations (LRTC) in complex systems. Accordingly, we 
directly estimated LRTCs using detrended fluctuation analy-
sis (DFA) (Kantelhardt et al. 2002; Kello et al. 2010; Palva 

et al. 2013), and analyzed the interval of EEG suprathreshold 
events time series collected from all channels of each infant. 
Events are collected at their occurrence times from all chan-
nels and for each subject to form a single time series. Note 
that simultaneous events add up to a single large event, and 
then the interval between events are calculated. We then cal-
culated the Hurst exponent (Linkenkaer-Hansen et al. 2001). 
A Hurst exponent h > 0.5 suggests the existence of LRTCs. 
As an example, the results for subject#14 at 12 months are 
shown in Fig. 8b. The Hurst exponent for the original time 
series was h = 0.723 demonstrating the existence of LRTCs. 
As a control, we destroyed temporal correlations by shuffling 
time series of suprathreshold events, which revealed h = 0.5 
in line with expectation for uncorrelated activity.

The distribution of the Hurst exponent for all subjects is 
illustrated in the inset of Fig. 8b. The averaged Hurst expo-
nent for 6-month-old infants was 0.728 ± 0.035 and it was 
0.729 ± 0.036 for 12-month-old infants. The results of inter-
val analysis did not reveal any significant differences across 
age (the P value of t test for Hurst exponents was P = 0.996 ) 
coinciding with the avalanche analysis discussed above.

Fig. 5   Avalanche distribu-
tion and variations of Δt for 
subject #14 at 12 months old. 
a Avalanche distribution in 
size and b avalanche duration 
for different separation times. 
Power-law behavior is inde-
pendent of separation time in a 
specific range of Δt . CDF of c 
avalanche size, and d avalanche 
duration for different frequency 
bands. Power-law behavior is 
pronounced in high-frequency 
bands ( � , �

L
 , and �

H
 ), similar to 

full frequency band while distri-
butions deviate from power-law 
in low-frequency bands ( � , � , 
and �)

Table 1   P values for the 
power-law model in avalanche 
distribution in size and duration 
for subject #14 at 12 months

The avalanche distributions devi-
ate from power-law behavior in 
low-frequency bands

Frequency 
band

P value for power-
law model

Size Duration

� 0.04 0.80
� 0.00 0.04
� 0.00 0.00
� 0.16 0.25
�
L

0.75 0.96
�
H

0.18 0.15
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Discussion

Several studies have shown trajectories of early human 
brain growth and have probed the association between 

brain activity and brain growth in preterm and neonatal 
infants (Kostović and Judaš 2006; Hüppi et al. 1998; Hüppi 
and Dubois 2006; Kostović and Judaš 2008; Benders et al. 
2014). However, the main challenge for the developing 

Fig. 6   Model parameters for avalanche distributions for all subjects 
( � = 2.75 SD, and Δt = 24 ms). a The exponents for avalanche size 
and duration distribution for all subjects at 6 and 12 months of age. 
The exponents show no significant difference at these two ages. P 

values and likelihood of each model for b, c size distribution and d, 
e duration distribution for 6- and 12-month-olds, respectively. The 
power-law model is the best-fitted model in all size distributions and 
for most of the duration distributions of avalanches

Fig. 7   Distribution of rand-
omized controls of event cluster. 
Avalanche distribution in size 
and duration by a, b randomiz-
ing the time intervals; c, d rand-
omizing the original time series. 
The distributions of avalanche 
size and duration in randomized 
time intervals show that power-
law behavior is associated 
with correlations in data. The 
distributions of avalanche size 
and duration in randomized data 
show that power-law behavior 
is irrelevant to the number of 
activities. All plots represent 
data from subject #14 at 12 
months and � = 2.75 SD
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infant brain, as neuronal connections rapidly proliferate 
and mature, is the maintenance of stable neuronal dynam-
ics that allows for reliable information processing. Here 
we report the hallmark of neural avalanches evident 
across the first year of life; specifically, we demonstrate 
that suprathreshold events from dense-array scalp EEG 
organize as spatiotemporal clusters whose distributions in 
size and duration follow power-laws. No age differences in 
these events were detected between 6- and 12 months of 
age, suggesting that avalanche dynamics are already well 
established by 6 months and are maintained throughout the 
first year of life. Our findings are in line with studies in 
adult humans that examined ongoing activity using fMRI 
(Tagliazucchi et al. 2012) and the local field potential in 
adult nonhuman primates (Petermann et al. 2009). Infant 
avalanches demonstrated threshold independence in their 
scale-invariance, that is, large and small local amplitude 
events in the event are similarly organized. Such an ava-
lanche within an avalanche structure indicates a specific 
organization in the amplitude of local suprathreshold EEG 
events as found for LFP avalanches in nonhuman primates 
and in the ECoG and fMRI of ongoing activity in humans 
(Petermann et al. 2009; Dehghani et al. 2012; Tagliazucchi 
et al. 2012). Assuming that the amplitude of local events in 
the EEG correlates with neuronal group synchronization, 
this organization complements scale-invariance in space 

and time. In the present study, we demonstrated this for the 
first time in infants during their first year of development.

Our broadband analysis revealed robust scale-invariant 
cluster sizes, however, scale-invariance was dependent on 
the specific frequency band analyzed. That is, local events 
that arose from gamma-activity exhibited scale-invariant 
clusters, whereas scale-invariance decreased when analyses 
were restricted to lower frequencies. These results suggest 
that the nesting of physiological frequencies is compatible 
with avalanche dynamics as reported previously in post-natal 
rodents (Gireesh and Plenz 2008).

It has recently been suggested that certain uncorrelated 
local event activity, due to spatial neighborhood overlap, can 
give rise to scale-invariant cluster size distributions (Tou-
boul and Destexhe 2017). Please note that these conditions 
are not met in our infant EEG data sets as: (1) randomizing 
destroys power-law statistics and (2) local events are signifi-
cantly correlated over time. In contrast, scale-free fluctua-
tions in the spatial extent of neuronal activity in conjunction 
with LRTC are considered to be a signature of criticality 
(Chialvo 2010). Theory and experiments have shown that 
networks at or near criticality exhibit efficient information 
processing (Beggs and Plenz 2003; Socolar and Kauffman 
2003; Shew et al. 2009; Beggs and Timme 2012; Friedman 
et al. 2012; Yang et al. 2012) including maximal information 
storage and capacity (Socolar and Kauffman 2003; Shew 

Table 2   P value analysis 
of distributions in size and 
duration, original signal 
compared to shuffled and 
randomized data

Size distribution Duration distribution

Power-law Exponential Log-normal Power-law Exponential Log-normal

Original signal 0.94 0.00 0.00 0.61 0.00 0.03
Shuffled events 0.00 0.00 0.02 0.08 0.00 0.41
Randomized data 0.00 0.95 0.02 0.00 0.98 0.04

Fig. 8   Distribution of peak intervals for subject #14 at 12 months old 
at � = 2.75 SD. a The distributions display a straight line on a bi-log-
arithmic scale which is similar for different thresholds. Inset: average 
distribution over subjects for all the 6-month-old and 12-month-old 
infants. The distributions exhibit a scale-invariant behavior in inter-

vals. b Fluctuations over scales and the Hurst exponent of peak inter-
vals. The Hurst exponent of original data is h > 0.5 and demonstrates 
LRTC which is destroyed by shuffling the data. The distribution of h 
for all subjects at two ages is shown in the inset of b. No significant 
difference was detected between the two ages
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et al. 2009), maximal dynamic range (Kinouchi and Copelli 
2006; Shew et al. 2011) and information transition (Beggs 
and Plenz 2003), optimal communication (Beggs and Plenz 
2003; Bertschinger and Natschäger 2004; Rämö et al. 2007; 
Tanaka et al. 2009), high computational power (Bertschinger 
and Natschäger 2004) and maximal variability in phase syn-
chrony (Yang et al. 2012). Accordingly, criticality may be 
a signature of a healthy brain (Massobrio et al. 2015) that 
is able to flexibly adapt to rapidly changing environments 
(Chialvo 2010). As deviations from scale-invariant and thus 
criticality are associated with disease states (transitory or 
longer-term as noted above), our findings support the devel-
opment of early biomarkers within the framework of critical-
ity that have the potential to aid diagnosis and treatment of 
pathological states in human infants.

Conclusion

We found robust evidence of the stability of neuronal ava-
lanches in early infancy. This result suggests that long-range 
temporal correlation already exists over the first year of life 
during the early stages of ongoing brain maturation. Previ-
ously, the presence of scale-free dynamics in specific brain 
areas in neonates was reported (Roberts et al. 2014; Iyer 
et al. 2015). Here, using dense-array EEG recordings, the 
emergence of power-law behavior in large-scale dynamics 
in infants during auditory sensory processing was identified. 
The neuronal avalanche mechanism was invariant across two 
age points, due to the intrinsic global nature of neural ava-
lanches. Our results suggest that the propagation of neocor-
tical activities is scale-invariant during infancy, which may 
help the brain to maintain stable neuronal dynamics while 
allowing continued optimized conditions for critical infor-
mation processing. The fact that we did not find across-age 
differences in power-law behavior supports the hypothesis 
that power-law behavior, or specifically “scale-invariance 
of neural dynamics” is an inherent feature of the infant 
brain that is already evident across the first year. Moreo-
ver, these results support our premise that the infant’s brain 
self-organizes to a stable critical state that will allow for 
optimal information processing across this period of rapid 
cognitive development. Importantly, demonstration of neu-
ral avalanches in the infant’s brain constitutes a critical first 
step towards using dynamical biomarkers to predict cur-
rent biological risk or identify early signs of developmental 
disorders.
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