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ABSTRACT
The gamma distribution is commonly used to model environmental data. However,
rainfall data often contain zero observations, which violates the assumption that
all observations must be positive in a gamma distribution, and so a gamma model
with excess zeros treated as a binary random variable is required. Rainfall dispersion
is important and interesting, the confidence intervals for the variance of a gamma
distribution with excess zeros help to examine rainfall intensity, which may be high
or low risk. Herein, we propose confidence intervals for the variance of a gamma
distributionwith excess zeros by using fiducial quantities andparametric bootstrapping,
as well as Bayesian credible intervals and highest posterior density intervals based on
the Jeffreys’, uniform, or normal-gamma-beta prior. The performances of the proposed
confidence interval were evaluated by establishing their coverage probabilities and
average lengths via Monte Carlo simulations. The fiducial quantity confidence interval
performed the best for a small probability of the sample containing zero observations
(δ) whereas the Bayesian credible interval based on the normal-gamma-beta prior
performed the best for large δ. Rainfall data from the Kiew Lom Dam in Lampang
province, Thailand, are used to illustrate the efficacies of the proposed methods in
practice.

Subjects Statistics, Computational Science, Natural Resource Management, Environmental
Impacts
Keywords Bayesian estimation, Variance of a gamma distribution with excess zeros,
Jeffrey’s prior, Uniform prior, Normal-gamma-beta prior, Rainfall dispersion, Fiducial quantity

INTRODUCTION
Thailand is a mainly agrarian country, with the largest agricultural area being in the
north of the country due to its cooler climate making it the best place for cultivation.
Rainfall is an important factor for cultivation. The rainy season begins in mid-May
and ends in mid-October, the southwest monsoon predominate over Thailand to bring
abundant annual rainfall. August to September is the wettest period of the year for most
of the country, whereas January and December are very dry. Fluctuating rainfall makes
it difficult to predict heavy precipitation that could lead to crop loss or damage. Since
environmental data, meteorology, climatology and pollution studies are often right-
skewed, the gamma distribution is commonly used to model these data (Piao & Zhi-Sheng,
2015; Pradhan & Kundu, 2011; Son & Oh, 2006; Wang et al., 2019). Many researchers
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have developed confidence intervals for the parameters of a gamma distribution by
using various methods. For example, Krishnamoorthy & León-Novelo (2014) proposed
the parametric bootstrap (PB) confidence interval for the mean of a gamma distribution
that performed satisfactorily even for small samples. Sangnawakij, Niwitpong & Niwitpong
(2015) proposed the method of variance estimates recovery (MOVER) and score and
Wald intervals to construct confidence intervals for the ratio of the coefficients of variation
(CVs) of gamma distributions that performed better than classical estimators in terms of the
expected length.Krishnamoorthy & Wang (2016) developed approximate fiducial quantities
(FQs) for constructing the confidence interval for the mean of a gamma distribution that
performed satisfactorily when the shape parameter was around 0.5 or larger. FQs can be
used to establish approximate solutions to many statistical problems and can be readily
applied to handle both uncensored and censored samples. Wang et al. (2019) proposed
FQs for the differences between the shape parameters, scale parameters, and means of
two independent gamma distributions and found that the performances of the FQ-based
confidence intervals were more accurate than other comparable methods.

Rainfall data often contain zero observations at certain times of the year and so this
must be taken into account when studying precipitation in Thailand. Aitchison (1955)
investigated situations where data contain zero observations with the probability of 0¡
δ¡1 while the positive observations have a residual probability of 1- δ. Aitchison & Brown
(1963) introduced the delta-lognormal distribution (a lognormal distribution with an
excess of zero observations) for which the number of zero observations comprises a
random variable with a binomial distribution and the positive observations comprise a
random variable from a lognormal distribution. Many researchers have developedmethods
to construct confidence intervals for the parameters of a delta-lognormal distribution
by using various methods. For example, Yosboonruang, Niwitpong & Niwitpong (2019)
proposed new confidence intervals for the CV of a delta-lognormal distribution by using
Bayesian methods based on the independent Jeffreys’, Jeffreys’ rule, or uniform prior and
compared them with the fiducial generalized confidence interval (FGCI); the Bayesian
confidence interval based on the independent Jeffreys’ prior performed better than the
other methods in all situations studied.Maneerat & Niwitpong (2021) proposed confidence
intervals for the common mean of several delta-lognormal distributions based on FGCI,
the large-sample (LS) approach, MOVER, PB, and highest posterior density intervals
(HPD) based on the Jeffreys’ rule (HPD-JR) or normal-gamma-beta (HPD-NGB) prior;
those based on MOVER and PB outperformed the others in a variety of situations.
Several researchers have examined methods for constructing confidence intervals for
a gamma distribution with excess zeros. Ren, Liu & Pu (2021) proposed simultaneous
confidence intervals for the difference between the means of multiple zero-inflated gamma
distributions by using three fiducial methods and applied them to precipitation data.
Muralidharan & Kale (2002) defined a modified gamma distribution with a singularity at
zero and produced confidence intervals for the mean of a mixed distribution. Lecomte et
al. (2013) provided compound Poisson-gamma and delta-gamma distributions to handle
zero-inflated continuous data under variable sampling volume. Kaewprasert, Niwitpong &
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Niwitpong (2022) proposed Bayesian estimation for the mean of delta-gamma distributions
with application to rainfall data in Thailand.

In statistics, the variance, which gives a measure of the spread or variability of a
distribution, is the second central moment, and the positive square root of the variance is
the standard deviation (Casella & Berger, 2001). It is one of the most popular parameters
of interest for probability and statistical inference.

We are interested to study the confidence interval for the variance of gamma distribution
because it is commonly used to model environmental data such as a rainfall dispersion.
Rainfall dispersion data can help to examine rainfall intensity, which may be high or
low risk. We have studied many research related to constructing the confidence interval
for rainfall data, such as Yosboonruang, Niwitpong & Niwitpong (2019) and Maneerat &
Niwitpong (2021). We have found several interesting priors, including: Jeffreys’, uniform,
or normal-gamma-beta prior. Therefore, we applied to this study.

Since no publications have yet been forthcoming on constructing confidence intervals
for the variance of a gamma distribution with excess zeros, the objective of the present study
is to construct the confidence interval for the variance of a gamma distribution with excess
zeros based on FQ, PB, and six Bayesian-basedmethods: three Bayesian confidence intervals
based on the Jeffreys’ (BAY-J), uniform (BAY-U), or normal-gamma-beta (BAY-NGB)
prior and three highest posterior density intervals based on the Jeffreys’ (HPD-J), uniform
(HPD-U), or normal-gamma-beta (HPD-NGB) prior.

METHODS
Let Xi be a random variable following gamma (α,β) distribution with shape parameter α
and scale parameter β. The probability density function can be derived as follows

f (x;α,β)=


1

0(a)βα
xα−1e−x/β; x > 0,

0; otherwise.
(1)

Suppose that the population of interest contains both zero and non-zero observations;
the zero observations follow a binomial distribution while the non-zero observations follow
a gamma distribution. The numbers of zero and non-zero observations are defined as n(0)
and n(1) respectively, where n= n(0)+n(1). Let X = (X1,X2,...,Xn) be a random sample
from a gamma distribution with excess zeros denoted as 1(δ,α,β). The distribution
function for the confidence interval can be derived as

G(xi;δ,α,β)=

{
δ; x = 0,
δ+ (1−δ)F(x;α,β); x > 0

(2)

where F(x;α,β) is the gamma cumulative distribution function.
Themaximum likelihood estimator of δ is δ̂= n(0)/n. The populationmean and variance

of X are respectively given by

E(X)= (1−δ) · (αβ) (3)

Var(X)= τ = (1−δ) · (αβ2)+δ(1−δ) · (αβ)2. (4)

The approches used to construct the confidence intervals are in the following subsections.
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The FQ confidence interval
Krishnamoorthy, Mathew & Mukherjee (2008) suggested that a gamma distribution can
be approximated by applying the cubic transformation of a Gaussian distribution. Let

Y1,...,Yn be a sample from a gamma (α,β) distribution. When Xi=Y
1
3
i ,i=1 ,...,n then Xi

are approximately normally distributed with mean µand variance σ 2 respectively given by

µ= (ba)
1
3

(
1−

1
9a

)
and σ 2

=
b

2
3

9a
1
3

(5)

where shape parameter a and scale parameter b. The FQs for µand σ 2 are, respectively,

Qµ= x̄+
Z
√
n−1√
χ2
n−1

·
s
√
n

and Qσ 2 =
(n−1)s2

χ2
n−1

(6)

where x̄ and s are the observed values of X̄ and S, respectively; Z and χ2
n−1 represent

independent random variable of standard normal and chi-squared distribution,
respectively; and n is the sample size. The FQs for the parameters of a gamma distribution
can thus be derived as

Qa=
1
9


(
1+0.5

Q2
µ

Qσ 2

)
+

(1+0.5 Q2
µ

Qσ 2

)2

−1

 1
2

 (7)

Qb= 27(Qa)
1
2 (Qσ 2)

3
2 . (8)

Krishnamoorthy & Wang (2016) proposed the FQs for the mean of gamma distribution
as follows:

QM =

Qµ
2
+

√(
Qµ
2

)2

+Qσ 2


3

(9)

where Qµ and Qσ 2 are defined in Eq. (6). Li, Zhou & Tian (2013) proposed the FQ for δ as

Qδ ∼
1
2
Beta(n(1),n(0)+1)+

1
2
Beta(n(1)+1,n(0)). (10)

We can express the FQ for the variance as follows:
If V = ab2, then we can write Eq. (5) as

µ=V
1
3 b−

1
3

(
1−

b2

9V

)
and σ 2

=
b

4
3

9V
1
3
. (11)

By solving the above equations forV , we obtainV = ((µ+
√
µ2+4σ 2)/(2(9−1/4)(σ 2)−1/4))4.

Thus, the FQ for gamma variance can be obtained as

QV =

Qµ+
√
Q2
µ+4Qσ 2

2(9−1/4)(Qσ 2)−1/4


4

(12)

where Qµ and Qσ 2 are defined in Eq. (6). Thus, the FQ for τ is in the form

Qτ = (1−Qδ) ·QV +Qδ(1−Qδ) ·Q2
M . (13)
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Therefore, the 100(1−α)% confidence interval for τ is

CIFQ= [Qτ (α/2),Qτ (1−α/2)] (14)

where Qτ (α/2) and Qτ (1−α/2) are the (α/2)-th and (1−α/2)-th percentiles of Qτ ,
respectively.

The confidence intervals for τ can be obtained by using Algorithm 1.

Algorithm 1 FQ

1: Generate x from a gamma distribution with excess zeros, compute x̄ , and s2 of the
cube root transformed sample.

2: Generate a standard normal variate Z and a chi-square variate χ2
n−1.

3: Generate Beta(n(1),n(0)+1) and Beta(n(1)+1,n(0).
4: Compute Qµ, Qσ 2 and Qδ from Eqs. (6) and (10).
5: Compute the FQs for mean (QM ) and variance (QV ) of gamma distribution from

Eqs. (9) and (12).
6: Compute Qτ from Eq. (13).
7: Repeat Steps 2–6 5,000 times and obtain an array of Qτ .
8: Compute the 95% confidence intervals for τ from Eq. (14).
9: Repeat Steps 1–8 10,000 times to compute the coverage probabilities (CPs) and the

average lengths (ALs).

The PB confidence interval
The log-likelihood function for the vector of shape α and scale β parameters in gamma
distribution is given by Saulo et al. (2018).

L(α,β)= n{α log(β)− log[0(α)]}+ (α−1)
n∑

i=1

log(Xi)−β
n∑

i=1

Xi. (15)

Then, the maximum likelihood estimators (MLE) of α and β can be derived as

α̂=
0.5

logx̄− logx
(16)

β̂ =
α̂

x̄
. (17)

The PB for variance of gamma distribution with excess zeros can be written as

τ̂ ∗= (1− δ̂∗) ·()+ δ̂∗(1− δ̂∗) ·
(
α̂∗

β̂∗

)2

. (18)

The 100(1−α)% confidence interval for τ is

CIPB= [̂τ ∗(α/2),τ̂ ∗(1−α/2)]. (19)
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The Bayesian confidence intervals
For this study, let Y1,...,Yn be a sample from a gamma (α,β) distribution, then for

Xi = Y
1
3
i ,i=1 ,...,n then Xi are approximately normally distributed with mean µand

variance σ 2 (Krishnamoorthy, Mathew & Mukherjee, 2008). From the law of large numbers,
we know that µ∼N (x̄,σ 2/n) (Casella & Berger, 2001). Thus, the marginal posterior
distribution of µis µ|σ 2,x ∼N (x̄,σ 2/n(1))

Algorithm 2 PB

1: Generate x from a gamma distribution with excess zeros, compute x̄ , δ̂, α̂ and β̂.
2: Generate x∗ from x .
3: Compute x̄∗, δ̂∗, α̂∗ and β̂∗.
4: Compute τ̂ ∗ from Eq. (18).
5: Repeat Steps 2–4 5,000 times and obtain an array of τ̂ ∗.
6: Compute the 95% confidence intervals for τ̂ ∗ from Eq. (19).
7: Repeat Steps 1–6 10,000 times to compute the CPs and ALs.

HPD intervals are constructed from the posterior distribution based on the Bayesian
approach. The HPD consists of the values of the parameter for which the posterior density
is highest (Casella & Berger, 2001), while the HPD interval is the narrowest possible interval
for the parameter of interest at probability 100(1−α)% (Maneerat, Niwitpong & Niwitpong,
2020).

In this section, the Bayesian confidence interval is constructed upon the Jeffreys’ priors,
uniform priors and normal-gamma-beta prior.

The BAY-J and HPD-J intervals
The Jeffreys’ prior for δ in a binomial distribution is p(δ)∝ (δ)−

1
2 (1− δ)

1
2 (Bolstad &

Curran, 2016). This leads to obtaining the marginal posterior distribution of δ as

δjef |x ∼Beta
(
n(0)+

1
2
,n(1)+

3
2

)
. (20)

Jeffreys’ prior for σ 2 in a lognormal distribution is p(σ 2)∝ σ−2. Therefore, the marginal
posterior distribution of σ 2 becomes

σ 2
jef |x ∼ IG

(
n(1)
2
,

∑n
i=1(xi−µ)

2

2

)
. (21)

The marginal posterior distribution of µis

µjef |σ
2,x ∼N (x̄,σ 2

jef /n(1)). (22)

We compute the mean and variance of gamma by using µjef |σ
2,x and σ 2

jef |x as follows:

MBAY−J =

{
µjef

2
+

√(µjef

2

)2
+σ 2

jef

}3

(23)

VBAY−J =

µjef +
√
µ2
jef +4σ

2
jef

2(9−1/4)(σ 2
jef )−1/4


4

. (24)
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So that

τ̂BAY−J = (1−δjef ) ·VBAY−J +δjef (1−δjef ) ·M 2
BAY−J . (25)

The confidence interval and HPD interval of τ based on the Jeffreys’ prior are obtained
as

CIBAY−J = [τ̂BAY−J (α/2),τ̂BAY−J (1−α/2)]. (26)

The BAY-U and HPD-U intervals
The uniform prior for δ in a binomial distribution is p(δ)∝ 1 (Bolstad & Curran, 2016).
This leads to obtaining the marginal posterior distribution of δ as

δunif |x ∼Beta(n(0)+1,n(1)+1). (27)

The uniform prior for σ 2 is σ 2
∝ 1 (Kalkur & Rao, 2017). Subsequently, the marginal

posterior distribution of σ 2 becomes

σ 2
unif |x ∼ IG

(
n(1)−2

2
,

∑n
i=1(xi−µ)

2

2

)
. (28)

The marginal posterior distribution of µas

µunif |σ
2,x ∼N (x̄,σ 2

unif /n(1)). (29)

We compute the mean and variance of a gamma distribution using µunif |σ
2,x and

σ 2
unif |x as follows:

MBAY−U =

{
µunif

2
+

√(µunif

2

)2
+σ 2

unif

}3

(30)

VBAY−U =

µunif +
√
µ2
unif +4σ

2
unif

2(9−1/4)(σ 2
unif )−1/4

.4 (31)

So that

τ̂BAY−U = (1−δunif ) ·VBAY−U +δunif (1−δunif ) ·M 2
BAY−U . (32)

The confidence interval andHPD interval of τ based on the uniformprior are respectively
obtained as

CIBAY−U = [τ̂BAY−U (α/2),τ̂BAY−U (1−α/2)]. (33)

The BAY-NGB and HPD-NGB intervals
Maneerat & Niwitpong (2021) defined the normal-gamma-beta prior as

p(τ )∝ λ−1[(δ)(1−δ)]−1/2 (34)
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where λ = σ−2, (µ,λ) follows a normal-gamma distribution and δ follows a beta
distribution (Maneerat & Niwitpong, 2021). Thus, the marginal posterior distributions
of δ, σ 2 and µrespectively become

δNGB|x ∼Beta
(
n(0)+

1
2
,n(1)+

1
2

)
(35)

σ 2
NGB|x ∼ IG

(
n(1)−1

2
,

∑n(1)
i=1(xi−µ)

2

2

)
(36)

µNGB|x ∼ t2(n(1)−1)

(
x̄,
∑n

i=1(xi− x̄)
2

n(1)(n(1)−1)

)
. (37)

We compute the mean and variance of a gamma distribution by using µNGB|x and σ 2
NGB|x

as follows:

MBAY−NGB=

{
µNGB

2
+

√(µNGB

2

)2
+σ 2

NGB

}3

(38)

VBAY−NGB=

µNGB+

√
µ2
NGB+4σ

2
NGB

2(9−1/4)(σ 2
NGB)−1/4


4

. (39)

So that

τ̂BAY−NGB= (1−δNGB) ·VBAY−NGB+δNGB(1−δNGB) ·M 2
BAY−NGB. (40)

The confidence interval and HPD interval of τ based on the normal-gamma-beta prior
are respectively obtained as

CIBAY−NGB= [τ̂BAY−NGB(α/2),τ̂BAY−NGB(1−α/2)]. (41)

Algorithm 3 Bayesian interval

1: Generate x from a gamma distribution with excess zeros, compute δ̂, µ̂, and σ̂ 2.
2: Generate δ|x from Eqs. (20), (27) and (35).
3: Generate σ 2

|x from Eqs. (21), (28) and (36).
4: Given σ 2

|x generate µ|σ 2,x .
5: Compute mean and variance of gamma distribution from Eqs. (23), (24), (30), (31),

(38) and (39).
6: Compute τ̂ from Eqs. (25), (32) and (40).
7: Compute the 95% confidence intervals and HPD for τ̂ from Eqs. (26), (33) and (41).
8: Repeat Steps 1–7 10,000 times to compute the CPs and ALs.

SIMULATION STUDIES AND RESULTS
A Monte Carlo simulation study with 10,000 replications (M) and 5,000 repetitions (m)
for FQ and PB, was conducted at a nominal confidence level of 0.95. We set sample size n
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as 30, 50, 100 or 200 and probability of zeros δ as 0.2, 0.5 or 0.8, for which we set shape
parameter α as 7.00, 7.50 or 7.75; 2.00, 2.50 or 2.75; and 1.25, 1.50 or 1.75, respectively. We
set rate parameter β as 1 for all cases. The performances of the confidence intervals were
assessed by comparing their coverage probabilities (CPs) and average lengths (ALs); the
best-performing confidence interval for a particular situation was identified as having a CP
close or greater than 0.95 and the shortest AL. The confidence intervals for the variance of
gamma distribution with excess zeros constructed using FQ, PB, BAY-J, HPD-J, BAY-U,
HPD-U, BAY-NGB and HPD-NGB.

We report the coverage probabilities and the average lengths of nominal 95% two-sided
confidence intervals for variance of gamma distribution with excess zeros in Table 1 and
Figs. 1, 2 and 3.

The CPs of the PB, FQ, HPD-U, BAY-NGB, and HPD-NGB confidence intervals were
greater than or close to the nominal confidence level of 0.95 in all situations studied.
For a small-to-moderate sample size, FQ and the HPD-U performed well for small δ
whereas BAY-NGB and HPD-NGB performed well for large δ. For a large sample size, FQ
performed well for small δ whereas BAY-NGB performed well for large δ. Although the
expected lengths of the HPD-J were shorter than the other methods, the CPs of BAY-J and
HPD-J were lower than the nominal confidence level in all cases.

The findings show that although FQ, HPD-U, BAY-NGB, and HPD-NGB attained
acceptable CPs, the ALs of BAY-NGB and the HPD-NGB were shorter than the other
methods, and so they can be recommended for constructing the confidence interval for
the variance of a gamma distribution with excess zeros. It can be seen that for HPD-
NGB developed from the study of Maneerat & Niwitpong (2021), the simulation results
are similar to these studies. For small-to-large sample size, HPD-NGB performed well.
BAY-NGB and HPD-NGB are the best because BAY-NGB and HPD-NGB attained stable
CPs and ALs were shorter than the other methods for all sample sizes. A referee suggested
to check the validity and robustness of the model for smaller sample sizes with moderate
number of zeros. We, therefore, simulated a study with 10,000 replications (M) and 5,000
repetitions (m) for FQ and PB, was conducted at a nominal confidence level of 0.95. We
set sample size n as 10 or 20 and probability of zeros δ as 0.2, or 0.5, for which we set
shape parameter α as 7.00, 7.50 or 7.75; and 2.00, 2.50 or 2.75, respectively. We set rate
parameter β as one for all cases. The results (not shown here) show that the CPs of the FQ,
HPD-U, BAY-NGB, and HPD-NGB confidence intervals were greater than or close to the
nominal confidence level of 0.95 in all situations studied. The findings show that although
FQ, HPD-U, BAY-NGB, and HPD-NGB attained acceptable CPs, the ALs of HPD-NGB
were shorter than the other methods. Although the sample sizes are small (n= 10, n= 20),
our findings show that BAY-NGB and HPD-NGB can be recommended for constructing
the confidence interval for the variance of a gamma distribution with excess zeros.
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Table 1 The coverage probabilities and (average lengths) of nominal 95% two-sided confidence intervals for variance of gamma distribution
with excess zeros.

n δ α Coverage probability
(Average length)

PB FQ BAY-J HPD-J BAY-U HPD-U BAY-NGB HPD-NGB

30 0.2 7.00 0.9444 0.9686 0.9226 0.9184 0.9324 0.9444 0.9802 0.9771
(11.6924) (12.6084) (10.0751) (9.8624) (10.9472) (10.6335) (12.7642) (12.4067)

7.50 0.9480 0.9728 0.9317 0.9293 0.9420 0.9522 0.9826 0.9789
(12.8866) (13.6348) (11.0851) (10.8819) (11.9674) (11.6665) (13.9564) (13.6000)

7.75 0.9541 0.9731 0.9378 0.9334 0.9482 0.9569 0.9827 0.9807
(13.5974) (14.3134) (11.7150) (11.5094) (12.6155) (12.3114) (14.6896) (14.3333)

0.5 2.00 0.8616 0.9521 0.8004 0.7817 0.8487 0.8557 0.9578 0.9391
(2.9978) (4.1962) (2.3918) (2.0896) (3.2420) (2.7330) (3.8034) (3.3989)

2.50 0.8629 0.9500 0.7903 0.7788 0.8354 0.8502 0.9556 0.9440
(3.7780) (5.3509) (3.0529) (2.7002) (4.0796) (3.4959) (4.8638) (4.4099)

2.75 0.8601 0.9467 0.7850 0.7767 0.8308 0.8433 0.9543 0.9454
(4.1300) (5.8440) (3.3308) (2.9635) (4.4162) (3.8167) (5.3407) (4.8762)

0.8 1.25 0.7784 0.9564 0.8347 0.8479 0.8874 0.9569 0.9711 0.9616
(1.3763) (12.5762) (3.5742) (2.0919) (63.4518) (15.9813) (10.0543) (4.5952)

1.50 0.7932 0.9615 0.8403 0.8577 0.8897 0.9603 0.9754 0.9671
(1.6638) (13.2999) (4.0138) (2.4576) (63.9289) (6.6673) (10.6502) (5.1506)

1.75 0.8048 0.9621 0.8489 0.8647 0.8937 0.9637 0.9793 0.9725
(1.9395) (12.9027) (4.1595) (2.7093) (53.5498) (15.2379) (10.3024) (5.4055)

50 0.2 7.00 0.9621 0.9704 0.9275 0.9243 0.9411 0.9461 0.9814 0.9789
(9.2009) (9.0634) (7.5400) (7.4561) (7.8353) (7.7315) (9.4418) (9.2934)

7.50 0.9625 0.9704 0.9338 0.9296 0.9447 0.9506 0.9807 0.9779
(10.1651) (9.9058) (8.3868) (8.3065) (8.6808) (8.5812) (10.4194) (10.2715)

7.75 0.9655 0.9729 0.9374 0.9367 0.9463 0.9498 0.9844 0.9826
(10.6812) (10.3530) (8.8378) (8.7599) (9.1334) (9.0356) (10.9368) (10.7863)

0.5 2.00 0.9054 0.9478 0.7868 0.7573 0.8238 0.8155 0.9505 0.9285
(2.4797) (2.6883) (1.6201) (1.4938) (1.8801) (1.7160) (2.5473) (2.3981)

2.50 0.9010 0.9475 0.7890 0.7693 0.8228 0.8202 0.9514 0.9341
(3.0615) (3.4346) (2.0567) (1.9090) (2.3755) (2.1861) (3.2687) (3.1047)

2.75 0.9039 0.9515 0.7892 0.7674 0.8223 0.8193 0.9538 0.9417
(3.3850) (3.8265) (2.2825) (2.1243) (2.6329) (2.4295) (3.6435) (3.4714)

0.8 1.25 0.8435 0.9559 0.8337 0.8262 0.8882 0.9116 0.9688 0.9476
(1.1826) (2.4727) (1.2830) (1.0168) (2.5640) (1.7317) (2.1219) (1.6296)

1.50 0.8550 0.9569 0.8384 0.8402 0.8860 0.9161 0.9699 0.9538
(1.4185) (2.8663) (1.5275) (1.2448) (2.8649) (2.0242) (2.4800) (1.9666)

1.75 0.8675 0.9602 0.8515 0.8537 0.8930 0.9239 0.9736 0.9622
(1.6807) (3.2832) (1.7911) (1.4943) (3.1990) (2.3387) (2.8757) (2.3349)

100 0.2 7.00 0.9685 0.9652 0.9270 0.9238 0.9372 0.9366 0.9758 0.9729
(6.6077) (6.1266) (5.2494) (5.2171) (5.3267) (5.2916) (6.5195) (6.4617)

(continued on next page)
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Table 1 (continued)

n δ α Coverage probability
(Average length)

PB FQ BAY-J HPD-J BAY-U HPD-U BAY-NGB HPD-NGB

7.50 0.9732 0.9682 0.9321 0.9311 0.9394 0.9407 0.9801 0.9785
(7.3264) (6.7357) (5.8730) (5.8403) (5.9473) (5.9122) (7.2284) (7.1679)

7.75 0.9760 0.9702 0.9437 0.9426 0.9501 0.9512 0.9841 0.9817
(7.6438) (7.0104) (6.1733) (6.1407) (6.2465) (6.2117) (7.5695) (7.5095)

0.5 2.00 0.9332 0.9292 0.7597 0.7285 0.7931 0.7636 0.9316 0.9120
(1.8169) (1.6738) (1.0400) (0.9967) (1.1103) (1.0616) (1.6412) (1.5930)

2.50 0.9360 0.9420 0.7703 0.7434 0.7995 0.7783 0.9436 0.9306
(2.2541) (2.1692) (1.3337) (1.2817) (1.4222) (1.3641) (2.1292) (2.0751)

2.75 0.9301 0.9392 0.7763 0.7528 0.7995 0.7875 0.9425 0.9295
(2.4789) (2.4163) (1.4761) (1.4200) (1.5739) (1.5114) (2.3735) (2.3171)

0.8 1.25 0.9076 0.9439 0.8161 0.7969 0.8573 0.8475 0.9550 0.9302
(0.9191) (1.0226) (0.6335) (0.5746) (0.7685) (0.6809) (0.9717) (0.8766)

1.50 0.9159 0.9526 0.8333 0.8141 0.8667 0.8630 0.9624 0.9427
(1.0920) (1.2439) (0.7821) (0.7184) (0.9349) (0.8409) (1.1916) (1.0887)

1.75 0.9123 0.9544 0.8394 0.8267 0.8696 0.8697 0.9678 0.9482
(1.2881) (1.4819) (0.9445) (0.8765) (1.1158) (1.0159) (1.4312) (1.3194)

200 0.2 7.00 0.9761 0.9634 0.9225 0.9199 0.9339 0.9330 0.9751 0.9715
(4.7169) (4.2392) (3.6845) (3.6666) (3.7070) (3.6888) (4.5589) (4.5303)

7.50 0.9785 0.9665 0.9317 0.9304 0.9442 0.9428 0.9775 0.9755
(5.1932) (4.6428) (4.1173) (4.0987) (4.1390) (4.1201) (5.0479) (5.0179)

7.75 0.9822 0.9692 0.9403 0.9384 0.9483 0.9469 0.9817 0.9799
(5.4485) (4.8598) (4.3497) (4.3307) (4.3699) (4.3503) (5.3069) (5.2765)

0.5 2.00 0.9477 0.8978 0.6997 0.6659 0.7285 0.6938 0.9000 0.8774
(1.3034) (1.1146) (0.7016) (0.6854) (0.7237) (0.7066) (1.1126) (1.0944)

2.50 0.9463 0.9201 0.7363 0.7060 0.7590 0.7326 0.9209 0.9059
(1.6261) (1.4556) (0.9051) (0.8852) (0.9330) (0.9121) (1.4510) (1.4304)

2.75 0.9470 0.9297 0.7443 0.7145 0.7667 0.7419 0.9302 0.9162
(1.7859) (1.6291) (1.0051) (0.9835) (1.0358) (1.0131) (1.6250) (1.6031)

0.8 1.25 0.9426 0.9268 0.7829 0.7506 0.8168 0.7872 0.9383 0.9111
(0.6664) (0.5858) (0.3827) (0.3651) (0.4131) (0.3922) (0.5860) (0.5575)

1.50 0.9476 0.9450 0.8173 0.7885 0.8451 0.8224 0.9553 0.9334
(0.8008) (0.7339) (0.4859) (0.4665) (0.5214) (0.4983) (0.7377) (0.7060)

1.75 0.9462 0.9480 0.8317 0.8124 0.8542 0.8393 0.9594 0.9419
(0.9469) (0.8890) (0.5953) (0.5742) (0.6363) (0.6114) (0.8986) (0.8637)

Notes.
aThe coverage probabilities greater than the nominal confidence level of 0.95 are in bold and the shortest average lengths are in italics.
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Figure 1 Line graphs of (A) coverage probabilities and (B) average lengths of all methods in the case of
the different sample sizes.

Full-size DOI: 10.7717/peerj.14023/fig-1

Figure 2 Line graphs of (A) coverage probabilities and (B) average lengths of all methods in the case of
the different probabilities of zero values.

Full-size DOI: 10.7717/peerj.14023/fig-2

EMPIRICAL APPLICATION OF THE PROPOSED
CONFIDENCE INTERVALS
The confidence interval performances were compared by using real-world datasets
comprising monthly rainfall data reported by the Upper Northern Region Irrigation
Hydrology for January and February 1993 to 2021 at the Kiew Lom Dam, Lampang
province, Thailand.

First, the best fit for the positive rainfall data among normal, lognormal, Cauchy, and
gamma models was examined by calculating their Akaike information criterion (AIC) and
Bayesian information criterion (BIC) values (Table 2). The results show that the lowest AIC
and BIC values (207.7139 and 210.2301, respectively) were for the gamma distribution,
indicating that it was the best fit for the data.

The summary statistics for the rainfall data in Kiew Lom Dam Lampang province are
x̄ = 18.6461, n= 58 ,n(1) = 26,n(0) = 32, while the maximum likelihood estimators for
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Figure 3 Line graphs of (A) coverage probabilities and (B) average lengths of all methods in the case of
the different shape parameters.

Full-size DOI: 10.7717/peerj.14023/fig-3

Table 2 AIC and BIC results of positive rainfall data.

Models Normal Lognormal Cauchy Gamma

AIC 224.9317 216.186 230.4221 207.7139
BIC 227.4479 218.7022 232.9383 210.2301

Table 3 The 95% two-sided confidence intervals for variance of rainfall data in Kiew LomDam in
Lampang province.

Methods Confidence intervals for θ Length of intervals

Lower Upper

PB 115.6468 543.4372 427.7903
FQ 115.3533 974.3039 858.9506
BAY-J 138.7433 764.2119 625.4687
HPD-J 107.4391 613.0399 505.6008
BAY-U 146.4527 1078.71 932.2578
HPD-U 111.2196 809.1257 697.9061
BAY-NGB 135.4990 885.4536 749.9546
HPD-NGB 102.1386 685.1513 583.0128

δ,α,β and τ are δ̂= 0.5517,α̂= 0.7297,β̂ = 0.0391 and τ̂ = 299.5542, respectively. The
calculated two-sided confidence intervals for τ are reported in Table 3.

For n= 50 and δ= 0.5, FQ and BAY-NGB obtained CPs close to the nominal confidence
level of 0.95, but BAY-NGB bay obtained the shortest length method. Thus, the BAY-NGB
method is recommended for constructing the confidence interval for the variance in rainfall
data in January and February at the Kiew Lom Dam in Lampang province.

CONCLUSIONS
We constructed confidence intervals for the variance of a gamma distribution with excess
zeros by using the PB, FQ, BAY-J, HPD-J, BAY-U, HPD-U, BAY-NGB, and HPD-NGB
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approaches. The CPs and ALs of the methods were assessed by Monte Carlo simulation
for various situations and by using real precipitation data following a gamma distribution
with excess zeros. Our findings show that BAY-NGB and HPD-NGB can be recommended
for constructing the confidence interval for the variance of a gamma distribution with
excess zeros. In future research, we will investigate constructing confidence intervals for
the difference between the variances of gamma distributions with excess zeros.
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