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Recent studies in neuroscience show that astrocytes alongside neurons participate in modulating synapses. It led to the new
concept of “tripartite synapse”, which means that a synapse consists of three parts: presynaptic neuron, postsynaptic neuron,
and neighboring astrocytes. However, it is still unclear what role is played by the astrocytes in the tripartite synapse. Detailed
biocomputational modeling may help generate testable hypotheses. In this article, we aim to study the role of astrocytes in synaptic
plasticity by exploring whether tripartite synapses are capable of improving the performance of a neural network. To achieve
this goal, we developed a computational model of astrocytes based on the Izhikevich simple model of neurons. Next, two neural
networks were implemented. The first network was only composed of neurons and had standard bipartite synapses. The second
network included both neurons and astrocytes and had tripartite synapses.We used reinforcement learning and tested the networks
on categorizing random stimuli. The results show that tripartite synapses are able to improve the performance of a neural network
and lead to higher accuracy in a classification task. However, the bipartite network was more robust to noise.This research provides
computational evidence to begin elucidating the possible beneficial role of astrocytes in synaptic plasticity and performance of a
neural network.

1. Introduction

Neurons and glia cells are building blocks of the human brain.
Neurons are defined based on their ability to produce action
potentials; the other cells in the human brain, which do not
support this ability, are called glia cells [1]. By the early 1990s,
it was widely believed that glia cells only performed passive
functions, such as providing nutrition and removing waste.
They were referred to as housekeeping cells [2, 3]. In 1999, for
the first time, the term “tripartite synapse” was introduced
by Araque et al. to describe the bidirectional communication
between neurons and glia cells [4]. Since then, each year new
evidence supports the hypothesis that glia cells, alongside
neurons, communicate with synapses andmodulate them [4–
18]. One consequence of these findings is that glia cells are
responsible for processing information in the human brain.

These findings are important because glia cells are up
to 50 times more numerous than neurons [19]. They come
in different shapes and at different locations in the nervous

system [1]. So far, only two types of glia cells, named Schwann
cells, in the neuromuscular junctions, and astrocytes, in the
central nervous system (CNS), have been shown to be asso-
ciated with synapses and participate in synaptic modulation
[4, 18]. In this article, we focus on CNS tripartite synapses,
and, therefore, we only consider astrocytes.

1.1. What Is the Role of Astrocytes in Neural Computation?
Given the mounting evidence that astrocytes contribute to
neural computation, a follow–up question is what roles
do astrocytes play in neural computation? One intriguing
possibility is that astrocytes could contribute to learning and
memory [20]. For example, astrocyte disruption impairs later
formation of long-term memory. In addition, evidence has
been gathered that astrocytes affect the dynamics of neural
populations [21], which could modulate neural plasticity
[22]. One possible explanation for these observations is
that astrocytes can operate at slower timescales than neu-
rons [23, 24] and thus could possibly maintain activity in
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postsynaptic neurons after stimulation of the presynaptic
neurons has stopped. This in turn could facilitate consolida-
tion by facilitating long-term potentiation (LTP) and long-
term depression (LTD) [25]. However, another possibility
is that this extended neural activity alongside other noise
sources adds noise in the system, which could affect the net-
work’s robustness and performance [26]. One way to test for
these possibilities is through computer simulation. Because
this hypothesis is related to rhythms and timing, the present
research used biologically realistic spiking neuron models
and developed a dynamical model of astrocyte activation.
Below we present minimum criteria that a dynamical model
of astrocyte activation should meet and review previous
attempts at computational models of astrocytes.

1.2. Previous Modeling Effort. Many computational neuro-
science models of astrocytes have been proposed to account
for the many differences between neurons and astrocytes
[15]. However, in this project we propose a new approach
by using an existing neural model to implement astrocytes,
namely, the Izhikevich simple model of neurons [27]. An
important advantage of the proposed approach is that it
allows researchers to simply model astrocytes as a type of
neuron, without sacrificing the two key characteristics of
astrocyte dynamics. First, as suggested by the absence of
action potentials, astrocytes show a linear current-voltage
relationship (I–V curve) [28]. In contrast, the I–V curve
is nonlinear in most neurons (and often N–shaped) [27].
Second, the effect of astrocyte modulating synapses can be
slower than neurons, as studies show that astrocytes can be in
a slow or fast mode. The slow and fast modes target NMDA
and mGluR receptors, respectively [29]. In this article, we
study the behavior of networks by using reinforcement
learning rules. Since LTP in reinforcement learning relies on
NMDA receptors [25], this article focuses on the slow mode
of astrocyte dynamics [23, 24].

Note that many existing astrocyte models do not account
for one or both these characteristics. For example, some
existing models are not presenting a linear I–V curve in
astrocytes [30, 31]. As a result, astrocytes spike in the model
proposed by Haghiri et al. [32]. Other models focus on
the tripartite synapse and are not capturing the intercellular
characteristics of astrocytes [24, 33, 34]. In the present work,
we attempt to propose a simple biologically realistic model of
astrocyte dynamics that meets theseminimum requirements.

1.3. Organization of This Article. This research aimed to
study the role of astrocytes in the performance of neural
networks. More specifically, we intended to test whether
astrocytes are capable of improving the performance of
a spiking neural network. The reminder of this article is
organized as follows. First, Section 2 describes a new model
for astrocytes by using the Izhikevich model of neurons.
Second, Section 3 describes the design and implementation of
two networks of neurons.The first network had only bipartite
synapses and the second network also included astrocytes
and thus tripartite synapses. These networks are referred
to as bipartite and tripartite networks (respectively). Third,
by applying reinforcement learning rules, we studied the

classification accuracy of both networks in noisy and non-
noisy conditions.The results in Section 3.2 show that in non-
noisy environments, adding astrocytes can lead to a higher
accuracy in classifying randomly generated stimuli. Lastly,
Section 4 discusses the results and explores future directions
for studying astrocytes in both healthy and nonhealthy brains
as well as in artificial intelligence.

2. Cell Models

Although astrocytes recently received much attention in
neurophysiology [35–38], their computational model remain
underdeveloped when compared to their neural counterparts
[15]. In this section, we introduce a new model of astrocytes
based on the Izhikevichmodel of neurons [27].The proposed
model is aimed at reproducing the linear I–V curve observed
in astrocytes [28]. The timing of tripartite synaptic modula-
tion is addressed in Section 3.1.2.

2.1. Izhikevich’s Simple Neuron Model. The Izhikevich model
is a computationally efficient, biologically plausible, model of
neurons that allows for real-time simulation of networks of
spiking neurons on a desktop PC [39]. Each neuron in the
Izhikevich model is implemented as follows [27]:

𝐶V̇ = 𝑘 (V − V𝑟) (V − V𝑡) − 𝑢 + 𝐼
𝑢̇ = 𝑎 {𝑏 (V − V𝑟) − 𝑢}

𝑖𝑓 V ≥ V𝑝𝑒𝑎𝑘, 𝑡ℎ𝑒𝑛 V ←󳨀 𝑐, 𝑢 ←󳨀 𝑢 + 𝑑
(1)

where 𝐶 represents the membrane capacitance, V is the
membrane potential, V𝑟 is the resting membrane potential, V𝑡
is the instantaneous spiking threshold, 𝐼 is the input, 𝑢 is the
recovery current, and 𝑎 is a recovery time constant. Rheobase
and input resistance jointly determine the constants 𝑘 and 𝑏. 𝑐
and 𝑑 represent the voltage reset value and the total difference
between the outward currents and inward currents during a
spike (respectively). These parameters can be set to different
values to accurately model many types of neurons [27]. In
this article, neurons were modeled by using the parameter
values provided by Izhikevich to simulate cortical pyramidal
neurons (Table 1).

2.2. Dynamic Model of Astrocyte Activation. The Izhikevich
model of neurons is flexible in modeling different types of
neurons. However, the Izhikevich model has never been
used to model astrocytes, and no parameter values were
previously available. As shown in Figure 1(a), the relation
between voltage and current in astrocytes is approximately
linear [28, 40]. We used the IV relationship in Figure 1(a) to
estimate the parameters of the Izhikevich model that could
emulate the astrocyte voltage-current curve. The parameters
of the Izhikevich model were optimized (using mean square
error) to values that give an approximate linear voltage-
current relation. Table 1 shows the estimated values of an
Izhikevich neuron that represent an astrocyte. It should be
noted that the parameters in the astrocyte model do not
have the same physiological interpretation as in the neuron
model. The values of 𝐶, V and the other parameters were
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Figure 1: The current/voltage relationship (IV curve) for a biological astrocyte (a) Pannasch et al. [28] (Supplementary Material), the model
(b).

Table 1: Parameter values used to model neurons and astrocytes based on the Izhikevich simple model of neurons. The neuron parameters
represent a pyramidal neuron in neocortex [27].

𝐶 V𝑟 V𝑡 𝑘 𝑎 𝑏 𝑐 𝑑 V𝑝𝑒𝑎𝑘
Neuron 100 -60 -40 0.7 0.03 -2 -50 100 35
Astrocyte 6 -70 1.429164 × 103 2.77 × 10−5 0.03 −6.5 × 10−4 -50 100 35

estimated to represent the linear I–V relation in astrocytes
and they do not correspond to the astrocyte’s capacitance,
voltage, and so on. Also, V mostly represents 𝑁𝑎+ in the
Izhikevich model of neurons, whereas it represents 𝐶𝑎2+ in
the proposed astrocyte model. Hence, the astrocyte model
parameter values should be interpreted as scale–free.

2.3. Results. Figure 1 shows the current/voltage (IV) curves
of a biological astrocyte on the left and the new astrocyte
model on the right. 𝑟2 between the data and model is 0.99,
which indicates a near-perfect fit. Both curves show a linear
relation between current and voltage. Also, Figure 2 shows
themembrane potential of a simulated astrocyte with a stable
input current of 4𝑚𝐴 from 𝑡 = 100𝑚𝑠 to 𝑡 = 1000𝑚𝑠.
Biological astrocytes do not spike in these conditions [40].
Similarly, the astrocyte model did not produce any spike.
Note, however, that injecting strong currents in the astrocyte
model would eventually result in spikes. However, we did not
have biological information on astrocyte behavior in those
current ranges. Hence, the model is compatible with the
available biological data in Dallérac et al. [40].

2.4. Discussion. This section proposed a new biologically
realistic astrocyte model that accurately represent the linear
IV relationship and does not spike. Given that the natural
shape of the IV relationship in the Izhikevich model is
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Figure 2: Membrane potential of the astrocyte model by injecting
the current of I=4mA from t=100ms to t=1000ms.

nonlinear, the reader may wonder why we chose not to use
a linear equation to model astrocytes instead of Izhikevich
neuron’s equations. Our choice was motivated by the fact that
the Izhikevich model is popular and well-defined. Hence, the
proposed model allows for modeling astrocytes simply by
modifying the values of the parameters of available neurons.
This makes the inclusion of astrocytes convenient in neural
networks using the Izhikevich model, as astrocytes can be
modeled as just another type of neurons.
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The change in the membrane potential is studied by
simulating the injection of the current of 4𝑚𝐴 to the astrocyte
model (Figure 2). The reason that we chose the 4𝑚𝐴 current
is that the biological results in Dallérac et al. [40] were based
on the same condition. Therefore, to make the comparison
possible, we kept the conditions equivalent. The results show
that there are no spikes in both the biological and simulated
astrocytes.The new astrocytemodel thus satisfies the first key
characteristic of biological astrocytes.

3. Modeling and Testing Bipartite and
Tripartite Networks

Section 3.1 presents the design, implementation, and test
procedure of the bipartite and tripartite networks. Then,
results and discussion are provided in Sections 3.2 and 3.3,
respectively.

3.1.Method. To study how astrocytes affect synaptic plasticity
and the network’s overall performance, we implemented two
networks: the first network contained neurons and bipartite
synapses (Section 3.1.1), while the second network contained
neurons, astrocytes, and tripartite synapses (Section 3.1.2).
Both of these networks were trained with reinforcement
learning, as described in Section 3.1.3. Finally, Section 3.1.4
details the learning task implementationmethod for compar-
ing the results.

3.1.1. BipartiteNetwork. Architecture.Thenetwork of neurons
had 10 presynaptic neurons, 2 postsynaptic neurons, and 20
fully connected plastic synapses (Figure 3).The neurons were
modeled based on the Izhikevich simplemodel of neurons, as
described in Section 2.1.

Modeling Synapses.The simulated synapse can be simpli-
fied by modeling the delays of spike propagation through the
synaptic cleft. One standard and widely accepted method is
to use an 𝛼-function [25, 41]:

𝑓 (𝑡) = 𝑡
𝜆 exp(𝜆 − 𝑡𝜆 ) (2)

where 𝑡 is the time since the cell voltage reached V𝑝𝑒𝑎𝑘 and𝑡 = 0 is the time at which the cell voltage reached V𝑝𝑒𝑎𝑘. 𝜆 is a
constant that determines the duration of signal propagation
in the synapse. Greater 𝜆 values result in longer synaptic
transmission. The 𝛼-function delivers the neurotransmitter
from the presynaptic neuron to the postsynaptic neuron
gradually. If V𝑝𝑒𝑎𝑘 is reached again by the presynaptic neuron
or an astrocyte while the propagation of the neurotransmitter
is still in process, then a new 𝛼-function related to reaching
the second V𝑝𝑒𝑎𝑘 is added to the first 𝛼-function. The latency
in a typical synapse is generally less than 0.5 ms [42]. This
delay was approximated by using 𝜆 = 125.
3.1.2. Tripartite Network. In the tripartite network, astrocytes
were modeled as proposed in Section 2.2. Neurons were
identical to the Izhikevich simple model of neurons, which
are presented in Section 2.1. However, synapses were different
and designed as follows.
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Figure 3: The architecture of the bipartite network. This model
consists of 10 presynaptic neurons, 2 postsynaptic neurons, and 20
plastic synapses.𝑊𝑖𝑗 represents the synaptic weight frompresynaptic
neuron 𝑖 to postsynaptic neuron 𝑗.
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Figure 4: Simplified signaling pathways in a tripartite synapse. The
astrocyte receives 𝐼𝑃3 from the presynaptic neuron and 𝑘+ from the
postsynaptic neuron. The astrocyte sends glutamate to the synapse
and the postsynaptic neuron as shown by 𝐺1 and 𝐺2.

Modeling Tripartite Synapses. The process of synaptic
neurotransmission is typically initiated by the release of
neurotransmitters by the presynaptic neurons. These neu-
rotransmitters can reach adjacent astrocytes and increase
𝐶𝑎2+ concentration inside the cell. This increase of 𝐶𝑎2+ can
cause astrocytes to release glutamate. This glutamate then
feeds back to the synapse and neurons [4]. Figure 4 shows
a simplified model of this process.

To model the signaling pathways of 𝐼𝑃3, 𝑘+ and gluta-
mate, we used an 𝛼–function with 𝜆 = 1000 for astrocyte’s
glutamate and 𝐼𝑃3 and 𝜆 = 100 for the 𝑘+ pathway.
These values approximately reproduce the greater latency in
tripartite synapses.

Architecture. The architecture of the tripartite network
is similar to the bipartite network except that, in addition
to neurons, 2 astrocytes were included (one for each post-
synaptic neuron) and the resulting synapses were tripartite.
Astrocytes and their relation to synapses and neurons are
depicted in Figure 5. As can be seen in the figure, each
astrocyte contributed to 10 synapses and received input from
all presynaptic neurons as well as its associated postsynaptic
neuron.
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Figure 5: Architecture of the tripartite network. Astrocytes are shown as stars.The neurotransmitter associated with each synapse is indicated
on top of each line. G stands for glutamate and k stands for 𝑘+.𝑊 represents the weight of a synapse. Red lines show the inputs to the first
postsynaptic neuron; orange lines show the inputs to the second postsynaptic neuron. Green lines and black lines represent inputs to, and
output from, astrocytes (respectively). Connections between neurons (red and orange) were plastic, while the rest of the connections were
fixed. Connections with the same symbol had the same constant weight values.

3.1.3. Synaptic Plasticity. Synaptic plasticity can be presented
in terms of different learning models. In this research, we
used the reinforcement learning algorithm described by [25].
In this model, LTP is triggered by (1) strong presynap-
tic activation, (2) strong postsynaptic activation, and (3)
dopamine levels above baseline. In contrast, LTD is triggered
by strong pre- and postsynaptic activation with dopamine
below baseline or weak postsynaptic activation.This learning
process is described by the following:

𝑤𝐾,𝐽 (𝑛 + 1) = 𝑤𝐾,𝐽 (𝑛) + 𝛼𝑤𝐼𝐾 (𝑛) [𝑆𝐽 (𝑛) − 𝜃𝑁𝑀𝐷𝐴]+
⋅ [𝐷 (𝑛) − 𝐷𝑏𝑎𝑠𝑒]+ [𝑤𝑚𝑎𝑥 − 𝑤𝐾,𝐽 (𝑛)]

− 𝛽𝑤𝐼𝑘 (𝑛) [𝑆𝐽 (𝑛) − 𝜃𝑁𝑀𝐷𝐴]+
⋅ [𝐷𝑏𝑎𝑠𝑒 − 𝐷 (𝑛)]+ 𝑤𝐾,𝐽 (𝑛) − 𝛾𝑤𝐼𝐾 (𝑛)

⋅ [𝜃𝑁𝑀𝐷𝐴 − 𝑆𝐽 (𝑛)]+
⋅ [𝑆𝐽 (𝑛) − 𝜃𝐴𝑀𝑃𝐴]+ 𝑤𝐾,𝐽 (𝑛)

(3)

where 𝑤𝐾,𝐽(𝑛) is the strength of the synapse on trial 𝑛.
𝐼𝑘 represents the input from the presynaptic neuron (i.e.,
∫𝑓[𝑉𝐴(𝑡)]𝑑𝑡, which is the integrated 𝛼-function output of
the presynaptic neuron). 𝑆𝑗 is the integral over the positive
voltage of postsynaptic neuron 𝑗, 𝐷𝑏𝑎𝑠𝑒 is a constant that
shows the baseline dopamine level,𝐷(𝑛) denotes the amount
of dopamine released following feedback on trial 𝑛, and
𝛼𝑤, 𝛽𝑤, and 𝛾𝑤 are constants that work similar to standard
learning rates. 𝜃𝑁𝑀𝐷𝐴 and 𝜃𝐴𝑀𝑃𝐴 are the activation thresholds
for postsynaptic 𝑁𝑀𝐷𝐴 and 𝐴𝑀𝑃𝐴 glutamate receptors
(numerically 𝜃𝑁𝑀𝐷𝐴 should be greater than 𝜃𝐴𝑀𝑃𝐴 [25]). [𝑥]+
represent a function that returns 0 for negative values and
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for 100 runs do
Initialize plastic weights:
𝑤𝑒𝑖𝑔ℎ𝑡 ←󳨀 200 + 𝑟𝑎𝑛𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑟𝑜𝑚 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, 1)
for 2000 trials do

Reset neurons and astrocytes to their initial values
for 5000𝑚𝑠 do

Inject a random current to input neurons through the Gaussian Filter in time 100𝑚𝑠 to 500𝑚𝑠
Record the the positive voltage of each of the post–synaptic neurons.

end for
Winner←󳨀The post–synaptic neuron with the highest integral over its positive voltage.
Apply reinforcement learning, and update plastic weights

end for
end for
Calculate the proportion of correct feedback in each 100 trials in all 100 runs

Algorithm 1: The working network.

keeps the same value for positive values. Note that weights
are not modified when the postsynaptic activation is below
𝜃𝐴𝑀𝑃𝐴 (see last term of (3)). Finally, 𝑤𝑚𝑎𝑥 is the maximum
allowable weight.

To calculate𝐷(𝑛), we used the following formula:

𝐷 (𝑛) =
{{{{
{{{{{

1 if 𝑅𝑃𝐸 > 1
0.8 × 𝑅𝑃𝐸 + 0.2 if − 0.25 ≤ 𝑅𝑃𝐸 ≤ 1
0, if RPE < −0.25.

(4)

where RPE is

𝑅𝑃𝐸 = 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑅𝑒𝑤𝑎𝑟𝑑 (𝑅𝑛)
− 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑅𝑒𝑤𝑎𝑟𝑑 (𝑃𝑛)

(5)

Predicted reward, 𝑃𝑛, is
𝑃𝑛+1 = 𝑃𝑛 + 𝜂 (𝑅𝑛 − 𝑃𝑛) (6)

Obtained Reward is +1 if the network is correct, −1 if the
network is incorrect, and 0 if no feedback is received [25].
Table 2 shows the values assigned to the constant parameters
of the above equations.

3.1.4. Networks in Action and Comparisons. To test for the
learning ability of the bipartite and tripartite networks, a
simple classification experiment was designed. To generate
classification stimuli, the input layer of the networks was
used as a 1–dimensional input grid with Gaussian filters.
Specifically, each input neuronwas located at coordinate 5, 15,
25,..., 95 in a arbitrary 1D space. The location of the neuron
was the mean of the Gaussian filter, and all Gaussian filters
had a standard deviation of 30. In each simulated trial, the
location of one of the input neurons was randomly selected
and a current of 70 mV was injected through the Gaussian
filter. Because the Gaussian filters overlap, surrounding neu-
rons also received current, but to a lesser extend based on
the Gaussian filter. The exact timing of the injected current

Table 2: Parameter values used to implement reinforcement learn-
ing.

Parameters Values
𝜃𝑁𝑀𝐷𝐴 1.5 × 102
𝜃𝐴𝑀𝑃𝐴 5 × 102
𝜂 7.5 × 10−2
𝛼𝑤 5 × 10−10
𝛽𝑤 2 × 10−10
𝛾𝑤 5 × 3−13
𝑤𝑚𝑎𝑥 2 × 103
𝑛𝑜𝑛 − 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑤 7.1 × 10−1

(and trial) is shown in Algorithm 1. Because the pre- and
postsynaptic neuron layers were fully connected, the current
was propagated to the two postsynaptic neurons according
to the connection weights. The postsynaptic neuron with the
most activationwas selected as thewinner and constituted the
model response.

All plastic connections were initially random, and the
network needed to learn to associate the first 5 presynaptic
neurons with the first postsynaptic neuron and the last five
presynaptic neurons with the second postsynaptic neuron
using reinforcement learning. For example, if the first presy-
naptic neuron had received the most current and the winner
was the first postsynaptic neuron, positive feedback was
provided (in the form of dopamine release). In contrast, if
the seventh presynaptic neuron had received themost current
and the first postsynaptic neuron was the winner, negative
feedback was provided (in the form of a dip in dopamine).

The simulation methodology is described in Algorithm 1.
It should be noted that the simulation is exactly the same
for both tripartite and bipartite networks. For example, if the
first presynaptic neuron receives the current ‘I’ as input in the
first trial of the tripartite network, then the same neuron will
receive the same amount of current in the first trial of the
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Figure 7: Classification accuracy for the tripartite (top) and bipar-
tite (bottom) networks in a non-noisy condition.

bipartite network. Also, the initial weights were exactly the
same for the two networks.

3.2. Results. In this section, first, we present the results of
implementing one single synapse. Next, the classification
results of the bipartite and tripartite networks are provided.

Synapse. To compare tripartite synapses with bipartite
synapses, we simulated the injection of a 70𝑚V current to the
presynaptic neuron for 1000𝑚𝑠.Then, we studied the changes
in the voltage and spikes of neurons in both bipartite and
tripartite synapses.

The result of implementing a bipartite synapse, which
consist of presynaptic and postsynaptic neurons, is presented
in Figure 6. Figure 6(a) shows from top to bottom the
spikes of the presynaptic neuron, the output of the presy-
naptic neuron, and the spikes of the postsynaptic neuron.
Figure 6(b) presents the same results for the tripartite synapse
introduced in Figure 4. The results show that adding an
astrocyte in a tripartite synapse results in additional spikes
after regular spikes (from the bipartite synapse) have ended
in the postsynaptic neuron.

Networks. Figure 7 presents the accuracy results of clas-
sifying randomly selected inputs in a non-noisy condition
(following Algorithm 1). As can be seen in the figure, the
tripartite network was more accurate in classifying stimuli
throughout learning. Final accuracy of the tripartite network
was 77% (compared with 66% for the bipartite network).
Hence, the performance of the tripartite network was supe-
rior in a noiseless environment.

Next, a small amount of noise,𝑁(0, 0.652), was added to
the voltage of the neurons. Figure 8 shows that the tripartite
network was less robust to noise in comparison to the
bipartite network. The drop in accuracy caused by the added
noise was larger in the tripartite network when compared
to the bipartite network [66% to 66% (bipartite) versus 77%
to 69% (tripartite); see Figure 8(a)]. Adding moderate noise
𝑁(0, 0.852) (Figure 8(b)), however, reduced the accuracy
difference between the networks (65% versus 67% for the
bipartite and tripartite networks, respectively). Finally, the
accuracy difference all but disappeared with higher levels of
noise 𝑁(0, 1.252) (Figure 8(c)). As can be seen in all three
panels of Figure 8, the bipartite network wasmore robust and
not much affected by the noisy conditions.

3.3. Discussion. The results presented in this section provide
an answer to the question that was first asked: Are astrocytes
capable of enhancing the performance of a neural network?
The answer is ‘yes’ (in the noiseless environment), although
this result clearly does not mean that the tripartite network
always work better than the bipartite network. To be more
specific, our goal herewas not to show that tripartite networks
had an advantage over bipartite networks for all parameter
values in all conditions. We only tried to show that astrocytes
can be considered as a candidate for improving the perfor-
mance of a neural network in specific conditions, and the
role of astrocytes in improving the performance of a neural
network is plausible. Further, we showed that the effect of
astrocytes is to increase the length of activation (or number
of spikes) in postsynaptic neurons.
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Figure 8: Accuracy in the classification task for the tripartite (circle) and bipartite (square) networks in noisy conditions.

4. General Discussion and Future Work

In this research we tried to answer the following questions:
Is there a potential role for astrocytes in enhancing the

performance of a neural network?
The answer is yes, the computational result in this

research suggest that there are conditions in which astrocytes
improve synaptic plasticity and the performance of a neural
network.

Is reinforcement learning a good candidate for adjust-
ing synaptic weights of tripartite networks? The answer is
yes, as shown in Figure 7, the tripartite network reaches the
accuracy of more than 75% in classifying input stimuli. This
suggests that reinforcement learning is successful in adjusting
the synaptic weights.

Are tripartite networks more robust to noise in com-
parison to bipartite networks? Figure 8 shows the opposite.
Injecting a small amount of noise to the voltage of neurons
produced a dramatic drop in the accuracy of categorization
in the tripartite network. In contrast, a bipartite network
with the same parameters and noise almost kept the same
performance.

4.1. Future Work. This research opens up possibilities for
many future directions. First, by having a simple biologically
realistic dynamical model of astrocytes, different theories
about the roles of astrocytes can be tested more easily. For

example, research in physiology shows that the number of
astrocytes increases in neurodegenerative diseases [43, 44].
To explore how this increase would affect synaptic plasticity,
spikes, and more generally the behavior of the network, one
can implement a tripartite networkwith numerous astrocytes
and test if the predicted behavior of the computational
modelmatches the symptoms of these diseases. Second,more
realistic models of tripartite networks can be developed. For
example, some studies show that astrocytes also form a net-
work and communicate through calcium waves [9, 45]. This
calcium signaling in astrocytes is controlled by synaptically
evoked neurotransmitters such as ATP, GABA, and glutamate
[9, 46]. Astrocytes can also release these neurotransmitters
into the synaptic cleft, a phenomenon called gliotransmission
[9, 17, 46, 47]. As we learnmore about gliotransmission, these
additional processes can also be added to the tripartite net-
workmodel to obtainmore physiologically accurate results. A
third possibility is related to artificial intelligence. In the past
few years, very simple models of astrocytes were successfully
added to artificial neural networks [24, 33, 34, 48]. The
astrocyte model proposed in this research could provide new
insights on designing more biologically accurate models of
artificial astrocytes in artificial neural networks. Overall, it
is our hope that providing a simple astrocyte model to the
research community will contribute to increasing research
about the roles of these cells in information processing.
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[34] A. Alvarellos-González, A. Pazos, andA. B. Porto-Pazos, “Com-
putational models of neuron-astrocyte interactions lead to
improved efficacy in the performance of neural networks,”
Computational and Mathematical Methods in Medicine, vol.
2012, Article ID 476324, 2012.

[35] N. Bazargani and D. Attwell, “Astrocyte calcium signaling: the
thirdwave,”NatureNeuroscience, vol. 19, no. 2, pp. 182–189, 2016.

[36] R. Srinivasan, B. S.Huang, S. Venugopal et al., “Ca2+ signaling in
astrocytes from Ip3r2 −/− mice in brain slices and during startle
responses in vivo,” Nature Neuroscience, vol. 18, no. 5, pp. 708–
717, 2015.

[37] L. Ben Haim and D. H. Rowitch, “Functional diversity of astro-
cytes in neural circuit regulation,”Nature Reviews Neuroscience,
vol. 18, no. 1, pp. 31–41, 2016.

[38] A.Mishra, J. P. Reynolds, Y. Chen, A. V. Gourine, D. A. Rusakov,
and D. Attwell, “Astrocytes mediate neurovascular signaling to
capillary pericytes but not to arterioles,” Nature Neuroscience,
vol. 19, no. 12, pp. 1619–1627, 2016.

[39] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 14,
no. 6, pp. 1569–1572, 2003.
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