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Polyploidy is a major force in plant evolution and speciation. In newly formed
allopolyploids, pairing between related chromosomes from different subgenomes
(homoeologous chromosomes) during meiosis is common. The initial stages of
allopolyploid formation are characterized by a spectrum of saltational genomic and
regulatory alterations that are responsible for evolutionary novelty. Here we highlight
the possible effects and roles of recombination between homoeologous chromosomes
during the early stages of allopolyploid stabilization. Homoeologous exchanges (HEs)
have been reported in young allopolyploids from across the angiosperms. Although all
lineages undergo karyotype change via chromosome rearrangements over time, the
early generations after allopolyploid formation are predicted to show an accelerated
rate of genomic change. HEs can also cause changes in allele dosage, genome-wide
methylation patterns, and downstream phenotypes, and can hence be responsible for
speciation and genome stabilization events. Additionally, we propose that fixation of
duplication – deletion events resulting from HEs could lead to the production of genomes
which appear to be a mix of autopolyploid and allopolyploid segments, sometimes
termed “segmental allopolyploids.” We discuss the implications of these findings for our
understanding of the relationship between genome instability in novel polyploids and
genome evolution.
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INTRODUCTION

Recent technological advances have vastly expanded access to genomic information, even for
complex genomes (reviewed by Yuan et al., 2017). As an adjunct to de novo genome assembly for
the creation of reference genomes, population genomic studies enable resequencing of multiple
individuals within species to provide genetic data on a scale and at a resolution only dreamed of
just a few years ago. In this new genomics era, it seems timely to revisit some of the fundamental
concepts established in the early years of cytogenetics, particularly regarding insights into meiosis
in polyploids and how this new understanding helps predict and explain several aspects of polyploid
evolution and diversification.

In this review, we provide an overview of the cytogenetic processes associated with polyploidy,
particularly the early stages of polyploid formation, and how these processes may induce
genomic structural variation and give rise to novel phenotypes, thus providing an evolutionary
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substrate for diversification. We revisit the idea that
homoeologous recombination in polyploids may lead to
rapid karyotypic and genomic restructuring in the first few
generations after polyploid formation (Song et al., 1995), and
in the process generate duplicated genomic regions and other
findings that may seem difficult to explain based on species
relationships and phylogenetic inferences. We further discuss
how homoeologous exchanges can affect phenotypes to further
impact the process of speciation via saltational changes. Lastly,
we introduce the concept that homoeologous exchanges may be
responsible for the observation of “segmental allopolyploidy,”
where auto- and allopolyploidy appear to both be present across
the polyploid genome (Stebbins, 1950; Sybenga, 1996).

THE POLYPLOID SPECTRUM: FROM
AUTO TO ALLO

Polyploidy, where three or more haploid chromosome sets are
present within a single organism, is ubiquitous across the plant
and animal kingdoms, with the minor exception of mammal
and bird lineages (Van De Peer et al., 2017). Polyploids were
first classified into “autopolyploids” and “allopolyploids” nearly
a century ago by Kihara and Ono (1926), who proposed
the distinction that autopolyploids derive from chromosome
doubling of a single individual, and allopolyploids derive from
hybridization. However, although chromosome doubling within
reproductive tissue of a single individual may yield two identical
chromosome complements, the frequency of this route to
polyploidy remains unclear. As early as 1947, Stebbins cast
doubt on the existence of natural autopolyploids formed via
chromosome doubling (Stebbins, 1947). We now know that
newly formed polyploids that arise via chromosome doubling
are likely to suffer inbreeding depression (Abel and Becker,
2007), with major advantages conferred by heterozygosity in
both auto- and allopolyploid species (for review see Bingham,
1980). Hence, it seems likely that most autopolyploidy events
actually occur via sexual reproduction between two individuals
within a species (for review see Soltis et al., 2014; Spoelhof
et al., 2017b), or at the very least via meiotic events which
allow for the generation of novel variation in progeny (for
review see De Storme and Mason, 2014). In fact, the mechanism
of “hybridization followed by chromosome doubling” was re-
evaluated 45 years ago by Harlan and DeWet (1975), who
pointed out that the vast majority of hybridization events rely
on meiotic, rather than mitotic, mechanisms, i.e., unreduced
gametes rather than mitotic errors. This viewpoint has been
reinforced in the intervening years (Ramsey and Schemske, 1998;
De Storme and Geelen, 2013; De Storme and Mason, 2014;
Mason and Pires, 2015).

Irrespective of the mode of formation, the terms
“allopolyploidy” and “autopolyploidy” clearly represent two
ends of a cytogenetic and taxonomic conceptual continuum
with broadly overlapping suites of characteristic features
(Wendel and Doyle, 2005; Carputo et al., 2006). In recent
years, the taxonomic definition for autopolyploidy, as arising
within a species, and allopolyploidy, as forming between

species, has predominated (Spoelhof et al., 2017b). This may
be the most useful definition, despite species concept and
classification difficulties, particularly for autopolyploid species
(Soltis et al., 2007; Barker et al., 2016). Allopolyploidy events
can also vary greatly in the amount of divergence between
the progenitor genomes. For example, some interspecific
hybridization events that lead to “allopolyploidy” may involve
species with subgenomes that are less diverged from each other
than “autopolyploid” events arising within a highly polymorphic
single species. In rice (Oryza sativa), for example, hybridization
between the two subspecies japonica and indica to form novel
polyploids results in “genomic shock” and allopolyploid-style
gene expression partitioning (Zhao et al., 2018), a phenomenon
more normally attributed to allopolyploidy (Grover et al.,
2012). By contrast, hybridization between taxonomic species
in the Brassica “C genome” cytodeme can often lead to fully
or partially fertile hybrids with predominantly homologous
chromosome pairing during meiosis (Kianian and Quiros, 1992;
Bothmer et al., 1995).

In addition to auto- and allo-, Stebbins (1947) proposed a
new category of polyploids, known as “segmental” allopolyploids.
Stebbins actually used both chromosome behavior and genome
structural divergence concepts in his application of the term, as
at the time chromosome pairing was thought to rely solely on
“structure,” rather than sequence homology. He first mentions
that “Cytologically, [segmental allopolyploids] are characterized
by the presence of multivalents in varying numbers, so that
in meiosis they often resemble autopolyploids more than true
allopolyploids.” He later states that “A segmental allopolyploid
may, therefore, be defined as an allopolyploid of which the
component genomes bear the majority of their chromosomal
segments in common, so that the diploid hybrid from which
it is derived has good pairing at meiosis, but in which these
genomes differ from each other by a large enough number
of chromosomal segments or gene combinations so that free
interchange between them is barred by partial or complete sterility
on the diploid level.” This latter idea, that of intermediacy between
the archetypal poles of autopolyploidy and allopolyploidy, has
often been an unstated assumption in the application of the
term since Stebbins’ first use, rather than the operational
definition that segmental allopolyploids show both multivalent
and bivalent formation for some portions of the chromosome
complement. Today, however, we would most likely characterize
these cases as autopolyploids. As pointed out by Sybenga a
quarter century ago (Sybenga, 1996), newly formed polyploids
often display multivalents, but established autopolyploids instead
are characterized by bivalent formation with random partner
choice (tetrasomic inheritance).

This distinction between newly formed vs. evolved is
important, as it illustrates the connectedness of the terms auto-
and allopolyploidy as well as a temporal dimension. That is,
autopolyploids may form between divergent germplasm groups
within a species, but later evolve fully disomic inheritance
and become “allopolyploid-like” (Bingham, 1980), and not
necessarily at homogeneous rates throughout the genome. Thus,
it seems important to distinguish mode of formation and evolved
meiotic behavior.
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MECHANISMS OF GENOME
STABILIZATION IN POLYPLOIDS

Newly formed polyploids, whether autopolyploids or
allopolyploids, face a major challenge in becoming established,
that of regulating meiosis (reviewed by Pelé et al., 2018). Meiosis
is a tightly controlled process in all organisms, as fertile progeny
must be formed from recombinationally variable gametes. This
tight regulation commonly breaks down when two genomes
are suddenly present instead of one, i.e., when four copies of
homologous chromosomes are present instead of two (reviewed
by Cifuentes et al., 2010). Cytologically speaking, there are two
strategies by which newly formed polyploids might regulate
meiosis: “autopolyploid”-type and “allopolyploid”-type. In
“autopolyploid”-type meiotic regulation, crossover number and
distribution is stringently regulated: only enough crossovers
are permitted so that every two chromosomes will be bound
by a single crossover. This promotes strict bivalent formation
(with random partner choice, i.e., tetrasomic inheritance)
despite the presence of four homologous chromosomes, and
is thought to be the most common method for autopolyploid
meiotic regulation (Cifuentes et al., 2010; Spoelhof et al.,
2017b). This is also the stability mechanism known to occur in
Arabidopsis arenosa autotetraploids (Lloyd and Bomblies, 2016).
Tetravalent formation, that is, when crossovers form between
four homologous chromosomes to produce a multivalent,
is rarely observed in meiosis of stable autopolyploids, and
sometimes not even in synthetic autopolyploids (Sybenga, 1996).

In allopolyploid meiosis, strictly homologous pairing requires
some mechanism or mechanisms to discriminate subgenomes
(Stebbins, 1950). It has long been noted that newly synthesized
allopolyploids suffer a higher degree of irregular chromosomal
configurations than do their natural analogs, for example,
in cotton (reviewed in Endrizzi et al., 1985), showing that
evolutionary enforcement of homologous pairing has been
selected over time. Mechanisms leading to this stabilization of
homologous pairing are mostly unknown and almost certainly
vary among the tens of thousands of allopolyploids that exist in
plants (e.g., even B chromosomes have been implicated; Taylor
and Evans, 1976). Early insights are beginning to emerge into
the spectrum of possible molecular determinants of enforcement
of homologous pairing. Prevention of non-homologous pairing
between subgenomes in allohexaploid bread wheat is facilitated
by the major qualitative effect Ph1 locus (Sears, 1976; Feldman,
1993; Griffiths et al., 2006; Bhullar et al., 2014), for which the
molecular mechanism is still not completely characterized, but
which may involve suppression of CDK2-like activity to result
in chromatin modifications (Greer et al., 2012) as well as the
presence of an additional copy of a meiotic ZIP4 gene (Rey
et al., 2017). By contrast, at least eight meiosis genes have been
implicated in genomic stabilization of autotetraploid Arabidopsis
arenosa (Yant et al., 2013), with two of these genes (ASY1
and ASY3) later found to directly reduce multivalent formation
and chiasma number, as expected (Morgan et al., 2020).
Triticum and Aradidopsis represent the two best-characterized
models for meiotic regulation in polyploids to date (reviewed
by Cifuentes et al., 2010; Lloyd and Bomblies, 2016). In recent

years, great progress has been made toward understanding
the molecular mechanisms underlying regulation of meiosis in
polyploids (see reviews by Cifuentes et al., 2010; Grandont
et al., 2013; Bomblies et al., 2015, 2016; Lloyd and Bomblies,
2016; Pelé et al., 2018). To date, however, only a few polyploid
species and synthetics have been investigated for meiotic
stability mechanisms; future investigations across the tree of
life are necessary to understand the spectrum of meiotic
evolutionary responses to polyploidy and which components
might be generalizable.

One question of importance is whether meiotic stabilization
following polyploidization is a gradual process, or whether
allelic variants present in the diploid progenitors can lead to
immediately stable allo- or autopolyploids. In synthetic Brassica
hybrids, the first generation has clearly been established to
be the least stable (Szadkowski et al., 2010), following which
meiosis may stabilize over time (Prakash et al., 1999; Gaebelein
et al., 2019), putatively due to selection for particular allelic
complements conferring higher fertility (Gaebelein and Mason,
2018; Gaebelein et al., 2019). Swaminathan and Sulbha (1959)
also found that stability increased over 19 generations of
selection in a single genotype of autotetraploid B. rapa – a
surprising result, because under strict self-pollination the only
way for stability to arise would be via de novo mutation,
chromosome rearrangements or changes in epimethylation,
as initial plants would be 100% homozygous. However, it is
clear that “complete” stabilization (i.e., complete prevention of
homoeologous chromosome pairing) does not occur in Brassica:
inspection of established B. napus has revealed high frequencies
of chromosome rearrangements in this young allotetraploid
species (Chalhoub et al., 2014; Samans et al., 2017; Mason et al.,
2018). These results are similar to those found in very recent (∼80
year old) allopolyploid species in Tragopogon, where extensive
karyotype variation has been observed, including clear products
of homoeologous recombination between the subgenomes
(Chester et al., 2012). In Arabidopsis arenosa polyploids, a
gradual process of generational selection for “adapted” meiosis
gene alleles has been proposed, based on selective sweeps
between diploid and tetraploid populations (Yant et al., 2013).
Interestingly, natural populations of tetraploid Arabidopsis lyrata
seem to have acquired these Arabidopsis arenosa alleles which
facilitate meiotic stabilization via interspecific hybridization
(Marburger et al., 2019), suggesting a possible shortcut
to stabilization.

But are all synthetic and newly formed polyploids in fact
meiotically unstable? Although this seems to be a common
general trend (see Pelé et al., 2018 for review), there are also
examples of immediately stable auto- and allopolyploids. For
instance, it seems that kale genotypes of Brassica oleracea can be
induced to form stable autopolyploids (Jenczewski et al., 2002),
despite the fact that most autotetraploids in this species are highly
unstable (Howard, 1939; Zdráhalová, 1968). Gupta et al. (2016)
also found stable meiotic behavior in a single genotype of de novo
allohexaploid Brassica formed by the cross between B. carinata
and B. rapa, despite the fact that the majority of lines from
this cross combination are highly unstable (Tian et al., 2010;
Gupta et al., 2016). Some allopolyploid species, such as white
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clover, also seem to have clear separation between subgenomes,
with no indication of instability following allopolyploidization
(Griffiths et al., 2019). Possibly, considerable genetic variation is
present within some lineages for the frequency and prevention
of non-homologous recombination events, which may occur
through different mechanisms such as increased stringency of
sequence-homology required for crossover formation, timing of
condensation of chromosomes belonging to different genomes,
and changes in crossover frequency, targeting and distribution,
which may be modulated by many different genomic features
and which are only now starting to be elucidated (Zhang et al.,
2020; see also Cifuentes et al., 2010 for review). Although
only speculation, this would perhaps explain why some plant
families (e.g., Brassicaceae) have widely varying karyotypes and
chromosome numbers even between closely related species
(Schranz et al., 2006), while other families (e.g., Solanaceae)
have highly conserved karyotypes and chromosome numbers
(Wu and Tanksley, 2010).

HOMOEOLOGOUS EXCHANGES IN
ALLOPOLYPLOIDS

Mechanisms of polyploid formation and meiotic regulation
are important to consider in all polyploids, as “established”
polyploid species can still be prone to meiotic errors resulting
from imperfect stabilization processes. In many allopolyploid
species, “homoeologous exchanges” (HEs) occur via mispairing
between ancestrally related chromosomes belonging to different
genomes. These exchanges swap pieces of DNA between
the subgenomes, and can lead to deletions, duplications and
translocations (Figure 1). Not all non-homologous exchanges
are homoeologous, that is, occur between related genomic
segments that have diverged from a common ancestor. Even

small regions of duplicated DNA within a genome are
sufficient to induce occasional non-homologous chromosome
rearrangements. However, these tend to be heavily suppressed,
such that recombination between repetitive sequences (which can
easily result in genomic instability) is rare (Putnam et al., 2009).
Hence, the vast majority of crossovers between non-homologous
chromosomes occur between homoeologous regions, particularly
in recent allopolyploids (Nicolas et al., 2012).

Homoeologous exchanges can result in either “balanced”
or “reciprocal” translocations (“homoeologous reciprocal
translocations” or HRTs) which swap the locations of
two homoeologous DNA segments, or “unbalanced” or
“homoeologous non-reciprocal” translocations (HNRTs)
(effectively duplication/deletion events, Figure 1). However,
this terminology is misleading and should probably be avoided.
“Non-reciprocal” exchanges are of course actually reciprocal
in terms of crossover events (see Figure 1), such that “non-
reciprocal” refers only to the products of the exchange, i.e.,
whether one piece of DNA has been swapped for another, or
whether an additional copy of a DNA sequence has replaced
the homoeologous copy in a “duplication-deletion” event.
Homoeologous exchanges generally occur via co-opting of the
homologous recombination pathway, but where homoeologous
chromosome regions (ancestrally related stretches of DNA from
different subgenomes) act as the substrate instead of homologous
chromosomes (Nicolas et al., 2009). Depending on the structural
divergence between the subgenomes, whole chromosomes may
be “homoeologous” or syntenic in terms of DNA sequence
along their entire length, or single chromosomes may contain
many small stretches of DNA that are homoeologous to parts
of chromosomes in the other subgenome. In many species,
recurrent polyploidy events have resulted in both “primary”
and “secondary” homoeology: that is, homoeology between
subgenomes resulting from a recent allopolyploid event, and

FIGURE 1 | Meiosis in an example allopolyploid with 2n = 4x = 2 chromosomes (subgenomes indicated in red and blue), showing the most probable outcome of a
single crossover event between homoeologous (ancestrally homologous) chromosomes. All such events will most likely be heterozygous in the first generation, even
under self-pollination, as gametes with a homoeologous recombination event (duplication/deletion) will unite with gametes from a different meiosis (i.e., pollen with
ovules), but may become fixed in subsequent generations after self-pollination.
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homoeology within each subgenome between regions resulting
from more ancient polyploidy events. A good example of this is
provided by the Brassica genus: in addition to the three recent
allopolyploid species B. juncea, B. napus, and B. carinata, with
AABB, AACC, and BBCC genome complements, respectively,
for which the A-B, A-C, and B-C genomic relationships,
respectively represent primary homoeology, each of the A, B, and
C genomes contains triplicated genomic segments resulting from
mesopolyploidy events, representing secondary homoeology
(Parkin et al., 2003).

Homoeologous exchanges are now known to be common
in synthetic polyploids, as well as those of recent evolutionary
origin. Recent allopolyploids with commonly detected HEs
include Tragopogon species (Chester et al., 2012), peanuts
(Arachis hypogaea; Bertioli et al., 2019; Zhuang et al., 2019),
quinoa (Chenopodium quinoa; Jarvis et al., 2017), tobacco
(Nicotiana tabacum; Chen et al., 2018) and rapeseed (Brassica
napus; Chalhoub et al., 2014). Synthetics with frequent HEs
include allopolyploid rice (constructed from Oryza sativa subsp.
indica × subsp. japonica; Sun et al., 2017; Li et al., 2019) and
Brassica species (Song et al., 1995; Gaeta et al., 2007; Szadkowski
et al., 2010), as well as many more: this phenomenon may be
generalizable across most newly formed polyploids as a result of
meiotic instability (reviewed by Pelé et al., 2018).

It should be noted for completeness that homoeologous
exchanges are not the only form of genomic instability in
novel polyploids. Previously, a great deal of attention has been
paid to the activation of transposable elements as a result of
“genome shock,” a phenomenon first proposed by McClintock
(1984). Polyploidy in many species seems to be associated
with bursts of transposable element activation (for review see
Vicient and Casacuberta, 2017; Nieto-Feliner et al., 2020, this
issue). Transposable elements may also (rarely) act as a substrate
for non-homologous recombination events (Xiao and Peterson,
2000; Xuan et al., 2012), and also cause sequence mutagenesis
after excision due to double strand break repair mechanisms,
which often insert or delete a few basepairs during the non-
homologous end-joining process (for review see Gorbunova
and Levy, 1999). Transposable element activation and novel
SSR mutations have been reported in Brassica synthetics (Zou
et al., 2011; Gao et al., 2014), and widespread loss of non-
coding sequences in synthetic wheat polyploids (Ozkan et al.,
2001; Shaked et al., 2001), all independent of homoeologous
exchange events.

HOMOEOLOGOUS RECOMBINATION
EVENTS CAN GENERATE NOVEL
VARIATION, AFFECT PHENOTYPE AND
ACT AS TARGETS FOR NATURAL
SELECTION

Non-homologous recombination events can result in
duplications, deletions and chromosome rearrangements.
Although karyotypic variation resulting from non-homologous
chromosome recombination putatively occurs in almost all

evolutionary lineages, facilitating karyotype change over time,
it is much more likely that a chromosome rearrangement
(particularly a larger deletion or duplication) will prove fatal
in a diploid lineage (Schuermann et al., 2005). However, the
presence of an extra set of chromosomes provides a “buffer”
for chromosome change: when two or more copies of a
gene or genomic region are present, this can allow novel
variation to arise without impacting viability and fertility to
as great an extent. This genomic redundancy, in fact, has
classically been considered to be at least partially responsible
for the success of polyploidy in many plant lineages (Leitch
and Leitch, 2008), although the same redundancy which
can buffer high-impact mutations and prevent them from
being deleterious may also slow the rate of loss of deleterious
alleles and fixation of beneficial alleles (Stebbins, 1971; Otto
and Whitton, 2000). Homoeologous recombination events
are also, of course, more common in polyploids, which
provide millions of potential substrates for non-homologous
recombination and formation of crossovers between two
similar DNA sequences.

Homoeologous exchanges, as well as presence-absence
variants and other karyotypic changes, have now been
conclusively linked to phenotypic changes in many species,
including polyploid crops (reviewed by Schiessl et al., 2019). In
fact, a number of homoeologous exchanges (almost all examples
involve duplication-deletion events, as reciprocal translocations
are harder to detect) have now been demonstrated to have
been selected for in crops: in Brassica napus (rapeseed), winter
and spring crop types are differentiated by homoeologous
exchanges involving major flowering time regulators such
as FLC (Schiessl et al., 2017), and effects of homoeologous
exchanges on disease resistance and glucosinolate metabolism
have also been observed (Stein et al., 2017; Hurgobin et al.,
2018). In allotetraploid peanut, fixed homoeologous exchanges
(duplication-deletion events) were seen to generate phenotypic
novelty, with direct effects on flower color (Bertioli et al., 2019).
In many synthetic hybrids produced from a single homozygous
individual, homoeologous exchanges lead to generation of
major genetic and phenotypic novelty (Xiong et al., 2011;
Spoelhof et al., 2017a; Sun et al., 2017; Li et al., 2019). Hence,
homoeologous exchanges (both duplication-deletions and
chromosome rearrangements) may comprise an important
evolutionary substrate for divergence, speciation and adaptation
in newly formed allopolyploids.

It is of interest to consider the possible relationships between
HEs and the constraints on genic retention and evolution
following whole genome doubling imposed by selection at the
gene balance level (Birchler and Veitia, 2010, 2012, 2014).
To the extent that gene content and function are equivalent
among homoeologous segments, HEs would not, to a first
approximation, appear to materially impact gene balance.
In the case of allopolyploids, however, where there almost
certainly are both functional and copy-number differences
among homoeologs, it seems likely that the selective fate or
survivorship of particular HEs might in part be directed by
gene-balance considerations. As this is an entirely unexplored
relationship, it represents a natural area for future investigation.
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HOMOEOLOGOUS EXCHANGES AND
SEGMENTAL ALLOPOLYPLOIDY

Reconciliation between the classic definition of segmental
allopolyploids as “containing autopolyploid and allopolyploid
segments” and modern genomic observations of genic synteny
is, of course, provided by the mechanism of homoeologous
exchange following allopolyploidy. A modern conception of
“segmental allopolyploids” may thus include both transitional
autopolyploids as well as allopolyploids that contain a mix of
auto- and allopolyploid segments derived via homoeologous
exchanges (duplication-deletion events; e.g., Sun et al., 2017;
Leal-Bertioli et al., 2018; Bertioli et al., 2019). The dynamics
of this process have now been described in numerous
experimental systems.

In homoeologous exchanges, the products of a single event can
be described as either “balanced” exchanges, or as “duplication-
deletion” events, where the latter are hypothetically more
common due to random segregation of chromatids following a
homoeologous crossover event. In these “duplication-deletion”
events, segments of one subgenome are deleted and replaced
by segments of the other subgenome. If these events become
fixed, then this genomic region is in fact “autopolyploid,” with
four copies of the same subgenome, while the rest of the
genome remains allopolyploid. If no selection or bias is present,

this would generate a complex mosaic of genomic regions
representing one or the other subgenome, or both (Figure 2),
with considerable relevance to phylogenomics and phylogenetics
(Edger et al., 2018). An excellent recent example of this
process is provided by genomic investigations of allotetraploid
peanut, in which regions of both A and B subgenomes had
been replaced by copies of the other subgenome (AABB –
> AAAA or BBBB) (Bertioli et al., 2019), putatively as a
result of fixation of these homoeologous exchanges after a
single allopolyploidization event. On the other hand, a possible
outcome of biased replacement of one subgenome with the other
subgenome, as has been documented to occur via fertility-based
selection in some species (e.g., Gaebelein et al., 2019), could
make an even more interesting pattern: an “autopolyploid” may
result, but possibly one that appears to have small genomic
regions introgressed from another species (Figure 2). Recently,
synthetic rice polyploids formed by hybridization between
japonica and indica subspecies also revealed directional loss of
one subgenome through selection for the products of HEs (Zhang
et al., 2019). The authors found that this “homogenization”
(retention of two copies of one subgenome and loss of the
corresponding homoeologous copy from the other subgenome)
also altered gene expression and enhanced alternative splicing in
these chromosome regions, thus suggesting a possible selective
mechanism for these events. Although an interesting speculation,

FIGURE 2 | Homoeologous exchanges can generate a diverse spectrum of genomic mosaics over the generations, where some regions of the genome retain
homoeologous segments and others become genomically homozygous for a single parental homoeolog, as illustrated here for one pair of homoeologous
chromosomes. Thus, some regions of the genome might appear to be “autopolyploid” whereas others appear “allopolyploid.” At the population level and over time,
HEs may generate highly variable progeny that may be subject to natural selection, thus fixing specific chromosomal recombinants. In the limit, directional selection
may favor one progenitor homoeolog, which may thus appear to have an autopolyploid origin. Genic divergence for duplicates is expected to reflect this history.
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a uni-directional process has so far only been observed in very
recent and synthetic allopolyploids. Under natural conditions,
negative selective pressure against de novo HEs would also have to
be overcome. Minority cytotype disadvantage, where individuals
heterozygous for particular chromosome rearrangements have
lower reproductive success, could play a role in purging novel
homoeologous exchanges from populations, and likely does in
most cases. Finally, it is unclear the extent to which initial
conditions established at the time of allopolyploid formation,
that is, the genomic features of the progenitor diploids, are
determinative of the future survivorship of HEs in their derived
allopolyploids. More specifically, do the same, still somewhat
mysterious genomic features that are thought to be involved in
the establishment of subgenome dominance (Cheng et al., 2018;
Wendel et al., 2018) play an important role in the genomic
distribution and selective fate of HEs? This too represents an area
for future research.

DISCUSSION

Here we have attempted to provide a synopsis of our growing
recognition that homoeologous exchange following polyploidy
is a common evolutionary process leading to genomically
variable progeny that can serve as substrates for natural
selection. Thus, HEs comprise an important dimension of
polyploid genomics, potentially representing a key mechanism
of post-polyploidization diversification and speciation. This
same process has implications for the inference of polyploid
parentage and our understanding of the terms autopolyploidy
and allopolyploidy, as well as “segmental allopolyploidy.” In
this respect, phylogenetic or phylogenomic analyses will benefit
from consideration of the genomic mosaicism potentially
generated by HEs (Edger et al., 2018), and the possibility of
conversion of a strict allopolyploid to a partially autopolyploid
genome through homoeologous exchanges. The use of synthetic
systems, where historical polyploidization events are “recreated”
by crossing between diploid progenitor species, may help
shed light on the spectrum of mechanisms and outcomes

involved in the early stages of allopolyploid genome evolution
(Xiong et al., 2011; Samans et al., 2017; Spoelhof et al., 2017a;
Sun et al., 2017; Li et al., 2019), as may investigation of very
young allopolyploids such as Tragopogon mirus and T. miscellus
(Buggs et al., 2011, 2012), Senecio cambrensis (Ashton and
Abbott, 1992; Hegarty et al., 2006), Mimulus peregrinus (Vallejo-
Marín et al., 2015) and Spartina anglica (Baumel et al., 2002;
Ainouche et al., 2004). In particular, better understanding of
the mechanisms controlling genome stability (i.e., frequency of
non-homologous recombination events and other mutations)
and the possible genotypic influences on these mechanisms may
prove a fruitful avenue for further investigation. Homoeologous
exchanges in allopolyploids in particular may have far-reaching
implications for polyploid evolution, providing evolutionary
novelty, helping stabilize genomes and facilitating speciation.
Our appreciation of the significance of HEs in polyploid
evolution will undoubtedly be enhanced by the increasing
application of genomic tools to natural (Bomblies et al.,
2015; Yant and Bomblies, 2017; Marburger et al., 2019) and
synthetic (Samans et al., 2017; Sun et al., 2017; Hurgobin
et al., 2018; Li et al., 2019) polyploid complexes, combined
with an increasing experimental focus on cytogenetic and
meiotic mechanisms.
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