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METHODS PAPER

Estimation of the Absolute Risk of Cardiovascular 
Disease and Other Events: Issues With the Use of 
Multiple Fine-Gray Subdistribution Hazard Models
Peter C. Austin , PhD; Hein Putter , PhD; Douglas S. Lee , MD, PhD; Ewout W. Steyerberg , PhD

BACKGROUND: The Fine-Gray subdistribution hazard model is frequently used in the cardiovascular literature to estimate 
subject-specific probabilities of the occurrence of an event of interest over time in the presence of competing risks. A 
little-known limitation of this approach is that, for some subjects and for some time points, the sum of the subject-specific 
probabilities for the different event types (eg, cardiovascular and noncardiovascular death) can exceed one.

METHODS: We used data on 8238 patients hospitalized with congestive heart failure in Ontario, Canada. We fit 2 Fine-
Gray subdistribution hazards models, one for cardiovascular death and one for noncardiovascular death and estimated the 
probability of death due to each cause within 5 years of hospital admission. We also fit 2 cause-specific hazard models for 
the 2 event types and combined the estimated cause-specific hazard functions to obtain subject-specific estimates of the 
probabilities of each of the 2 event types occurring within 5 years.

RESULTS: When adding the probabilities of 5-year cardiovascular death and 5-year noncardiovascular death obtained from 
the Fine-Gray subdistribution hazard models, 8.6% of subjects had an estimated probability of 5-year all-cause mortality that 
exceeded 1 (100%). This problem was avoided by fitting 2 cause-specific hazard models, one for each outcome type, and 
combining the estimated cause-specific hazard functions to obtain subject-specific estimates of the risk of cardiovascular 
and noncardiovascular death.

CONCLUSIONS: The Fine-Gray subdistribution hazard model may be problematic to use for a comprehensive assessment 
of absolute risks of multiple outcomes, while the combination of 2 cause-specific hazard models shows better statistical 
behaviour. Cause-specific modeling should not be discarded in competing risk situations.
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Survival analysis is concerned with the analysis of 
outcomes that occur over time. A common example 
in medical research is time to all-cause mortality. A 

competing risk is an event whose occurrence precludes 
the occurrence of the primary event of interest. If the 
primary event of interest is death due to cardiovascular 
causes, then death due to noncardiovascular causes is a 
competing risk, since subjects who die of noncardiovas-
cular causes are no longer at risk of death due cardio-
vascular causes.

There have been a substantial number of tutorial and 
expository articles on the analysis of competing risk data, 
both in the general literature and the cardiovascular lit-
erature.1–7 Cardiovascular researchers are increasingly 
aware of the need to use appropriate statistical meth-
ods when analyzing data in which competing risks are 
present. For example, a model for incident acute myocar-
dial infarction may consider mortality from other causes 
as a competing event. It is increasingly acknowledged 
that in the presence of competing risks, the use of the 
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Kaplan-Meier survival function (by censoring on the com-
peting risks) results in biased estimation of the absolute 
risk of events over time. Similarly, the use of a single Cox 
proportional hazards model (ie, a single cause-specific 
hazards model) can result in biased estimation of the 
absolute risk of the event of interest over time in the 
presence of competing risks.

There are 2 primary options when using regression 
models to obtain subject-specific estimates of the abso-
lute risk of an event over time in the presence of compet-
ing risks. The first is the Fine-Gray subdistribution hazard 
model, which allows for modeling the effect of covariates 
on the cumulative incidence function (CIF).8 Second, one 
can fit cause-specific hazard models for each of the dif-
ferent event types and then combine the resultant cause-
specific hazard models to estimate the absolute risk of 
each of the different event types over time.1,9 Note that 
this latter approach is different from fitting a single cause-
specific hazard function for the primary cause of interest. 
While the former approach is increasingly frequently used, 
our impression is that the latter approach is rarely used 
in applied applications. A little-known limitation of the 
Fine-Gray subdistribution hazard model is that, for specific 
covariate patterns and for certain values of time, the sum 
of the estimated absolute risk for the different event types 
can exceed one. Thus, one can obtain estimates of the 
probability of all-cause events that are not constrained to 
lie between 0 and 1, which is clearly impossible.

Increasingly, cardiovascular research has expanded 
beyond all-cause mortality for challenging healthcare 
issues, especially when considerations extend beyond 
this one outcome. For example, heart failure is a chal-
lenge because of the multiplicity of potentially impor-
tant outcomes including heart failure hospitalization, 
ischemia-related hospitalization, emergency department 
visits, sudden death, cardiovascular death, and worsen-
ing heart failure.10,11 These outcomes may have differ-
ent degrees of importance to subspecialist physicians 
(eg, heart failure specialists, cardiac electrophysiologists, 
interventional cardiologists, cardiac surgeons), general-
ists, and hospitalists. Based on our prior work engaging 
patients,12,13 the outcomes that are important to patients 
extend beyond all-cause mortality. This reinforces the 
importance of being able to provide accurate estimates 
of the absolute risk of multiple outcomes, as these are 
easier for patients to understand and enable appropriate 
patient decision making.

The objective of this article is to illustrate some limi-
tations with estimation of subject-specific estimates of 
absolute risk when using the Fine-Gray subdistribution 
hazard model in patients with congestive heart failure. 
Using cause-specific hazard models for all event types 
will be shown to circumvent the problems of the Fine-
Gray model.

METHODS
The data sets used in these analyses were linked using unique 
encoded identifiers and analyzed at ICES. While data sharing 
agreements prohibit ICES from making the data set publicly 
available, access may be granted to those who meet prespeci-
fied criteria for confidential access, available at www.ices.on.ca/
DAS. The use of data in this project was authorized under sec-
tion 45 of Ontario’s Personal Health Information Protection Act, 
which does not require review by a Research Ethics Board.

Data Sources
We used data from first phase of EFFECT (The Enhanced 
Feedback for Effective Cardiac Treatment) Study,14 which col-
lected data on patients hospitalized with congestive heart fail-
ure between April 1, 1999, and March 31, 2001 at 86 hospital 
corporations in Ontario, Canada. For the current study, individ-
ual patient data were available on 8238 patients hospitalized 
with a diagnosis of congestive heart failure.

The outcome was time to death, with subjects censored 5 
years after the date of hospital admission. Death was catego-
rized as either death due to cardiovascular causes or death 
due to noncardiovascular causes. Outcome ascertainment was 
through linkage with the provincial death registry. Of the 8238 
patients, 3416 (41.5%) died of cardiovascular causes within 
5 years of admission, while 2228 (27.0%) died of noncardio-
vascular causes within 5 years of admission. All subjects were 
followed to either the date of death or 5 years postadmission, 
whichever came first.

We considered 28 predictor variables consisting of demo-
graphic characteristics (age, sex); vital signs on presentation 

WHAT IS KNOWN
•	 The Fine-Gray subdistribution hazard model is fre-

quently used to estimate subject-specific probabili-
ties of the occurrence of an event of interest over 
time in the presence of competing risks.

•	 A limitation of this approach is that, for some sub-
jects and for some time points, the sum of the 
subject-specific probabilities for the different event 
types (eg, cardiovascular and noncardiovascular 
death) can exceed one.

•	 This problem can be avoided by combining the 
cause-specific hazard functions for all the different 
types of events.

WHAT THE STUDY ADDS
•	 We illustrated the existence of this problem using 

data on patients hospitalized with congestive heart 
failure.
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(systolic blood pressure, heart rate, respiratory rate); presenting 
signs and symptoms (neck vein distension, S3, S4, rales >50% 
of lung field, pulmonary edema, cardiomegaly); cardiovascular 
history and comorbid conditions (diabetes, cerebrovascular 
disease/transient ischemic attack, previous acute myocardial 
infarction, atrial fibrillation, peripheral vascular disease, chronic 
obstructive pulmonary disease, dementia, cirrhosis, cancer); 
results of ECG (left bundle branch block); initial laboratory test 
results (hemoglobin, white blood count, sodium, potassium, glu-
cose, urea, and creatinine).

Statistical Analysis
We regressed the subdistribution hazard of cardiovascular 
death on the 28 covariates described above. Using the fitted 
model, we estimated the absolute risk of cardiovascular death 
within 5 years for each subject in the sample. We then repeated 
this analysis for noncardiovascular death. For each subject, we 
added the probabilities of cardiovascular and noncardiovascu-
lar death within 5 years to obtain the probability of all-cause 
mortality within 5 years.

We fit 2 cause-specific hazard models using the 28 covari-
ates described above. The cause-specific hazard models for 
cardiovascular and noncardiovascular death were estimated 
separately. Using the 2 fitted cause-specific hazard models, 
we obtained the estimated absolute risk of cardiovascular and 
noncardiovascular death within 5 years for each subject in the 
sample using methods described elsewhere.1,9 For each sub-
ject, we added the probabilities of cardiovascular and noncar-
diovascular death within 5 years.

We also fit a Cox proportional hazards model for all-cause 
mortality using the 28 covariates described above (note that 
all-cause death is comprised of death due to cardiovascular 
causes and death due to noncardiovascular causes). Using the 
fitted model, we estimated for each subject the probability of 
all-cause mortality within 5 years. Note that the 5 regression 
models (2 Fine-Gray subdistribution hazard models, 2 cause-
specific hazard models; 1 Cox proportional hazard model) all 
incorporated the same 28 covariates described above, with 
similar coding. The cause-specific and subdistribution hazard 
ratios along with associated 95% CIs for the 2 type of events 
are reported in Table.

We assessed the calibration of the models for estimating 
the absolute risk of cardiovascular death within 5 years using 
a method described before.5 For a given modeling approach 
(combining the 2 cause-specific hazard models or the Fine-
Gray subdistribution hazard model), we divided subjects into 
ten risk strata using the deciles of the estimated risk of 5-year 
cardiovascular mortality. Within each stratum, we computed 
the mean estimated probability of 5-year cardiovascular mor-
tality. Then, within each stratum we estimated the observed 
risk of 5-year cardiovascular mortality using a CIF. We plotted 
the observed risk against the mean estimated risk across the 
10 risk strata. This process was then repeated for noncardio-
vascular mortality.

The Fine-Gray subdistribution hazard models and the 
cause-specific hazard models were fit using the GFR and CSC 
functions, respectively, in the riskRegression package (version 
2019.11.03) for R (version 3.5.1). R code for fitting the 2 Fine-
Gray subdistribution hazard models, the 2 cause-specific haz-
ard models, and the Cox proportional hazards model, along with 

estimating subject-specific probabilities of 5-year cardiovascu-
lar death, 5-year noncardiovascular death, and 5-year all-cause 
death is provided in appendix A in the Supplemental Material, 
while corresponding SAS code is provided in appendix B in the 
Supplemental Material.

RESULTS
Overall, the estimates from the 2 approaches (Fine-
Gray versus cause-specific hazard modeling) tended 
to be comparable for each outcome (Figure  1). The 
median difference in the estimated probability of 5-year 
cardiovascular death between the 2 approaches was 
0.5% (25th and 75th percentiles: −0.8% and 1.4%), 
while the minimum and maximum differences were 
−31.6% and 7.4%, respectively (these differences are 
cause-specific hazard minus Fine-Gray). The median 
difference in the estimated probability of 5-year non-
cardiovascular death between the 2 approaches was 
0.5% (25th and 75th percentiles: −1.1% and 1.6%), 
while the minimum and maximum differences were 
−34.6% and 11.0%, respectively.

The estimated risk of death due to any cause within 5 
years obtained from a single Cox model was compared 
with that obtained from adding the 2 estimates of the 
absolute risk of cause-specific mortality derived from the 
2 cause-specific hazard models (left pane of Figure 2). 
There was good agreement between the 2 approaches. 
Importantly, the estimated risk of all-cause mortality was 
≤1 for all subjects using both the Cox proportional haz-
ards model for all-cause mortality and the method based 
on combining the 2 cause-specific hazard models. The 
median difference in the estimated probability of 5-year 
all-cause mortality between the 2 approaches was 0.3% 
(25th and 75th percentiles: −0.3% and 0.7%), while the 
minimum and maximum differences were −11.6% and 
3.0%, respectively (these differences are Cox minus 
cause-specific hazard).

Finally, the estimated risk of death due to any cause 
within 5 years obtained from a single Cox model was 
compared with that obtained from adding the 2 esti-
mates of absolute risk derived from the 2 Fine-Gray 
subdistribution hazard models (right panel of Figure 2). 
The median difference in the estimated probability of 
5-year all-cause mortality between the 2 approaches 
was 0.9% (25th and 75th percentiles: −2.2% and 
3.2%), while the minimum and maximum differences 
were −63.6% and 15.7%, respectively (these differ-
ences are Cox minus Fine-Gray). The agreement was 
hence inferior for the combination of 2 Fine-Gray 
models than the combination of 2 cause-specific haz-
ard models. Importantly, the sum of risk estimates from 
the Fine-Gray models exceeded 1 (or 100%) in 707 
(8.6%) out of 8238 of subjects, in contrast to in none 
of the subjects when using the 2 cause-specific haz-
ard modeling approach.
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Both methods displayed very good calibration for 
cardiovascular death (Figure  3). For noncardiovascular 
death, calibration was slightly worse for both approaches, 
with the cause-specific modeling approach having 
slightly better calibration than the subdistribution hazard 
modeling approach.

DISCUSSION
We demonstrated that using the Fine-Gray subdistri-
bution hazard model can result in estimated probabili-
ties of events occurring within specified durations of 
time such that the sum of these probabilities across all 
event types exceeds one for a non-negligible propor-
tion of patients. This is clearly undesirable, as the prob-
ability of all-cause events is necessarily constrained to 
be at most one. This problem can be avoided by fitting 
all the cause-specific hazard models and combining 
the estimated cause-specific hazard functions. More-
over, the sum of absolute risks for cardiovascular and 

noncardiovascular events was slightly off from what 
would be predicted by a simple Cox model for the com-
bination of events in the lower risk range.

Despite these problems with the Fine-Gray subdis-
tribution hazard model, there are attractive features. 
First, the Fine-Gray subdistribution hazard model is 
interpretation-friendly.15 This is because the direction 
of the regression coefficients (ie, positive versus nega-
tive) indicate the direction (but not the magnitude) of 
the effect of the associated covariate on the cumulative 
incidence (or risk) of the occurrence of the outcome.16 
Thus, increasing values of covariates that have a positive 
regression coefficient in a subdistribution hazard model 
are associated with increases in the cumulative inci-
dence of the event, while increasing values of covariates 
that have a negative regression coefficient are associ-
ated with decreases in the cumulative incidence of the 
event. Second, if a researcher publishes the baseline 
cumulative incidence function (eg, at 5 years) and the 
regression coefficients, then one can easily compute the 

Table.  Hazard Ratios and 95% CIs From the Cause-Specific Hazard Models and the Fine-Gray Subdistribution Hazard Models

Variable

Cause-specific hazard 
model—cardiovascular 
death

Cause-specific hazard 
model—noncardiovascu-
lar death

Fine-Gray model— 
cardiovascular death

Fine-Gray model— 
noncardiovascular death

Age 1.044 (1.04–1.048) 1.031 (1.026–1.035) 1.035 (1.031–1.039) 1.014 (1.009–1.018)

Female 0.987 (0.918–1.062) 0.909 (0.832–0.994) 1.007 (0.934–1.085) 0.916 (0.837–1.002)

Systolic blood pressure 0.992 (0.991–0.994) 0.997 (0.996–0.999) 0.994 (0.993–0.995) 1.001 (0.999–1.002)

Heart rate 1.000 (0.998–1.001) 1.001 (0.999–1.003) 1.000 (0.998–1.001) 1.000 (0.999–1.002)

Respiratory rate 1.011 (1.006–1.016) 1.007 (1.001–1.014) 1.009 (1.004–1.014) 1.003 (0.997–1.009)

Neck vein distension 0.887 (0.828–0.949) 1.002 (0.92–1.091) 0.887 (0.827–0.951) 1.07 (0.982–1.167)

S3 1.027 (0.913–1.154) 0.891 (0.764–1.038) 1.06 (0.944–1.19) 0.894 (0.769–1.038)

S4 1.048 (0.87–1.263) 0.947 (0.746–1.203) 1.072 (0.889–1.294) 0.888 (0.7–1.127)

Rales >50% of lung field 1.087 (0.975–1.213) 1.159 (1.015–1.324) 1.004 (0.894–1.128) 1.076 (0.938–1.236)

Pulmonary edema 1.07 (0.998–1.147) 0.944 (0.866–1.028) 1.09 (1.016–1.17) 0.914 (0.838–0.997)

Cardiomegaly 1.045 (0.974–1.121) 0.929 (0.851–1.015) 1.061 (0.988–1.14) 0.941 (0.861–1.029)

Diabetes 0.908 (0.837–0.986) 1.61 (1.463–1.771) 0.803 (0.738–0.873) 1.675 (1.52–1.847)

Stroke/transient ischemic attack 1.29 (1.185–1.405) 1.175 (1.052–1.313) 1.245 (1.14–1.359) 1.004 (0.895–1.125)

Previous AMI 1.263 (1.178–1.354) 0.882 (0.806–0.965) 1.314 (1.223–1.412) 0.825 (0.753–0.903)

Atrial fibrillation 1.051 (0.977–1.131) 0.927 (0.843–1.019) 1.076 (0.998–1.159) 0.92 (0.836–1.013)

Peripheral vascular disease 1.268 (1.151–1.398) 1.145 (1.016–1.291) 1.207 (1.088–1.339) 1.051 (0.931–1.187)

Chronic obstructive pulmonary disease 1.204 (1.102–1.316) 1.500 (1.353–1.663) 1.098 (1.001–1.204) 1.334 (1.199–1.484)

Dementia 1.611 (1.439–1.803) 1.771 (1.531–2.048) 1.292 (1.138–1.466) 1.256 (1.075–1.467)

Cirrhosis 1.388 (0.932–2.066) 1.826 (1.223–2.725) 1.289 (0.856–1.94) 1.502 (0.974–2.318)

Cancer 0.990 (0.889–1.102) 1.745 (1.56–1.952) 0.861 (0.77–0.964) 1.711 (1.524–1.921)

Left bundle branch block 1.187 (1.085–1.298) 0.916 (0.808–1.04) 1.218 (1.112–1.335) 0.837 (0.737–0.95)

Hemoglobin 1.000 (0.998–1.001) 0.992 (0.99–0.994) 1.002 (1.000–1.004) 0.993 (0.99–0.995)

White blood count 1.009 (1.003–1.015) 1.017 (1.01–1.024) 1.002 (0.995–1.009) 1.012 (1.005–1.02)

Sodium 0.989 (0.982–0.996) 0.982 (0.973–0.99) 0.993 (0.985–1.000) 0.986 (0.977–0.995)

Potassium 1.036 (0.984–1.091) 0.984 (0.922–1.05) 1.037 (0.983–1.095) 0.959 (0.896–1.026)

Glucose 1.002 (0.993–1.01) 0.997 (0.987–1.008) 1.003 (0.995–1.011) 0.998 (0.987–1.009)

Urea 1.039 (1.033–1.045) 1.031 (1.023–1.039) 1.029 (1.021–1.036) 1.007 (0.999–1.015)

Creatinine 1.000 (0.999–1.000) 1.001 (1.000–1.001) 1.000 (0.999–1.000) 1.001 (1.000–1.001)
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absolute risk of the event of interest for any covariate 
pattern at that time point (eg, 5 years). In contrast to the 
interpretation-friendly nature of the subdistribution haz-
ard model, it is difficult to determine the direction of the 
effect of individual covariates on the absolute risk of the 
outcome when combining cause-specific hazard func-
tions. Furthermore, one cannot derive a direct expression 
for the absolute risk of the occurrence of the outcome 
as a function of the baseline risk, the regression model 
coefficients and subject characteristics, since both risk 
functions need to be combined.5

Our assessment of calibration indicates that the limi-
tation of the Fine-Gray model that we have illustrated 
is masked when examining predictions in aggregate. 
Both modeling approaches displayed very good cali-
bration and the mean estimated risk of cause-specific 
death within 5 years within each of the 10 risk strata 
was comparable between the 2 approaches. A limitation 
of the Fine-Gray model is evident when the focus is on 
subject-specific probabilities of all event types. Indeed, 
it is these very probabilities that are of key importance 
for informing clinical decision making. In some con-
texts, only the probabilities of the primary event may be 
of interest, while in other contexts, all the event types 
may be of interest. In the context of heart failure, there is 

increasing interest in determining the risk of cardiovas-
cular and noncardiovascular hospitalizations, with death 
treated as a competing risk.17 The Fine-Gray model is 
increasingly used to enable these types of analyses.11 
Furthermore, the Fine-Gray model is being used to esti-
mate the risk of not just the primary event of interest, but 
also of competing events. For example, in the context of 
prophylactic primary prevention implantable cardioverter 
defibrillators for left ventricular systolic dysfunction, cli-
nicians, and patients may benefit from risk prediction 
methods to decide whether to implant a device or forego 
the procedure. While implantation of a defibrillator may 
treat life-threatening ventricular arrhythmias, recipients 
of the device may be subject to complications, device 
infections, device recalls, and inappropriate shocks.18,19 
Since implantable cardioverter defibrillators reduce the 
risk of arrhythmic death but do not impact nonarrhythmic 
death, it is important to enable prediction of these com-
peting events with better estimates of the risk of arrhyth-
mic death and nonarrhythmic death, since the former is 
preventable by a defibrillator while the latter is not.20

An explanation for the phenomenon that we observed 
is that in the context of there being 2 types of events 
and when fitting 2 separate subdistribution hazard mod-
els, at least one of the fitted models will be incorrect.21 

Figure 1. Five-year risk of cause-specific death for each subject from 2 modeling approaches
Comparison of Fine-Gray with cause-specific hazard modeling.



Austin et al Problems With the Fine-Gray Competing Risk Model

Circ Cardiovasc Qual Outcomes. 2022;15:e008368. DOI: 10.1161/CIRCOUTCOMES.121.008368� February 2022 166

This occurs because, when fitting 2 subdistribution haz-
ard models, the regression coefficients of the second 
model are completely determined by the regression 
coefficients of the first model and the 2 CIFs for a refer-
ence subject (a subject whose covariates are all equal 
to 0). However, when each model is fit separately, this 
constraint is no longer observed and thus the regression 
coefficients for the second model will be incorrect. This 
will lead to incorrect estimates of the CIF for at least one 
of the models, leading to the possibility that the sum of 
the CIFs may exceed one for some values of time, as we 
have illustrated.

There are certain limitations to the current study. The 
study was not intended to be a comprehensive evaluation 
of the Fine-Gray subdistribution hazard model, nor was it 
intended to comprehensively compare all available meth-
ods for estimating incidence in the presence of compet-
ing risks. Rather, our intent was to advertise a little-known 
issue with the use of the Fine-Gray model. While the 
phenomenon of total event probability exceeding one is 
not unknown, it has received little coverage, even in the 
statistical literature. We refer the interested reader to a 
article in the statistical literature in which this issue is 
explored in substantially greater depth, including a math-
ematical proofs of its existence.22 We are only aware of 
a few other instances where this phenomenon has been 

discussed: once in a vignette associated with the survival 
package for R and 3 times in passing elsewhere.23–26 In 
our case study, we observed that 8.6% of subjects had a 
total event probability at 5 years (as derived from the 2 
fitted Fine-Gray models) that exceeded 1. It is likely that 
the magnitude of this issue varies across samples and 
across times at which cumulative incidence is estimated.

In the current study, we have illustrated that using all 
cause-specific hazard functions allows one to circumvent 
this limitation of the Fine-Gray model. Another advan-
tage to the use of the cause-specific hazard approach 
compared with the subdistribution hazard approach is 
that the cause-specific risk set is more easily interpre-
table than the subdistribution risk set, as the latter retains 
subjects who have experienced a competing event.1,2 
Alternative modeling approaches are also available.24–29

We are not arguing against the use of the Fine-Gray 
subdistribution hazard model. As noted above, the Fine-
Gray model is both an interpretation-friendly model and 
allows for simple communication of risk estimates by 
reporting only the estimated regression coefficients and 
the baseline CIF. However, we encourage researchers to 
be cautious in the use of the Fine-Gray model when the 
focus is on the absolute risk of >1 of the different event 
types, where a combination of cause-specific models 
may be more sensible.

Figure 2. Cox all-cause mortality vs sum of absolute risk estimates for cause-specific mortality for each subject.
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In conclusion, a little-known limitation of the Fine-
Gray subdistribution hazard model is that the sum of the 
cause-specific estimates of absolute risk can exceed one 
(or 100%) for some subjects and for some time points. 
Using all the cause-specific hazard models allows one 
to avoid this limitation. Investigators are encouraged to 
consider this latter approach, particularly when the focus 
is on providing the absolute risk of each of the different 
types of events.
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should be inferred. Parts of this report are based on Ontario Registrar General 
(ORG) information on deaths, the original source of which is ServiceOntario. The 
views expressed therein are those of the author and do not necessarily reflect 
those of ORG or the Ministry of Government and Consumer Services. The data 
set from this study is held securely in coded form at ICES. While legal data shar-
ing agreements between ICES and data providers (eg, health care organizations 
and government) prohibit ICES from making the dataset publicly available, access 
may be granted to those who meet prespecified criteria for confidential access, 
available at www.ices.on.ca/DAS (email: das@ices.on.ca). The use of data in this 
project was authorized under section 45 of Ontario’s Personal Health Information 
Protection Act, which does not require review by a research ethics board.

Sources of Funding
This research was supported by operating grant from the Canadian Institutes 
of Health Research (CIHR; PJT 166161). Dr Austin is supported in part by a 
Mid-Career Investigator award from the Heart and Stroke Foundation of Ontario.

Disclosures
None.

Supplemental Material
Supplemental software code: R code (Appendix A) and SAS code (Appendix B).

REFERENCES
	 1.	 Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and 

multi-state models. Stat Med. 2007;26:2389–2430. doi: 10.1002/sim.2712
	 2.	 Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemio-

logic data. Am J Epidemiol. 2009;170:244–256. doi: 10.1093/aje/kwp107
	 3.	 Koller MT, Raatz H, Steyerberg EW, Wolbers M. Competing risks and the 

clinical community: irrelevance or ignorance? Stat Med. 2012;31:1089–
1097. doi: 10.1002/sim.4384

Figure 3. Calibration of 2 methods for estimating absolute risk of cause-specific death.



Austin et al Problems With the Fine-Gray Competing Risk Model

Circ Cardiovasc Qual Outcomes. 2022;15:e008368. DOI: 10.1161/CIRCOUTCOMES.121.008368� February 2022 168

	 4.	 Wolbers M, Koller MT, Stel VS, Schaer B, Jager KJ, Leffondré K, 
Heinze G. Competing risks analyses: objectives and approaches. Eur Heart 
J. 2014;35:2936–2941. doi: 10.1093/eurheartj/ehu131

	 5.	 Wolbers M, Koller MT, Witteman JC, Steyerberg EW. Prognostic mod-
els with competing risks: methods and application to coronary risk 
prediction. Epidemiology. 2009;20:555–561. doi: 10.1097/EDE. 
0b013e3181a39056

	 6.	 Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data 
in the presence of competing risks. Circulation. 2016;133:601–609. doi: 
10.1161/CIRCULATIONAHA.115.017719

	 7.	 Varadhan R, Weiss CO, Segal JB, Wu AW, Scharfstein D, Boyd C. Evalu-
ating health outcomes in the presence of competing risks: a review 
of statistical methods and clinical applications. Med Care. 2010;48(6 
suppl):S96–S105. doi: 10.1097/MLR.0b013e3181d99107

	 8.	 Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a 
competing risk. J Am Stat Assoc. 1999;94:496‐509.

	 9.	 Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. 
New York, NY: John Wiley and Sons; 2002.

	10.	 Kosyakovsky LB, Austin PC, Ross HJ, Wang X, Abdel-Qadir H, 
Goodman SG, Farkouh ME, Croxford R, Lawler PR, Spertus JA, et al. 
Early invasive coronary angiography and acute ischaemic heart fail-
ure outcomes. Eur Heart J. 2021;42:3756–3766. doi: 10.1093/ 
eurheartj/ehab423

	11.	 Dewan P, Rørth R, Raparelli V, Campbell RT, Shen L, Jhund PS, Petrie MC, 
Anand IS, Carson PE, Desai AS, et al. Sex-related differences in heart fail-
ure with preserved ejection fraction. Circ Heart Fail. 2019;12:e006539. doi: 
10.1161/CIRCHEARTFAILURE.119.006539

	12.	 Lee DS, Armstrong R, Mohamed S; Investigators of the COACH trial. Patient 
engagement in a trial testing a new strategy of care for acute heart failure. 
CMAJ. 2018;190(suppl):S34–S36. doi: 10.1503/cmaj.180462

	13.	 Lee DS, Straus SE, Austin PC, Mohamed S, Taljaard M, Chong A, Fang J, 
Prasad T, Farkouh ME, Schull MJ, et al. Rationale and design of the com-
parison of outcomes and access to care for heart failure (COACH) trial: 
A stepped wedge cluster randomized trial. Am Heart J. 2021;240:1–10. 
doi: 10.1016/j.ahj.2021.05.003

	14.	 Tu JV, Donovan LR, Lee DS, Wang JT, Austin PC, Alter DA, Ko DT. Effec-
tiveness of public report cards for improving the quality of cardiac care: 
the EFFECT study: a randomized trial. JAMA. 2009;302:2330–2337. doi: 
10.1001/jama.2009.1731

	15.	 Beyersmann J, Dettenkofer M, Bertz H, Schumacher M. A competing risks 
analysis of bloodstream infection after stem-cell transplantation using sub-
distribution hazards and cause-specific hazards. Stat Med. 2007;26:5360–
5369. doi: 10.1002/sim.3006

	16.	 Austin PC, Fine JP. Practical recommendations for reporting Fine-Gray 
model analyses for competing risk data. Stat Med. 2017;36:4391–4400. 
doi: 10.1002/sim.7501

	17.	 Sud M, Yu B, Wijeysundera HC, Austin PC, Ko DT, Braga J, Cram P, 
Spertus JA, Domanski M, Lee DS. Associations between short or long 
length  of stay and 30-day readmission and  mortality in hospitalized 
patients with heart  failure. JACC Heart Fail. 2017;5:578–588. doi: 
10.1016/j.jchf.2017.03.012

	18.	 Lee DS, Krahn AD, Healey JS, Birnie D, Crystal E, Dorian P, Simpson CS, 
Khaykin Y, Cameron D, Janmohamed A, et al; Investigators of the Ontario 
ICD Database. Evaluation of early complications related to De Novo cardio-
verter defibrillator implantation insights from the Ontario ICD database. J 
Am Coll Cardiol. 2010;55:774–782. doi: 10.1016/j.jacc.2009.11.029

	19.	 MacFadden DR, Crystal E, Krahn AD, Mangat I, Healey JS, 
Dorian P, Birnie D, Simpson CS, Khaykin Y, Pinter A, et al. Sex differences 
in implantable cardioverter defibrillator outcomes: findings from a pro-
spective defibrillator database. Ann Intern Med. 2012;156:195–203. doi: 
10.7326/0003-4819-156-3-201202070-00007

	20.	 Lee DS, Hardy J, Yee R, Healey JS, Birnie D, Simpson CS, Crystal E, 
Mangat I, Nanthakumar K, Wang X, et al; Investigators of the Ontario ICD 
Database. Clinical risk stratification for primary prevention implant-
able cardioverter defibrillators. Circ Heart Fail. 2015;8:927–937. doi: 
10.1161/CIRCHEARTFAILURE.115.002414

	21.	 Beyersmann J, Allignol A, Schumacher M. Competing Risks and Multistate 
Models with R. New York, NY: Springer; 2012.

	22.	 Austin PC, Steyerberg EW, Putter H. Fine-Gray subdistribution hazard mod-
els to simultaneously estimate the absolute risk of different event types: 
cumulative total failure probability may exceed 1. Stat Med. 2021;40:4200–
4212. doi: 10.1002/sim.9023

	23.	 Therneau T, Crowson C, Atkinson E. Multi-State Models and Competing 
Risks. 2020. https://cran.r-project.org/web/packages/survival/vignettes/
compete.pdf Accessed September 24, 2021.

	24.	 Gerds TA, Scheike TH, Andersen PK. Absolute risk regression for com-
peting risks: interpretation, link functions, and prediction. Stat Med. 
2012;31:3921–3930. doi: 10.1002/sim.5459

	25.	 Choi S, Huang X. Maximum likelihood estimation of semiparametric mixture 
component models for competing risks data. Biometrics. 2014;70:588–
598. doi: 10.1111/biom.12167

	26.	 Bakoyannis G, Yu M, Yiannoutsos CT. Semiparametric regression on cumu-
lative incidence function with interval-censored competing risks data. Stat 
Med. 2017;36:3683–3707. doi: 10.1002/sim.7350

	 27.	 Jeong JH, Fine J. Direct parametric inference for the cumulative incidence 
function. J R Stat Soc Ser C Appl Stat. 2006;55:187‐200.

	28.	 Shi H, Cheng Y, Jeong JH. Constrained parametric model for simul-
taneous inference of two cumulative incidence functions. Biom J. 
2013;55:82–96. doi: 10.1002/bimj.201200011

	29.	 Klein JP, Andersen PK. Regression modeling of competing risks data 
based on pseudovalues of the cumulative incidence function. Biometrics. 
2005;61:223–229. doi: 10.1111/j.0006-341X.2005.031209.x




