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Background: Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential fh
personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from
pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients.
Methods: LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-
ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an
imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the
deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination,
calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the
proposed DL signature and clinicopathological characteristics.

Results: A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC)
patients were randomly selected from center |. An external validation cohort (EVC) of 265 patients from five other centers was also
included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86]
and EVC (AUC, 0.82), with good calibration in all cohorts (P> 0.05). Moreover, the DLCS model outperformed the clinical model
(P < 0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828,
P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier
score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set.

Conclusion: The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict
tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment
plans with the help of computerized tumor-level characterization.
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Introduction

Gastric cancer (GC) is among the most prevalent gastrointestinal
malignancies globally and is the third leading cause of cancer-
related deaths worldwide!'l. While surgery remains the primary
treatment for GC, radical gastrectomy is only suitable for patients
diagnosed with early GC. Unfortunately, 50-60% of patients are
typically diagnosed in advanced stages, with invasion or
metastasis'. After radical surgery, patients with locally
advanced gastric cancer (LAGC), which refers to the stage
between early GC and advanced GC, face high rates of distant
metastasis and local recurrence, ranging from 40 to 51%!/.

In recent years, neoadjuvant chemotherapy (NCT) has been
shown to significantly improve the prognosis of patients with
LAGC and has become the standard treatment!*!. NCT improves
overall survival (OS) and disease-free survival (DFS) mainly by
reducing the tumor volume, achieving tumor degradation, and
eliminating micrometastases as early as possible to increase the
probability of RO resection through chemotherapy before sur-
gery. Moreover, maintaining tumor vascular integrity prior to
surgery can enhance the efficacy of chemotherapy. However, not
all LAGC patients can benefit from NCT, and ineffective
neoadjuvant therapy may increase toxicity and allow tumors to
progress during chemotherapy'>®!. Therefore, early screening is
essential to identify patients who are likely to benefit from NCT
upon diagnosis.

Currently, the tumor regression grade (TRG) is considered the
gold standard for evaluating the effectiveness of NCT. TRG is
determined by examining postoperative tissue specimens under a
microscope and assessing the degree of tumor regression'’.
However, this standard relies on the acquisition of complete
specimens after surgery, which limits its use in preoperative
clinical practice. The development of a noninvasive method for
accurately identifying patients who are responsive to NCT holds
significant clinical value. With the development of technology,
radiomics has rapidly developed as a new tool for noninvasive
tumor analysis'®®!. Pretreatment imaging is linked to primary
tumor characteristics, whereas posttreatment images can directly
indicate the response of the tumor to chemotherapy. Some studies
have confirmed that some radiomic features are significantly
associated with the chemotherapy response and can be used to
create a radiomics-based model for predicting the NCT response
in patients with cancer!'®'!l. However, there are some limitations
to radiomic feature extraction, and it can be prone to producing
deviations. In recent years, deep learning (DL) signatures based
on convolutional neural networks!'? have been shown to better
reveal the biological information reflected by computed tomo-
graphy (CT) images. However, few studies have developed DL
signatures to preoperatively predict the pathological response in
GC patients. The pretrained ResNet architecture has been widely
used to assist in the diagnosis of different kinds of diseases via
transfer learning!" ™" especially with the added block of SE-
Net!'®'7, To the best of our knowledge, no imaging over-
sampling method has been applied in this area to balance data.

Therefore, the objective of this study was to develop and
validate a deep learning radio-clinical signature (DLCS) model,
utilizing an imaging sampler, for early prediction of the response
to chemotherapy before administering NCT in a large multicenter
patient cohort. Furthermore, we investigated the added value of
the DL signature in predicting OS in the follow-up cohort.

HIGHLIGHTS

e We developed and validated deep learning radio-clinical
signatures (DLCS) from pretreatment CT images to predict
the preoperative chemotherapy response and prognosis in
locally advanced gastric cancer (LAGC) patients.

e The proposed DLCS has promising performance in pre-
dicting preoperative chemotherapy response and prognosis.

e The DLCS model may guide treatment plans and imple-
mentation of personalized treatment for LAGC patients
treated with preoperative chemotherapy.

Patients and methods

Patients

We retrospectively analyzed the data of consecutive patients
with histologically confirmed GCl/esophagogastric junction
cancer (EGJC) who received NCT with a 5-fluorouracil-based
regimen prior to surgical resection at six independent
hospitals in China. This trial was registered on the
ClinicalTrials network (http://www.clinicaltrial.gov) under
the identifier NCT05617469. The work is reported in line with
the STROCSS (Strengthening The Reporting of Cohort Studies
in Surgery) criterial'®!, Supplemental Digital Content 1, http://
links.lww.com/JS9/A433. The inclusion criteria were as fol-
lows: patients with GC or Siewert type III EGJC confirmed by
pathological examination; patients diagnosed locally advanced
stage (cT1IN +, cT2-4N0/+ MO, partial M1 patients underwent
conversion therapy); patients who underwent gastrectomy plus
lymphadenectomy; patients who received at least two cycles of
preoperative chemotherapy; patients with negative resection
margins; patients with complete CT image data and clinical
data. The exclusion criteria were as follows: patients unable to
undergo gastrectomy after neoadjuvant therapy; patients with
incomplete CT images and clinical data; patients with other
malignancies.

The medical records of all patients were reviewed. Baseline
clinicopathological data, including age, sex, BMI, tumor location,
maximum diameter, Borrmann type, level of blood parameters
before NCT, and differentiation degree, were collected. According
to the 8th American Joint Committee on Cancer TNM (tumor-
node-metastasis) staging system, c¢T (clinical tumor) stage, cN
(clinical nodal) stage, and cM (clinical metastasis) stage were also
retrieved from medical records. The study was approved by the
ethics committees of all participating centers (IRB-2022-371). The
study is consistent with the tenets of the Declaration of Helsinki.
Since this study was retrospective, the requirement to obtain
informed consent from the patients was waived.

After two to three cycles of NCT, clinical efficacy was
assessed based on CT or magnetic resonance imaging (MRI).
After systemic treatment, the patients were regularly exam-
ined every 3 months for the first year and every 6 months
thereafter. The final follow-up assessment was conducted in
December 2021.

NCT protocols

All patients received a minimum of two cycles of NCT with a 5-
fluorouracil-based regimen according to the guidelines for the
treatment of GC before undergoing gastrectomy with
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lymphadenectomy. Gastrectomy and lymph node dissection were
performed within 2 weeks after completing NCT.

Pathological response assessment

All patients underwent gastrectomy after completing NCT, and
the resected specimens were evaluated by two experienced
pathologists who were blinded to the clinical and imaging data of
the patients. Pathological TRG was used to assess the patholo-
gical response. TRG scores were evaluated using the American
Society of Clinical Oncology/College of American Pathologists
criteria, which were included in the third edition of the National
Comprehensive Cancer Network Guidelines for Gastric Cancer
in 2017 and are routinely recommended by the Chinese Society of
Clinical Oncology. The four levels were as follows: the absence of
residual cancer cells was defined as TRG 0; the presence of single
cells or small groups of cells was defined as TRG 1; the presence
of residual carcinoma with connective tissue hyperplasia was
defined as TRG 2; and minimal evidence of tumor response was
defined as TRG 3. The patients were divided into the good
response (GR) group, which included TRG 0 and TRG 1, and the
poor response (PR) group, which included TRG 2 and TRG 3.

CT examination and ROI delineation

All patients underwent an enhanced CT examination within 1
week prior to starting NCT. Tumor segmentation was performed
by two experienced radiologists via ITK-SNAP software (version
3.8, http://www.itksnap.org). Since GC can be distinguished
from normal gastric tissues in portal venous phase CT images,
three slices, including the two-dimensional (2D) slice with the
largest tumor and its two nearest slices in the z-axis, were deli-
neated along the boundaries of the tumor in portal venous phase
CT images. When there was a large dispute between the two
radiologists on the region of interest (ROI) delineation, the two
radiologists reached a consensus after discussion.

Data acquisition

The 2D slice with the largest tumor and its two nearest slices on the
z-axis were used as input data per patient. All the images were first
normalized to a size of 1.0 x 1.0 mm? and filtered with a window of
[-115, 235] HU. Then, the input images, which had a size of
112 %112 and focused on the manually delineated tumor section
with an expansion of 5 mm in all directions, were included in the
subsequent analysis. The pixel values of the image were normalized
to [0, 1]. During training, DeepSMOTE“g', a novel image sampler,
was applied to balance the dataset ata 1:1 ratio (GR cases:PR cases)
in an oversampling way, which enables rich information about
minority classes and reduces blurred class boundaries. Flipping and
rotation were employed as data augmentation strategies before the
images were fed into the network in the training set.

Development of TRG signatures

The workflow for building TRG signatures is shown in Figure 1.
To develop a DL signature for predicting TRG classification, we
designed the pretrained Resnet50 on ImageNet to have only four
stages, which consisted of three, four, and six residual blocks.
Inspired by the idea of SE-Net (Function S1, Supplemental Digital
Content 2, http://links.lww.com/JS9/A434)17], which adopts two
consecutive processes, including squeeze and excitation, to
capture the implicit interdependency of channels, we added a
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channel-attention block before the first and after the last residual
blocks to improve the feature representations generated by the
network. We changed softmax to sigmoid as the final layer to
produce the probabilistic predictions of a binary classifier. For the
end-to-end classification model, the size of the final feature map
outputs was 7 X 7, which was the size of the original input image
downsampled four times. The DL signature was fine-tuned on the
training set using five-fold cross-validation. For the training stage,
the model was developed with a mini-batch size of 32, and the
learning rate was initially set to 0.0005 with a decay rate of 0.1
every 50 epochs. For the reasoning stage, we used the Gradient-
weighted Class Activation Map (Grad-CAM)2% to visualize the
suspicious tumor area detected by the network for making deci-
sions regarding GR and PR. The DL signature was trained on two
GeForce RTX 2080 Ti GPUs with the PyTorch framework for
2000 epochs at maximum, and the early-stopping function was
set to 100 consecutive epochs.

A total of 22 clinicopathologic characteristics were analyzed
for clinical TRG classification model (clinical signature) con-
struction using a multivariate logistic regression (MLR)?"
algorithm in the training cohort (TC). The pairwise correlations
of included factors were determined by Spearman’s p. Least
absolute shrinkage and selection operator®?! was then applied to
select the most valuable sparse feature matrix. Subsequently, a
fusion signature for the DLCS was built from the significant
image-based and clinic-based features (univariable analysis,
P <0.05) using MLR.

Association between the DL signature and prognosis

To explore the additional value of the proposed image-based DL
signature, in combination with significant clinicopathological
characteristics, for predicting OS, we first used univariate Cox
regression analysis'*®! to screen for independent risk factors. The
selected features were then integrated to develop a prognostic
model using the multivariate Cox regression (MCR) method!**!
in the training set.

The training and test sets for OS prediction were randomly
split from the follow-up data of 654 LAGC patients at a ratio of
8:2. A nomogram for pretherapy OS prediction was built and
evaluated on this new dataset.

Statistical analysis

The DL signature was implemented using PyTorch (version
1.7.1), and all statistical analyses were conducted in Python 3.8.
The Mann—Whitney U test was applied for data with a non-
normal distribution. Student’s #-test and the chi-square (y2) test
were used for continuous and categorical data, respectively, with
a normal distribution. For TRG classification models, receiver
operating characteristic (ROC) analysis and precision-recall
curves were performed using the continuous probability score
(range: [0, 1]). Decision curve analysis (DCA) was used to eval-
uate the clinical usefulness of the TRG prediction models by
quantifying the net benefit at various threshold probabilities.
Calibration curves and smoothed calibration curves were used
for the classification model and survival probability calibration,
respectively. For survival models, the integrated area under the
time-dependent ROC curve (IAUC)?! was calculated, the dis-
criminatory capacity was evaluated using the concordance index
(C-index), and the error was assessed by the integrated Brier score
(IBS)1?°!. In addition, the log-rank test with Kaplan—Meier
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Figure 1. Workflow in this study. Workflow of developing deep learning signatures to building models for predicting neoadjuvant chemotherapy response and
prognosis in LAGC patients. BN, batch normalization; DL, deep learning; FC, fully connection; LAGC, locally advanced gastric cancer; SE, squeeze and excitation;

TRG, tumor regression grade.

. 2 . . .
survival curves*”! was used to verify the model’s discriminatory

ability. A P value <0.05 was used to indicate a statistically sig-
nificant difference.

Results

Baseline information

In the end, 1060 patients were included in this study. A total of
664 patients who received NCT prior to surgical resection at
center I from January 2008 to December 2019 were enrolled as
the TC. A total of 131 patients at center I from January 2020 to
December 2021 were enrolled as the internal validation cohort
(IVC). In addition, 265 patients were enrolled from five inde-
pendent centers from January 2014 to December 2021 as an
external validation cohort (EVC). Among 664 LAGC patients at
center I, 654 patients were followed up after discharge from
hospital, while 10 patients were never followed up. The workflow
of the cohorts is shown in Figure S1, Supplemental Digital
Content 2, http://links.Iww.com/]S9/A434.

As shown in Table 1, the GR rates in the training, internal
validation, and EVCs were 24.40%, 22.14%, and 22.26%,
respectively. There was no significant difference in age, sex, BMI,
cM stage, or differentiation degree before starting NCT between
the GR group and PR group in the three cohorts. In addition,
maximum tumor diameter and cT stage showed a significant
difference between the GR group and PR group in the TC. Tumor
location showed significant differences between the GR group
and PR group in the IVC, while there were significant differences
in maximum tumor diameter, Borrmann type, ¢T stage and cN
stage between the GR group and PR group in the EVC.

Diagnostic performance of the TRG signatures

Based on internal five-fold cross-validation in the training set,
three TRG signatures with the best area under the ROC curves
(AUG:s) in the validation set were obtained (Fig. 2A). Their cor-
responding performance outcomes and comparisons in the
independent internal and external validation sets are summarized
in Table 2 (Fig. 2B, C). The PR curves have been shown in Figure
S2, Supplemental Digital Content 2, http:/links.lww.com/JS9/
A434. The DL signature had a better discriminatory ability than
the clinical signature (P <0.0001), with AUCs of 0.91 (95% CI,
0.893-0.936) and 0.62 (95% CI, 0.583-0.657), respectively.
With comparable performance outcomes, the DLCS had slightly
higher AUC, accuracy, and specificity values than the DL sig-
nature except for the slightly lower sensitivity, with values of 0.92
vs. 0.91 (P=0.297, DeLong test), 0.84 vs. 0.82, 0.82 vs. 0.80,
and 0.89 vs. 0.91, respectively. Moreover, nearly the same
comparable outcomes of all models were validated in the inde-
pendent IVC and EVC. Although the DLCS achieved only slightly
higher values than the DL signature, it showed consistently better
outcomes in all datasets, especially for accuracy and specificity.
The DL signature was further confirmed its good performance to
predict chemotherapy response in all subgroups in the indepen-
dent internal and external validation sets (Figure S3A, B,
Supplemental Digital Content 2, http:/links.lww.com/JS9/
A434). Besides, it has been verified as an independent risk factor
in the subgroups for OS prediction (Figure S3C, Supplemental
Digital Content 2, http:/links.lww.com/JS9/A434). In conclu-
sion, the results revealed that the DLCS with complementary
multimodality information has a better and more robust TRG
diagnostic ability than any single-source model (Table 2 and
Fig. 2D-F). The nomogram based on the DLCS is displayed in
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Clinicopathological characteristics of patients with LAGC in the training and validation cohorts

Training cohort (664) Internal validation cohort (131) External validation cohort (265)
Characteristics GR PR P GR PR P GR PR P
Age (year)
> 60 90 283 0.855 16 61 0.655 39 134 0.881
<60 72 219 13 41 20 72
Sex
Female 42 132 0.926 10 26 0.338 13 52 0.614
Male 120 370 19 76 46 154
BMI (kg/m?)
<185 21 44 0.068 3 1 0.424 6 20 0.920
18.5-23.9 115 338 22 66 37 135
>24.0 25 113 4 25 16 51
Location
Upper 1/3 50 149 0.970 6 37 0.011* 13 33 0.551
Middle1/3 37 113 14 25 8 42
Lower 1/3 62 194 9 29 24 84
Whole stomach 13 46 0 ik 14 47
Maximum diameter
>5cm 93 359 <0.001* 22 83 0.511 22 118 0.007*
<5cm 69 139 7 19 37 88
Borrmann type
I+l 71 220 1.000 11 42 0.753 16 22 0.001*
I+ v 91 282 18 60 43 184
cT stage
T1+T2 20 26 0.002* 5 12 0.645 10 2 <0.001*
T3+ T4 142 476 24 920 49 204
cN stage
NO + N1 38 100 0.335 7 28 0.722 16 24 0.003*
N2 + N3 124 402 22 74 43 182
cM stage
MO 140 413 0.218 26 88 0.869 59 195 0.149
M1 22 89 3 14 0 11
Differentiated degree
Poorly/poorly—middle 127 412 0.298 23 89 0.439 45 160 0.821
Middle/well 35 90 6 13 14 46
Pathological type
Adenocarcinoma 161 494 0.587 28 99 1.000 55 203 0.074
Others 1 8 1 3 4 3
CEA
Positive 39 152 0.100 10 40 0.173 23 73 0.545
Negative 121 336 16 60 36 131
Unknown 2 14 3 2 0 2
CA125
Positive 14 52 0.448 3 23 0.075 8 31 0.574
Negative 147 443 25 79 51 173
Unknown 1 7 1 0 0 2
AFP
Positive 15 42 0.246 2 9 0.055 10 19 0.042
Negative 144 446 23 91 49 179
Unknown 3 14 4 2 0 8
ALB 39.50+4.32  40.07 +£4.29 0.141 39.99+4.63 39.84 +4.48 0.875 38.66 +6.27 38.64 £5.54 0.983
PCT 0.25+0.08 0.24 +0.08 0.549 0.26 +0.06 0.25+0.09 0.427 0.29+0.09 0.25+0.08 0.002*
Lymph% 27.88+868  27.43+8.70 0.575 27.88 £9.51 25.99 +9.96 0.363 2412+10.03  25.70+9.70 0.339
Glu 5.46+1.24 5.62+1.39 0.186 5.60+1.34 5.74+1.65 0.681 6.26 +1.77 6.54 +12.62 0.887
Neut 4.08+1.90 4.04+1.96 0.831 3.90+157 4.07+2.00 0.672 4444175 4.06+1.81 0.225
*P<0.05.

Adenocarcinoma group includes adenocarcinoma, mucinous adenocarcinoma, and signet ring cell carcinoma; Others group includes squamous carcinoma and other carcinomas.
AFP, alpha-fetoprotein; ALB, albumin; BMI, body mass index; CA125, cancer antigen 125; CEA, carcinoembryonic antigen; cM, clinical metastasis; cN, clinical nodal; Glu, glucose; GR, good response; LAGC,
locally advanced gastric cancer; PCT, platelet crit; PR, poor response.
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Figure 2. The performance of the three models. (A—-C) Receiver operating characteristic (ROC) curves of the clinical model, DL signature, and DLCS model for
predicting neoadjuvant chemotherapy response in the training cohort, internal cohort, and external cohort. (D-F) Comparison of the performance of the three
models in training cohort, internal cohort, and external cohort. DL, deep learning; DLCS, deep learning radio-clinical signature.

Figure 3A. There was a significant difference in the DLCS score
between the GR group and PR group in the three cohorts
(Fig. 3B-D). We observed that the DLCS was well calibrated in all
cohorts and had a larger net benefit than the other signatures in
the whole dataset (Fig. 3E, F).

Furthermore, we analyzed the relationship between the DL
signature and clinicopathologic characteristics (as shown in
Figure S4, Supplemental Digital Content 2, http:/links.lww.com/
JS9/A434). We found that the DL signature were significantly
correlated with signet ring cell (SRC) composition (P =0.021), cT
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The accuracy, sensitivity, and specificity of different models in all
data sets

Cohorts Models Accuracy Sensitivity Specificity
Training cohort DL signature 0.82 0.91 0.80
Clinical model 0.56 0.64 0.54
DLCS model 0.84 0.89 0.82
Internal cohort DL signature 0.78 0.90 0.75
Clinical model 0.66 0.52 0.69
DLCS model 0.82 0.86 0.80
External cohort DL signature 0.72 0.78 0.70
Clinical model 0.52 0.54 0.51
DLCS model 0.74 0.76 0.74

DL signature, deep learning signature; DLCS model, deep learning radio-clinical signature model.

stage (P =0.002), and maximum diameter of the primary tumor
(P <0.001), while there was no correlation between the DL sig-
nature and sex, age, BMI, differentiation degree, number of extra-
lymph node metastases (ELNs), cN stage, cM stage, Borrmann
type, location, pathological type, or some blood parameters,
including carcinoembryonic antigen (CEA) level, cancer antigen
125 (CA1235) level, alpha-fetoprotein (AFP) level, neutrophil
level, lymph % level, platelet crit (PCT) level, albumin (ALB) level,
and glucose (Glu) level (P> 0.001).

The Grad-CAM analysis demonstrated the most valuable
information deeply mined by the DL signature in GR prediction,
in which the weight distribution of the pixels was visualized by
different colors, revealing that patients in the GR group com-
monly had larger red areas in their tumors. The distribution of
DLCS scores in the TC and the images of Grad-CAM heatmaps of
four tumors for different TRGs are shown in Figure 4. Figure S35,
Supplemental Digital Content 2, http:/links.lww.com/]S9/A434
displays two reconstructed ROIs from randomly selected GR
samples during training.

Survival model performance

To further evaluate the survival benefits of the proposed sig-
nature, we collected the follow-up data of 654 LAGC patients. A
total of 265 patients died within 3 years after therapy, and the 3-
year OS was 59.48%. The detailed characteristics of the enrolled
patients are shown in Table S1, Supplemental Digital Content 2,
http://links.lww.com/JS9/A434. From the results of univariable
and multivariable Cox regression analyses (Table 3), we observed
that the employed DL signature was an independent risk factor
associated with OS [hazard ratio (HR), 0.827, 95% CI,
0.730-0.941, log-rank test, P=0.004].

In addition, 12 clinicopathologic characteristics were found to
be associated with OS, including cN stage, cM stage, number of
enlarged lymph nodes, maximum diameter, whole stomach,
Borrmann type IV, SRC composition, differentiation degree,
CEA level, CA125 level, and PCT level (Table 3, Fig. 5D). In the
MCR analysis, the DL signature, differentiation degree and CEA
level were identified as significantly independent risk factors for
OS modeling (Fig. 5A). The threshold of the OS model was
0.0094, which was used to divide all experimental patients into
two groups (high-risk and low-risk subsets). Kaplan-Meier
analyses showed that the OS model could be used as a significant
factor for the risk identification of OS (Fig. 5B, C). The values of
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the C-index, iAUC and IBS of the prognostic nomogram were
0.67,0.79 and 1.24 in the training set and 0.64, 0.71 and 2.03 in
the test set. The smoothed calibration curves of the OS models at
12, 24 and 35 months are provided in Figure S6, Supplemental
Digital Content 2, http:/links.lww.com/JS9/A434. The time-
dependent ROC curves for the two GC datasets are shown in
Figure SE.

Discussion

NCT is an important treatment for LAGC, but different patients
have different responses to NCT. At present, there is no reliable
and effective method for predicting the efficacy of NCT for
LAGC, which leads to the failure of NCT in some patients with
LAGC, and some patients even miss the chance of radical surgery
due to disease progression during chemotherapy. Therefore, the
development of an accurate predictive model to assess the efficacy
of NCT prior to treatment is of great significance for the precise
treatment of LAGC patients. In the present study, we proposed
and validated an effective DL signature based on pretherapy CT
images for TRG discrimination in LAGC patients treated with
NCT. Furthermore, we verified the added value of the identified
clinicopathological characteristics for predicting TRG and OS
using the MLR and MCR methods.

In recent years, there has been growing interest in radiomics
research due to its ability to extract and analyze a large number of
advanced quantitative imaging features that may reflect the het-
erogeneity of the tumor. Radiomic features have demonstrated
clinical value in the early prediction and identification of patients
who may be sensitive to NCT. An earlier study found that the
radiomics features screened by CT imaging before treatment are
important markers of the response to NCT in LAGC*®!. Sun
et al.**! performed radiomic feature extraction on the portal vein
CT images of 106 GC patients before NCT and established an
efficacy prediction model of NCT using a random forest algo-
rithm, which showed perfect predictive performance in the vali-
dation cohort, with an AUC of 0.82. Zhou et al.l'®! extracted
radiomic features from the CT images of 323 GC patients and
found that the radiomics signature had good discrimination
performance for predicting the NCT response in the external
cohort (AUC, 0.679; 95% CI, 0.554-0.803). In addition, a
radiomic model for predicting the efficacy of NCT in GC was
constructed using a Bayesian classifier, support vector machine,
random forest and other algorithms, and good discrimination
performance was observed in both the IVC (AUC, 0.784; 95%
CL, 0.659-0.908) and EVC (AUC, 0.803; 95% CI,
0.717-0.888)13%. However, the clinical relevance of these find-
ings is limited due to the relatively small sample sizes of the studies
and the lack of validation in multicenter cohorts. Recently, the
process of DL radiomic feature extraction was performed in a
larger population (719 patients) for predicting the efficacy of
NCT in GC, and higher AUCs of 0.804-0.829 were observed in
the IVC and EVC. However, it lacked an end-to-end architecture
for TRG prediction®!!. Therefore, we proposed an end-to-end
DL signature to extract richer information from larger and more
diverse datasets. The DLCS model in our study showed perfect
performance in predicting the response to NCT in the IVC (AUC,
0.86) and EVC (AUC, 0.82), with good calibration in all cohorts
(P> 0.05).
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Figure 3. Construction and performance of deep learning radio-clinical signature (DLCS) model. (A) A fusion signature of DLCS was built from the significant DL
signature and clinic-based features, including the maximum diameter of the tumor, Borrmann type, and SRC composition. (B-D) The relationship between DLCS
score and NCT response in the training cohort, internal cohort, and external cohort. (E) Calibration curves of DLCS model in all three cohorts. (F) Decision curve
analysis for the clinical model, DL signature, and DLCS model. DL, deep learning; DLCS, deep learning radio-clinical signature; GR, good response; NCT,
neoadjuvant chemotherapy; PR, poor response; SRC, signet ring cell.

The size of the GR group is typically several times larger than
that of the PR group. Achieving a balanced imaging dataset can
be resource-intensive or lack algorithmic complexity, which can
result in unstable results, particularly when a large number of
images need to be generated. Accordingly, we used a state-
of-the-art oversampling algorithm, DeepSMOTE, to enrich the
information in the GR group in an attempt to generate more GR

1987

images to improve the discriminative performance of the model.
The visualized output map of the tumor area, which reveals the
imaging characteristics extracted by the DL signature associated
with intratumor heterogeneity, may provide valuable informa-
tion for predicting TRG in GC. Analysis of the heatmaps revealed
that the reconstructed tumors were able to capture most of
the important features that were used for decision-making.
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TRG, tumor regression grade.

Moreover, we explored the effectiveness of the DL signature in
predicting OS. Our previous study found that the TRG score was
related to LAGC patient prognosis after D2 gastrectomy!™!
this study, we found that the DL signature was an independent
risk factor for survival in LAGC patients treated with NCT.
Patients with higher DL signature scores had better OS. More
specifically, patients with GR after NCT could benefit greatly in

. In

terms of survival. Our study also identified several independent
risk factors for survival in LAGC patients, including low differ-
entiation, Borrmann type IV, high pre-NCT CEA levels, and cN
stage. These findings are consistent with those of many other
previous studies. Therefore, the proposed nomogram may pro-
vide a feasible way to guide treatment plans and implement
personalized treatment for LAGC patients treated with NCT.
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Univariate and multivariate analysis of predictors of OS

Univariate Multivariate

Parameters HR 95% Cl P HR 95% CI P
Age 0.989 0.977-1.001 0.085
Sex 0.866 0.662—1.132 0.292
BMI 1.014 0.972-1.058 0.508
cT stage 0.276 0.830-2.430 0.422
cN stage 0.612 0.783-1.466 <0.001* 1.052 0.892-1.240 0.548
cM stage 1.523 1.124-2.062 0.007* 1.031 0.918-1.158 0.605
Number of enlarged lymph nodes 1.072 1.031-1.115 <0.001* 1.088 0.933-1.268 0.284
Maximum diameter 1.042 1.017-1.066 0.001* 1.132 1.001-1.279 0.048
Thickness of gastric wall 1.088 0.951-1.246 0.221
Tumor location

Upper 1/3 Ref Ref

Middle1/3 1.276 0.974-1.670 0.077

Lower 1/3 0.820 0.635-1.059 0.128

Whole stomach 1.555 1.022-2.366 0.039* 1.037 0.924-1.163 0.540
Borrmann type

| Ref Ref

I 0.801 0.628-1.022 0.075

[ 0.971 0.749-1.258 0.822

v 1.670 1.257-2.22— <0.001* 1.113 0.990-1.251 0.073
Pathological type 0.685 0.356-3.470 0.101

Adenocarcinoma Ref Ref

Mucinous adenocarcinoma 1.072 0.343-3.345 0.905

Signet ring cell carcinoma 1.975 1.208-3.229 0.007* 1.019 0.906-1.145

Squamous carcinoma 0.968 0.241-3.891 0.964

Others 1.379 0.442-4.305 0.580
SRC composition 1.618 1.221-2.143 0.001* 1.066 0.943-1.206 0.308
Differentiated degree 0.371 0.242-0.569 <0.001* 0.795 0.691-0.915 0.001*
CEA 1.500 1.171-1.921 0.001* 1.165 1.035-1.311 0.011*
CA125 1.637 1.191-2.251 0.002* 1.102 0.983-1.236 0.096
AFP 0.644 0.394-1.052 0.079
Neut 0.987 0.926-1.053 0.693
Lymph% 1.003 0.989-1.017 0.697
PCT 0.199 0.042-0.932 0.040* 0.896 0.792-1.012 0.078
ALB 1.018 0.991-1.047 0.197
Glu 0.937 0.848-1.035 0.199
DL signature 0.369 0.221-0.617 <0.001* 0.828 0.730-0.941 0.004*

*P<0.05.

AFP, alpha-fetoprotein; ALB, albumin; BMI, body mass index; CA125, cancer antigen 125; CEA, carcinoembryonic antigen; cM, clinical metastasis; cN, clinical nodal; cT, clinical tumor; DL signature, deep
learning signature; Glu, glucose; HR, hazard ratio; OS, overall survival; Neut, neutrophil level; PCT, platelet crit; Ref, reference; SRC, signet ring cell.

However, this study has several limitations. Firstly, as a retro-
spective and multicenter study, there may be potential selection bias
and inherent bias. For example, patients from different levels of
hospitals using different CT devices may cause bias. Therefore, in
order to validate the generalizability and clinical applicability of our
models, it is necessary to design prospective studies. Secondly,
although we visualized the intratumor characteristics extracted by
the DL signature, its clear biological significance is still unknown and
needs to be fully elucidated. Further exploration of the relationship
between radiographic features and the tumor microenvironment may
provide additional microlevel information and elucidate the biolo-
gical significance of the DL signature. Thirdly, the data on the DFS in
this study was lacking. Fourthly, the imaging features extracted are
largely dependent on the ROIs. However, the precise manual deli-
neation of tumor margins requires professional expertise and is
highly influenced by subjective experience. Therefore, an automated
tumor segmentation mechanism for CT images in GC needs to be

further developed for more precise TRG prediction. Fifthly, valida-
tion of the clinical reliability of the images generated by DeepSMOTE
in the GR group should be explored in future studies since the
algorithm has only been widely assessed on natural images. Sixthly, a
one-stage network design should be further developed to decrease the
information loss which may be caused by the disentanglement
methods in modeling.

Conclusion

In conclusion, we developed and validated a model that combines
DL signature and clinical factors, which has demonstrated pro-
mising performance in predicting the response to NCT and
prognosis in LAGC patients. Our model provides valuable
information for guiding treatment plans and implementing per-
sonalized treatment strategies for LAGC patients receiving NCT.
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Figure 5. The relationship between DL signature and prognosis on the follow-up LAGC cohort. (A) The significant DL signature, maximum diameter of tumor, CEA
level, and differentiated degree were the risk factors in LAGC. (B, C) Survival difference between high-risk group and low-risk group in the training cohort and test
cohort. (D) Forest plot illustrating multivariable Cox regression analyses for prognosis in the follow-up cohort. (SE) Time-dependent AUC scores in the training cohort
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However, prospective studies are needed to validate the gen-
eralizability and clinical applicability of our DLCS model.
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