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of associated early-life
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The prevalence of obesity is increasingly common in the United States, with

~25% of women of reproductive age being overweight or obese.

Metaflammation, a chronic low grade inflammatory state caused by altered

metabolism, is often present in pregnancies complicated by obesity. As a result,

the fetuses of mothers who are obese are exposed to an in-utero environment

that has altered nutrients and cytokines. Notably, both human and preclinical

studies have shown that children born tomothers with obesity have higher risks

of developing chronic illnesses affecting various organ systems. In this review,

the authors sought to present the role of cytokines and inflammation during

healthy pregnancy and determine how maternal obesity changes the

inflammatory landscape of the mother, leading to fetal reprogramming. Next,

the negative long-term impact on offspring’s health in numerous disease

contexts, including offspring’s risk of developing neuropsychiatric disorders

(autism, attention deficit and hyperactive disorder), metabolic diseases (obesity,

type 2 diabetes), atopy, and malignancies will be discussed along with the

potential of altered immune/inflammatory status in offspring as a contributor of

these diseases. Finally, the authors will list critical knowledge gaps in the field of

developmental programming of health and diseases in the context of offspring

of mothers with obesity, particularly the understudied role of hematopoietic

stem and progenitor cells.

KEYWORDS
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Introduction

The prevalence of obesity in women of childbearing age has

been steadily increasing for the past three decades (Poston et al.,

2016; Chen et al., 2018). In the United States, the prevalence of

obesity among women of childbearing age was up to 40% in

2017-2018 (Hales et al., 2020). Maternal obesity is associated

with poor outcomes in both mothers and their offspring.

Mothers with pre-pregnancy obesity are more likely to have

infertility, spontaneous pregnancy loss, congenital anomalies,

gestational diabetes, higher risk of cesarean delivery, wound

complications, increased risk of venous thromboembolism,

depression, and difficulty breastfeeding (Sebire et al., 2001;

Rasmussen, 2007; Luke et al., 2011; Wloch et al., 2012;

Cnattingius et al., 2013; Aune et al., 2014; Gyamf, 2014;

Tuthill et al., 2022). In addition to the health concerns for

mothers with obesity, children born to mothers with obesity

are more likely to suffer from numerous chronic illnesses

throughout their life. These illnesses include obesity,

cardiovascular complications, and neuropsychiatric disorders

(Getz et al., 2016; Andersen et al., 2018; Voerman et al., 2019;

Razaz et al., 2020). In fact, both pre-clinical and clinical studies

support the conclusion that exposure to a suboptimal in-utero

environment predisposes offspring to developing these chronic

conditions. However, our knowledge regarding underlying

mechanisms of this programming remains limited.

“Metaflammation” is a low-grade inflammatory state

secondary to an impaired immune cell profile that leads to

activation of pro-inflammatory pathways and is increasingly

recognized as an early life factor that shapes offspring health

(Gregor and Hotamisligil, 2011; Pantham et al., 2015). Although

pregnancy itself is characterized by an altered inflammatory

profile compared to the non-pregnant state, a tightly regulated

balance between pro- and anti-inflammatory cytokines is

necessary for implantation, placentation and continuation of a

healthy pregnancy (Ashkar et al., 2000; Aluvihare et al., 2004;

Fest et al., 2007; Care et al., 2013; Griffith et al., 2017). Maternal

obesity is associated with a chronic metabolic inflammatory state

that skews this tight balance toward a pro-inflammatory state

(Sisino et al., 2013; Thakali et al., 2014; Saben et al., 2014;

Nakajima et al., 2016; Castellana et al., 2018). In this review, we

will summarize the common models used to study the immune

system during normal pregnancy and pregnancy complicated by

maternal obesity, and briefly discuss the role of inflammation

during healthy pregnancy and known changes associated with

maternal obesity. In the latter part of this review, we will provide

an in-depth review of the adverse effects of maternal obesity on

offspring long-term health and propose a new model where the

altered immune function in offspring potentially contributes to

different disease states.
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Models of pregnancy and
maternal obesity

Clinical studies designed to obtain longitudinal data and

biosamples over different stages of pregnancy frommothers with

normal weight (BMI 20-25) and mothers with obesity (BMI>30)

are undoubtedly a powerful tool (Haas et al., 2015; Rees et al.,

2022). In fact, they provide a comprehensive understanding,

defining the changes in circulating cytokines and immune cell

profiles associated with maternal obesity (Maguire et al., 2021;

Sureshchandra et al., 2021a; Ross et al., 2022). Cord blood and

placental tissues collected at delivery also facilitate the

understanding of immune adaptations of different

compartments (maternal plasma, maternal-fetal interface, fetal

plasma) during pregnancy (Challier et al., 2008; Laskewitz et al.,

2019; Enninga et al., 2021; Jaramillo-Ospina et al., 2021). While

such studies provide a direct representation of the biology of

pregnancy in humans, it is not known if the findings are directly

due to impact of maternal obesity or a consequence of other

factors contributing to development of obesity, such as

unhealthy diet or genetic risks. Further, it is not possible to

evaluate longitudinal changes in cytokines and immune cell

profiles at maternal-fetal interface and fetal circulations.

Finally, human epidemiology studies demonstrate the

associations of maternal obesity exposure and adverse health

in offspring, but these studies do not inform the direct

contributions of maternal obesity and are not designed to

inform the molecular mechanisms contributing to offspring

disease development.

Animal models are often used to overcome the limitations of

human studies. Maternal obesity has been modelled using

murine (Lee et al., 2020; Mu et al., 2022; Zhang et al., 2022;

Thapa et al., 2022), rat (Lin et al., 2019; Zhang et al., 2020;

Deshpande et al., 2021), and non-human primate models

(Rivera et al., 2015; Harris et al., 2016; Salati et al., 2019).

Murine and rat models are most used to discern the effects

and mechanisms of transgenerational disease transmission due

to their short gestation duration. Murine model systems also

allow researchers to dissect the effects of specific maternal factors

(e.g., overnutrition, obesity, insulin resistance) on offspring

disease development, and delineate molecular pathways in

different tissues and organ systems of offspring. The main

strategy used to induce pre-pregnancy obesity in murine and

rat models is by using maternal high-fat (Lin et al., 2019;

Moazzam et al., 2021; Zhou et al., 2021) or Western style

(high-fat high-sucrose) diet (Muller et al., 1985; Victorio et al.,

2021; Chung et al., 2021; Chaix et al., 2021). A major limitation

of such an approach is that the fetal and newborn weight are

often lower in pups born to obese dams that were fed high-fat

diet (Christians et al., 2019). However, the use of Western diet
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with 45% fat calories appears to produce neonatal pups with

unchanged (Fornes et al., 2017) or higher (Rosario et al., 2015;

Aye et al., 2015) birthweight. Such an approach may be more

representative of pregnancy complicated by maternal obesity,

but still does not differentiate the contribution of the diet vs.

maternal adiposity. This limitation can be circumvented with

different strategies. For example, pregnant animals can be fed

high-fat at selected window (Cerf and Louw, 2014) and newborn

pups can be cross-fostered to discern the role of high-fat diet at

different period of gestation and lactation. Alternatively,

Isganaitis et al. have used the haploinsufficient insulin receptor

substrate-1 (IRS-1) mice to model maternal obesity and

maternal insulin resistance during pregnancy without the need

of diet-induction (Isganaitis et al., 2014). Additionally,

researchers must be cognizant of key differences in immune

cell development of murine models and humans. For example,

the liver and spleen are found to be extramedullary

hematopoietic sites in neonatal mice (Wolber et al., 2002). On

the other hand, the development of immune systems in non-

human primates closely resembles that of humans (Makori et al.,

2003). Therefore, non-human primates are a suitable model to

understand the immune adaptations of the maternal-fetal

interface and fetal circulations, as well as how this adaption
Frontiers in Cellular and Infection Microbiology 03
responds to maternal obesity (Salati et al., 2019; Dunn

et al., 2022).
Inflammation in pregnancy

Strict regulation of inflammatory factors is required for

implantation, placentation, and continuation of pregnancy

(Gude et al., 2004; Mor et al., 2017). The maternal body’s

physiological adaptation to pregnancy is determined by

controlled production of cytokines and other inflammatory

factors by diverse cell subtypes within the maternal-fetal

interface (Figure 1) (Abrahams et al., 2004; Mjosberg et al.,

2010; Svensson et al., 2011; Amsalem et al., 2014). Changes in

immune cell types in the placenta including lymphocytes,

natural killer (NK) cells, neutrophils, dendritic cells, and

innate lymphoid cells during different stages of pregnancy are

explained in detail by St-Germain et al. (2020). In general, the

immune regulation of a pregnant mother is controlled by

adaptive T helper cells (Huang et al., 2020) and innate

immune responses (Aghaeepour et al., 2017). However, a

majority of these studies are based on circulating cytokines

and immune cell profiles. Type 1 T helper (Th1) and type 2 T
FIGURE 1

Schematic diagram of major changes in immune cells and inflammatory markers/cytokines during different stages of a normal pregnancy. First
trimester is characterized by an initial pro-inflammatory stage necessary for implantation and placentation. dNK cells secrete high levels of pro-
inflammatory factors including IL-1, IL-6, IL-8, IL-15, CXCL10, CXCL11, TNF, MMPs. Predominance of M1-type (pro-inflammatory) macrophages
contribute to the inflammatory state observed in first trimester. At second trimester, Th2-type immune response and immunomodulatory
cytokines secreted by Th2 cells (e.g., IL-4, IL-10, IL-13) lead to an anti-inflammatory stage that is crucial for fetal growth. M2-type (anti-
inflammatory) macrophages and increased expression of inhibitory receptors on dNK cells such as killer cell immunoglobulin-like receptor (KIR)
play a significant role in maintaining immune tolerance in maternal-fetal interface. Finally, third trimester is defined as a second pro-
inflammatory stage and Th1-type immune state is thought to initiate labor and delivery. Other T helper cells including Th17, Th22, Treg and Tfh
cells are also essential for healthy pregnancy. TH17 and Th22 cells offer immunity against extracellular pathogens at the maternal-fetal interface.
Treg cells increase immune tolerance to fetus by repressing uncontrolled Th1 and Th17 immunity. Tfh cells provide humoral immunity by
priming B cells to initiate extrafollicular and germinal center antibody responses in third trimester. Created with BioRender.com.
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helper (Th2) lymphocytes are two major subsets of CD4+ T

helper (Th) cells that regulate the adaptive immune response

(Zhu, 2018). Th1 cells produce high levels of interferon (IFN)-g,
interleukin (IL)-2 and tumor necrosis factor (TNF)-beta and are

responsible for phagocyte-dependent inflammation, as well as

protection against intracellular pathogens (Zhu, 2018). They also

play an important role in the development of organ-specific

autoimmune diseases and chronic inflammatory disorders (Zhu,

2018). Th2 cells produce IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13,

which leads to strong antibody responses by regulation of the

class switch recombination of B cells and eosinophil activation

but inhibit phagocytic cell function (Romagnani, 2000). Mor

et al. described three distinct immunologic stages based on the

body’s inflammatory response during pregnancy (Mor et al.,

2017). During the first trimester, there is an initial pro-

inflammatory stage that is vital for implantation and

placentation. As the second trimester begins, there is an anti-

inflammatory and Th2-type immune stage that is necessary for

fetal growth. Finally at the third trimester, a second pro-

inflammatory stage and Th1-type immune state is thought to

initiate labor and delivery (Mor et al., 2017). In addition to the

essential role of Th1 and Th2 cells during pregnancy, other T

helper cells, such as T helper 17 (Th17), T helper 22 (Th22),

follicular T helper (Tfh) and regulatory T cells (Treg) in the

maternal-fetal interface contribute to continuation of a healthy

pregnancy. Th17 and Th22 cells are involved in the induction of

immunity against extracellular pathogens at the maternal-fetal

interface (Bettelli et al., 2006; Barnes et al., 2021). Uncontrolled

Th1 and Th17 response is associated with implantation failure

and pregnancy loss (Kwak-Kim et al., 2003; Wang et al., 2010;

Lee et al., 2012). Treg cells enhance immune tolerance to fetus by

repressing excessive Th1 and Th17 immunity and autoimmune

response (Aluvihare et al., 2004). Tfh cells are enriched in the

third trimester and offer humoral immunity as they are known

to prime B cells to initiate extrafollicular and germinal center

antibody responses (Monteiro et al., 2017). Tfh cells also balance

Th1/Th2 immunity by favoring Th2 immunity. T helper cell

profile in pregnancy is discussed in detail by Wang et al. (2020).

Other members of the innate immune system, such as NK

cells, mast cells, macrophages, dendritic cells, and neutrophils

play a key role in fine-tuning immunologic stages involved in

pregnancy. First trimester human decidual leukocytes are

primarily NK cells (70%) and macrophages (20%) (Moffett-

King, 2002; Huhn et al., 2021). Decidual NK (dNK) cells

express higher levels of chemokines, cytokines, and angiogenic

factors compared to peripheral blood NK (pNK) cells. In early

stages of pregnancy, dNK cells play a key role in implantation by

secreting pro-inflammatory factors including IL-8, IL-15, IL-6,

CXCL10 and CXCL11 (Zhang and Wei, 2021). The dNK cells

are also involved in remodeling the endometrial vasculature by

producing angiogenic factors such as vascular endothelial

growth factor C (VEGFC), placental growth factor (PIGF)

angiopoietin 2 (ANG2), IL-8, angiogenin, stromal-derived
Frontiers in Cellular and Infection Microbiology 04
factor-1 (SDF-1/CXCL12), IFN-g, matrix metalloproteinase

(MMP)9 and MMP2 (Moffett-King, 2002; Radomska-

Lesniewska et al., 2021). On the other hand, inhibitor

receptors expressed highly on dNK cells, such as killer cell

immunoglobulin-like receptor (KIR), recognize HLA ligands

to inhibit NK cell cytotoxicity and maintain immune tolerance

in maternal-fetal interface during the anti-inflammatory stage of

pregnancy (Ferreira et al., 2017). At late gestation, reactivation of

dNK cells and secretion of pro-inflammatory cytokines from

activated dNK cells induce parturition by breaking immune

tolerance (Zhang and Wei, 2021). Dysregulation of dNK cells is

found to be associated with adverse pregnancy outcomes

including recurrent spontaneous abortions, preeclampsia as

well as other reproductive problems such as endometriosis and

recurrent implantation failure (Fu et al., 2021; Fukui et al., 2021).

Macrophages also play an important role in maintaining a

healthy pregnancy. For instance, the predominance of M2

(anti- inflammatory or alternatively act ivated) type

macrophages, as opposed to M1 (pro-inflammatory or

classically activated) type macrophages, are necessary at the

maternal-fetal interface to sustain fetomaternal tolerance for a

healthy pregnancy (Yao et al., 2019). A recent study evaluated

major immune cell subsets along with functions using mass

cytometry. It showed that the regulation of the immune system

in healthy term pregnancies is precisely timed and proposed the

novel role of interleukin-2-dependent STAT5ab activation as

modulatory pathway of this response (Aghaeepour et al., 2017).
Maternal obesity and inflammation

Despite some inconsistent results, most studies in the literature

have shown that mothers with pre-pregnancy obesity have elevated

pro-inflammatory markers/cytokines, such as IL-8, IL-6, CRP,

TNF-a and IFN-g (Madan et al., 2009; Zhu et al., 2010; Englich

et al., 2017; Kretschmer et al., 2020; Maguire et al., 2021) and altered

adipokines (Hinkle et al., 2019; Jara et al., 2020; Jaramillo-Ospina

et al., 2021). However, it is important to know that the changes in

cytokines are inconsistent, as discussed by Pendeloski et al. (2017).

The inconsistent results may be due to a variety of factors, including

the biological variabilities within human populations, types of

samples (serum vs. plasma), or fasting states of the mothers (de

Jager et al., 2009; Lee et al., 2016; Martinez-Garcia et al., 2019).

Nevertheless, there is still concern that an altered inflammatory

state can negatively affect the growing fetus indirectly by altering a

variety of placental functions (e.g., trophoblast invasion, nutrient

transport) (Kwak-Kim et al., 2014; Goldstein et al., 2020). Aye et al.

found that increased maternal body mass index (BMI) is associated

with activation of placental p38-MAPK and STAT signaling

without changes in the classical inflammatory pathways or fetal

systemic inflammatory profile (Aye et al., 2014). This finding again

demonstrates the difference in immune adaptions in response to

stressors and suggests that inflammation associated with maternal
frontiersin.org
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obesity is regulated by altered placental function. Conversely, there

is evidence that elevated maternal cytokines during immune

activation secondary to infection increases cytokine levels in the

fetal compartment in preterm infants of both humans (Shobokshi

and Shaarawy, 2002) and the rhesus monkey (Short et al., 2010),

highlighting the differences in immune response/adaptations to

specific stressors in different maternal-fetal compartments.

Nevertheless, these findings suggest that immune activation/pro-

inflammatory state in the mother could result in increased levels of

cytokines in the growing fetus, either by inducing cytokine secretion

from the placenta or by direct transport across the placenta.
Adverse effects of maternal obesity
on offspring health

In a meta-analysis performed by Lutsiv et al, maternal

obesity is associated with maternal and infant adverse

outcomes including preeclampsia, gestational diabetes,

Cesarean section, bleeding, low umbilical artery pH, low Apgar

scores (appearance, pulse, grimace, activity, respiration),

congenital birth defects and NICU (neonatal intensive care

unit) admission (Lutsiv et al., 2015). In addition to its

perinatal adverse outcomes, maternal obesity is also associated

with long-term diseases in children. In a seminal article by

Barker in 1990, Dr. David Barker proposed the model of

“developmental origins of adult disease” . There, he

hypothesized that the exposure to a suboptimal environment

during early life (fetal and infant) shapes future health of an

individual (Barker, 1990). He initially showed that adults born

with low birthweight are at higher risks of developing metabolic

and cardiovascular diseases, secondary to intrauterine growth

restriction from insufficient nutrient intake. In contrast,

conditions associated with in-utero “overnutrition” and

increased inflammation, such as gestational diabetes and

maternal obesity, also negatively impact offspring long-term

health. Human data suggest that activated pro-inflammatory

state during pregnancy is associated with long-term diseases of

offspring including childhood obesity (Englich et al., 2017),

neuropsychiatric disorders (Allswede et al., 2016; Ghassabian

et al., 2018; Volk et al., 2020; Goldstein et al., 2021), and

childhood wheezing/allergic diseases (Kim et al., 2008; Rothers

et al., 2018). Complications seen with these diseases leave the

children vulnerable for further complications such as suppressed

immune response. For instance, childhood obesity is associated

with poor response to immunizations (Simo Minana et al.,

1996). While it is challenging to determine the underlying

mechanism contributing to these diseases in human offspring,

preclinical models implicated the role of increased inflammation

during pregnancy complicated by maternal obesity. In a study

performed with rats, offspring of diet-induced obese (DIO) dams

had accelerated postnatal growth and higher total body adiposity
Frontiers in Cellular and Infection Microbiology 05
(Howie et al., 2009). Interestingly, maternal supplementation

with conjugated linoleic acid (CLA) during pregnancy, an anti-

inflammatory lipid, led to reversal of the metabolic dysfunction

in offspring of DIO dams. Further, maternal CLA

supplementation also reversed the increase in TNF-a, IL-1b,
and NLRP3 expression in the guts of male offspring from DIO

dams, suggesting that these adverse effects seen from exposure to

maternal obesity may arise from alterations in maternal

inflammatory profiles (Reynolds et al., 2015). Further

examination of the specific mechanisms responsible for sex-

specific increase of pro-inflammatory cytokines in offspring of

mothers with obesity is necessary.
Neuropsychiatric disorders

There is growing evidence that children born to mothers with

obesity are more prone to neurodevelopmental and

neuropsychiatric disorders. For instance, a cohort analysis done in

more than 240,000 deliveries showed that offspring of mothers with

obesity had higher rates of autism spectrum disorder (ASD) and

neuropsychiatric morbidity-related hospitalizations. Additional

studies demonstrated that children born to mothers with obesity

were found to have lower intelligence quotients (IQs) (Neggers

et al., 2003; Tanda et al., 2013; Pugh et al., 2015; Coo et al., 2019),

higher rates of ASD (Bilder et al., 2013; Gardner et al., 2015; Getz

et al., 2016; Windham et al., 2019), attention deficit hyperactivity

disorder (ADHD) (Buss et al., 2012; Andersen et al., 2018; Jenabi

et al., 2019; Parker et al., 2022), cerebral palsy (Crisham Janik et al.,

2013; Villamor et al., 2017; Xiao et al., 2018; Zhang et al., 2019) and

affective disorders (Robinson et al., 2013; Mina et al., 2017). Animal

models of maternal diet-induced obesity have been able to provide

mechanistical insight as to why maternal obesity exposure led to

neuropsychiatric morbidity in offspring. Significant alterations in

brain structure have been noted in offspring of mothers with obesity

in rodent models. These alterations include reduced proliferation of

neural progenitors in the hippocampus (Tozuka et al., 2009),

decreased apoptosis in hippocampus and neuronal differentiation

in dentate gyrus (Niculescu and Lupu, 2009), impaired migration

and maturation of neural stem cells in the ventricular regions and

cortex (Stachowiak et al., 2013), dendritic atrophy in hippocampus

and amygdala (Janthakhin et al., 2017), and decreased myelination

in the offspring cortex (male offspring only) (Graf et al., 2016). It

was also shown that offspring of DIO dams have impaired learning

and cognition (White et al., 2009; Page et al., 2014; Ding et al., 2018;

Mucellini et al., 2019), as well as behavioral abnormalities including

hyperactivity (Dias et al., 2020), anxiety (Wright et al., 2011;

Winther et al., 2018), decreased sociability (Kang et al., 2014;

Buffington et al., 2016), disordered eating (Bayol et al., 2007;

Vucetic et al., 2010) and addictive-like behaviors (Vucetic et al.,

2010; Sarker et al., 2019), some of which were sex-specific. These

behavioral phenotypes seen in rodents might be reflective of
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neuropsychiatric disorders including ADHD, anxiety disorder, ASD

and schizophrenia. Increased lipid peroxidation, microglial

activation, and increased pro-inflammatory cytokine expression in

offspring of mothers with obesity suggest that neuroinflammation

and oxidative stress play an important role in adverse neural

outcomes. Microglia, resident macrophages that are derived from

primitive myeloid precursor cells in extra-embryonal yolk sac and

seed the brain rudiment during early fetal development, are good

candidates for long-term changes in the brain due to their long

lifespan and renewal ability (Alliot et al., 1999; Yoo and Kwon,

2021). Edlow et al. found that offspring of mice with obesity had an

exaggerated TNF-a production in response to lipid polysaccharide

(LPS) exposure in placental CD11b+ cells, as well as brain microglia

compared to the control group (Edlow et al., 2019). Overproduction

of pro-inflammatory cytokines was more prominent in male

offspring, which may correlate with male predominance of certain

neuropsychiatric morbidities associated with maternal obesity

(Hanamsagar and Bilbo, 2016; Santos et al., 2022; Breach and

Lenz, 2022). Similarly, another study demonstrated that offspring of

DIO mothers had overactivation of microglial cells and increased

toll-like receptor (TLR4) mRNA expression in the hippocampus

and exaggerated hippocampal IL-1b responses to LPS challenge

(Graf et al., 2016). The pro-inflammatory environment achieved by

the increased expression of pro-inflammatory proteins pJNK and

TNF-a affects brain derived neurotrophic factor (BDNF)

metabolism and tryptophan hydroxylase 2 (TPH2) expression.

BDNF is a crucial molecule for hippocampal neurogenesis and

TPH2 is a key enzyme for serotonin synthesis. Changes to BDNF

metabolism and TPH2 expression are both known to be associated

with increased anxiety-like behavior in adulthood (Peleg-Raibstein

et al., 2012; Dias et al., 2020). In addition to the rodent data,

maternal high-fat diet and subsequent adiposity was found to be

associated with an elevated number of microglia in the basolateral

amygdala of juvenile non-human primate offspring (Dunn

et al., 2022).

Although elucidating the molecular mechanisms involved in

the sex-bias in neurodevelopmental disorders is an evolving topic,

our knowledge as to why the incidence of neurodevelopmental

disorders is higher inmale offspring remains limited. One theory is

that the sex-specific activation of immune pathways within the

placenta may contribute to prenatal stress programming effects on

the offspring.With amousemodel of early prenatal stress, Bronson

and Bale showed that immune-related genes, including pro-

inflammatory cytokines (IL-1b, IL-6) and chemokines (CCL5,

chemokine ligand 10) were up-regulated by early prenatal stress

(EPS), specifically in males, indicative of a pro-inflammatory state

in placentas of male fetuses. The EPS effect was partially

ameliorated by nonsteroidal anti-inflammatory drug (NSAID)

treatment. Examination of male adult offspring revealed a

hyperactive phenotype, which was reversed by maternal NSAID

treatment in males. Males exposed to EPS were also found to have

dopaminergic dysregulation, which may be the leading factor for

hyperactive phenotype observed in EPS male offspring (Bronson
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andBale, 2014). Specific sex chromosomegenesmay be involved in

the vulnerability of the male placenta to maternal stress and

inflammation and resultant susceptibility to neurodevelopmental

disorders.X-linkedgeneO-linkedN-acetylglucosamine transferase

(OGT) levels are higher in the female placenta than the male

placenta as it escapes X inactivation. OGT is known to increase the

methylation of a global histone repressive mark - H3K27me3

(histone H3 trimethylated at lysine 27). Placental OGT levels are

further decreased in both sexes in response to EPS, leading to

significantly lower OGT levels in the male placenta. Significantly

decreased levels ofOGTand its controloverH3K27me3 in themale

placenta predisposes male chromatin to be in a reactive state and

more vulnerable to maternal stress (Bale, 2016).
Atopy and lung development

Several studies and meta-analyses reveal that children of

mothers with obesity are at higher risk for developing atopic

diseases, including atopic dermatitis and asthma (Harpsoe et al.,

2013; Forno et al., 2014; Dumas et al., 2016; Polinski et al., 2017;

Huang et al., 2018; Drucker et al., 2019; Liu et al., 2020; Wei

et al., 2022). This increase in risk indicates that offspring born to

mothers with obesity had altered function in immune

checkpoints regulating the development atopy/allergy.

Increased levels of maternal CRP and TNF-a , pro-

inflammatory cytokines that are elevated in mothers with

obesity, have been associated with wheezing and lower

respiratory tract infections in offspring (Morales et al., 2011;

Halonen et al., 2013). A recent study also linked higher cord

leptin levels with higher asthma risk at 3 years old in children

born to mothers with obesity (Castro-Rodriguez et al., 2020).

This is supported by animal studies that investigated the

relationship between maternal high-fat diet and offspring atopy.

MacDonald et al. showed that offspring of DIO dams had

increased airway hyperreactivity with methacholine challenge

and end-inflation technique compared to offspring of normal-fat

diet-fed mothers (MacDonald et al., 2017). Higher bronchial

alveolar lavage fluid cell count with an increased neutrophil

percentage and elevated concentration of IL-6 was also observed

in the same study suggesting that an activated pro-inflammatory

state may play a role in reactive airway disease in children born

to mothers with obesity. Another study found a female offspring-

specific increase in methacholine reactivity, as well as elevated

levels of pro-inflammatory cytokines (IL-1b, IL-5, and CXCL1),

MMP-3 and MMP-8 in lung lavage (Pascoe et al., 2022). The

exacerbated allergic response in offspring of obese mice was also

observed in response to allergen (ovalbumin) challenge (RR

et al., 2019). In this study, the increased response to ovalbumin

challenge is potentially triggered by a higher peripheral blood

mononuclear cells miR-155 that can stimulate Th2 response and

a lower tracheal and lung tissue miR-133b that can induce higher

TGF-b1 levels in lung lavage (RR et al., 2019). Offspring born to
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high-fat diet-fed mothers also had increased viral replication in

their lung tissues when they were exposed to Respiratory

syncytial virus (RSV) (Griffiths et al., 2016). In addition to the

higher incidence of reactive airway disease, maternal obesity

impacts fetal lung development and function (Mayor et al., 2015;

Baack et al., 2016; Smoothy et al., 2019; Heyob et al., 2019).

Although data highlights that maternal obesity is a risk factor for

several pulmonary complications, molecular mechanisms

underlying this association needs further investigation.
Cardiometabolic diseases

Fetal exposure to metabolic derangements caused by

maternal obesity predisposes children to cardiometabolic

diseases by altering the development of key organs in

cardiometabolic health. Large population studies have

established that even at a young age (1-25 years), offspring

born to mothers with obesity are at higher risk of developing

cardiovascular diseases (excluding congenital heart disease)

(Razaz et al., 2020). A recent meta-analysis also demonstrates

the positive association between maternal pre-pregnancy BMI

and offspring blood pressure, independent of offspring BMI

(Eriksson et al., 2014; Eitmann et al., 2022). In addition to

cardiovascular diseases, offspring born to mothers with obesity

are also at a higher risk of developing a higher BMI, insulin

resistance, and ultimately type 2 diabetes. An individual

participant data meta-analysis among 162,129 mothers and

their children from 37 pregnancies and birth cohorts from

Europe, North America, and Australia suggested that higher

maternal pre-pregnancy BMI and gestational weight gain were

associated with an increased risk of offspring overweight/obesity

throughout childhood, with the strongest effects at later ages

(Voerman et al., 2019). The association of excessive maternal

weight gain with later offspring BMI may be driven by both

familial (genetic) risk and intra-uterine exposure risk. Indeed, a

population study using a prospectively enrolled cohort showed

maternal weight gain during pregnancy had stronger association

in BMI of siblings born to mothers with normal BMI, suggesting

the contribution of genetic risks. In contrast, in women with pre-

pregnancy obesity, greater maternal weight gain had a stronger

association with the BMI of unrelated children, suggesting the

greater contributions of intrauterine mechanisms in offspring

born to mothers with obesity (Godfrey et al., 2017). Literature

suggests that children exposed to maternal obesity are at

increased risk for developing metabolic syndrome, even if the

mothers do not meet criteria for gestational diabetes mellitus

(GDM) (Boney et al., 2005). Although association of excessive

maternal weight gain with later offspring BMI is driven largely

by shared familial risk factors for BMI, a sibling study in a

prospective cohort showed that in women who are obese in early

pregnancy, greater maternal weight gain may be associated with

greater later offspring BMI via intrauterine mechanisms in
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addition to shared familial characteristics (Lawlor et al., 2011).

Animal studies performed with diet-induced maternal obesity

models support human data and tend to elucidate the

mechanisms involved in the association of maternal obesity

and offspring cardiometabolic disease. In a diet-induced

maternal obesity murine model, Samuelsson et al. showed that

offspring exposed to maternal obesity had increased adiposity,

impaired lipid and glucose metabolism and higher blood

pressures months after birth (Samuelsson et al., 2008). Several

studies showed that maternal obesity induces sex-specific effects

on glucose metabolism and the cardiometabolic profiles of

offspring in favor of male sex (Sun et al., 2012; Lecoutre et al.,

2016; Kulhanek et al., 2020; Casasnovas et al., 2021). One theory

is that the sex-differences in pancreatic b-cell function may be

partially due to increased oxidative stress in male islets

(Yokomizo et al., 2014). The mRNA levels of NOX4 and NAD

(P)H oxidase gp91phox, key regulators of superoxide production

in isolated islets, were found to be increased in male offspring

exposed to maternal high-fat diet, although there was no

significant change in the mRNA levels of female offspring

exposed to maternal high-fat diet. Estrogen in female offspring

may play a protective role against oxidative stress caused by

exposure to maternal obesity (Hernandez et al., 2000). Taken

together, both human and animal studies demonstrate that

maternal obesity is a risk factor for adverse cardiometabolic

outcomes in offspring and male predominance of impaired

insulin metabolism might be secondary to increased oxidative

stress in pancreatic b-cells in the setting of estrogen scantness.

Another potential mechanism being investigated regarding

the association between maternal obesity and dysregulated

metabolic state of offspring is alterations in adipokine

signaling secondary to increased adiposity. Adipokines are

cytokines secreted by adipose tissue that regulate obesity-

related low-grade state of inflammation. Some of the well-

defined adipokines include leptin, adiponectin, resistin, and

ghrelin. Leptin is the product of the obesity (ob) gene (Zhang

et al., 1994). It is secreted into the blood by adipocytes and

regulates appetite, metabolism and energy homeostasis through

its specific receptor leptin receptor (LEPR) located in the

vent romedia l hypotha lamic nuc leus , dorsomedia l

hypothalamic nucleus, lateral hypothalamic nucleus and

arcuate nucleus. Insulin is a key regulator in leptin

metabolism. Hyperinsulinemia leads to an increase in leptin

concentration (Saad et al., 1998). Moreover, obesity is associated

with a state of hyperleptinemia and decreased response to leptin

which subsequently hinder leptin’s function leading to a

dysregulation of energy homeostasis. Concentrations of leptin

in cord blood of infants born to mothers with obesity was

elevated compared to that of lean mothers (Guzman-Barcenas

et al., 2016). These infants were also more insulin resistant that

showed positive correlation with neonatal body fat (Catalano

et al., 2009; Guzman-Barcenas et al., 2016; Costa et al., 2016).

Animal studies support the human data (Rajia et al., 2010). High
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fat diet induced maternal obesity in mice was associated with

hyperleptinemia, hyperinsulinemia, and hyperphagia in

offspring and was exaggerated by postweaning high-fat diet

(Rajia et al., 2010). Despite the clear evidence of elevated

leptin levels in infants born to mothers with obesity,

underlying mechanisms of the association between the

increased leptin and being large for gestational age (LGA) or

childhood obesity and whether there is evidence for

inflammation of adipose tissue in these infants needs further

investigation. In addition to its key regulatory function in energy

homeostasis, leptin has emerged as an essential placental

hormone that effects placental function, embryo implantation

and fetal growth (Masuzaki et al., 1997; Ben et al., 2001;

Magarinos et al., 2007; Perez-Perez et al., 2008; Childs et al.,

2021). Various human studies demonstrated altered leptin

metabolism in the placenta of mothers with obesity (Misra

et al., 2013; Tuersunjiang et al., 2017). Maternal high-

carbohydrate diet is associated with diminished leptin

methylation in the placenta (Daniels et al., 2020). The impacts

of altered placental leptin level/function in offspring of mothers

with obesity are a complex process and differ in timing across

pregnancy (Hinkle et al., 2019). Increased placental nutrient

delivery secondary to increased leptin levels contributes to fetal

overgrowth in offspring of mothers with obesity (Jansson

et al., 2003).
Altered gut microbiome

Novel studies suggest that gut microbiota differs between

obese and lean individuals and plays a role in human obesity and

associated metabolic risks. Considering that the first microbial

exposure of offspring is the maternal microbiota during

pregnancy, it can be speculated that the gut microbiome and

the subsequent metabolic and immunological programming are

influenced by maternal nutritional status. In a cohort study

performed on 170 pregnant women, infants born to overweight

or obese mothers had a lower abundance of short chain fatty acid

producing bacteria and lower fecal butyric acid levels at 1 month

of age, which may contribute to predicting the risk of elevated

adiposity later in life (Gilley et al., 2022). Germ-free mice

colonized with stool microbes from 2-week-old human infants

born to mothers with obesity had increased intestinal

permeability, impaired macrophage activity and increased

periportal inflammation compared with those colonized with

stool microbes from infants born to mothers with normal

weight. Moreover, these mice showed accelerated weight gain

and development of fatty liver following exposure to Western

diet (Soderborg et al., 2018). Myles et al. showed that offspring of

mice fed with Western diet had increased susceptibility to

infection and its complications, higher incidence of

experimental autoimmune encephalitis and anaphylaxis.

Altered immune responses and disease susceptibility of
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offspring fed with Western diet was found to be associated

with altered gut microbiota and cohousing the offspring of

Western diet-fed mice and low-fat diet-fed mice to equilibrate

their microbiomes rescued their susceptibility to infection

(Myles et al., 2013). Increased risk of necrotizing enterocolitis

following exposure to maternal obesity supports the increased

susceptibility to infection secondary to altered gut microbiota

(Babu et al., 2018). Altered gut microbiome in pups of mice fed

with a high-fat diet was associated with increased susceptibility

to Dextran sulfate sodium-induced colitis in adulthood and

exacerbated expression of pro-inflammatory cytokines (Xie

et al., 2018). Altered early microbiota is also associated with

increased adiposity and increased risk of later obesity (Dogra

et al., 2015). Pups from the recipients of high-fat diet fed mice

gut microbiota showed increased cognitive and social-behavioral

disorders (Liu et al., 2021). Like the other cohousing studies,

cohousing these pups with pups from recipient of high-fat/high-

fiber diet-fed mice gut microbiota showed improved cognition,

sociability and a greater preference for social novelty (Liu et al.,

2021). Another study performed on Yucatan pigs showed that

maternal Western diet during gestation and lactation, even in

the absence of obesity, led to increased blood triglycerides and

free fatty acids as well as decreased gut microbiota activity in

offspring (Val-Laillet et al., 2017). However, unlike rodents,

piglets born to mothers fed with Western diet had better

cognition with higher working memory and reference memory

despite smaller hippocampal granular cell layer and decreased

neurogenesis (Val-Laillet et al., 2017). Although data suggest

that exposure to maternal obesity results in changes in gut

microbiome, further studies to delineate the long-term effects

of altered gut microbiota on offspring health and uncover

underlying molecular mechanisms are needed.
Leukemia/cancer

Little is known about the impact of maternal obesity on

offspring tumorigenesis. In a prospective cohort study done in

Pennsylvania, children born to mothers with pre-pregnancy

BMIs of 40 or greater were found to have 57% higher

leukemia risk (Stacy et al., 2019). Similarly, in a retrospective

case-control study in California, children born to overweight

mothers (BMI 25-30) were at increased risk of leukemia and

excessive gestational weight gain was associated with increased

risk of offspring astrocytoma (Contreras et al., 2016).

Considering the significant role of early-life exposures to

environmental stressors on offspring health, it is very likely

that maternal obesity may increase offspring risks of developing

cancer. This could occur indirectly, as offspring of mothers with

obesity are more likely to become obese themselves, and obesity

is an independent risk factor for malignancies (Divella et al.,

2022). On the contrary, exposure to maternal obesity during

early life may directly reprogram tissues of different organ
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systems such that they are more likely to undergo tumorigenesis.

Animal studies also suggest that maternal obesity increases the

risk of hepatocellular carcinoma (Sun et al., 2020), mammary

cancer (La Merrill et al., 2010; Zhang et al., 2020), prostate

cancer (Benesh et al., 2013; Yang et al., 2018; Liu et al., 2019) and

lung cancer (Shi et al., 2021) and some of these increased risks

are attributed to the reprogrammed immune cells in the tumor

microenvironment. However, clinical significance of the data is

understudied and needs further elucidation.
Hematopoietic stem and progenitor
cells as the cellular origin of altered
immune function in offspring born
to mothers with obesity

There is compelling evidence that exposure to maternal

obesity and chronic inflammatory state in mothers increases

offspring risk to developing a wide range of chronic diseases,

many of which have features of altered immune/inflammatory

activation (Kim et al., 2008; Allswede et al., 2016; Englich et al.,

2017; Ghassabian et al., 2018; Rothers et al., 2018; Volk et al.,

2020). Such findings warrant the investigation of the cellular

origin of the altered immune states. All the immune cells

originate from hematopoietic stem and progenitor cells

(HSPC). The characterization of progenitor populations

downstream of hematopoietic stem cells HSCs in the 2000s

lead to a model where hematopoiesis is illustrated as a branching

tree that originates from HSCs and finally branches down to

mature blood cells (Orkin, 2000). Briefly, HSCs have

hematopoietic stem cells (HSCs) have two fundamental

characteristics: the ability to self-renew and differentiate into

all mature blood lineages. Once HSC differentiates to

multipotent progenitor (MPP) cells, MPP cells further

differentiate into two major lineages: common myeloid

progenitor (CMP) and common lymphoid progenitor (CLP).

CMP further differentiates into megakaryocyte-erythroid

progenitor (MEP) and granulocyte/monocyte progenitor

(GMP), ultimately differentiating to all mature blood cells

except for lymphoid lineage: erythrocytes, platelets, monocytes,

macrophages and granulocytes (neutrophils, eosinophils,

basophils). CLP further differentiates into B cells, T cells and

NK cells (Lim et al., 2013). Recent studies have suggested that

hematopoietic differentiation is more complicated than this

classical model of hematopoiesis as the HSC pool is

functionally and molecularly heterogenous and HSCs have

clonal expansion capacity (Stier et al., 2002; Dykstra et al.,

2007; Sanjuan-Pla et al., 2013; Pietras et al., 2015).

Furthermore, the new “continuum model of hematopoiesis”

suggests that hematopoiesis is a continuous process which lacks

the distinct punctuated phenotypic changes within the

subpopulations (Velten et al., 2017; Laurenti and Gottgens, 2018).
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Despite HSPC having to generate all functional

hematopoietic lineages including immune cells, there are

limited studies that focus on the impact of maternal obesity on

hematopoiesis. Inflammation caused by several other factors is

known to affect adult HSPC function (Masamoto et al., 2016; van

den Berg et al., 2016; Emmons et al., 2017). However, the effects

of the pro-inflammatory state during maternal obesity on long-

term HSPC function in offspring has yet to be established.

Numerous reviews have presented the evidence of altered fetal

immunity in response to maternal obesity exposure

(Sureshchandra et al., 2019; St-Germain et al., 2020; Monaco-

Brown and Lawrence, 2022). In a study performed on a small

cohort, cord blood mononuclear cells isolated from infants born

to mothers with obesity showed an increased number of CD4+

cells and reduction in myeloid cell population. However, IL-

12p40 and macrophage-derived chemokine, two molecules

produced by activated myeloid cells and known to be

chemoattractants for several other immune cells including

macrophages, monocytes, Th2 cells, NK cells and dendritic

cells, had increased concentration in infants born to mothers

with obesity (Enninga et al., 2021). Another cohort study

performed in 18 pregnant women showed that umbilical cord

blood (UCB) collected from the placenta of mothers with obesity

had increased lymphocyte subsets CD3+, CD4+, CD8+, NK, and

CD8+CD25+Foxp3+ Treg cells while CD34+ cells, in which

HSPCs are enriched, were decreased (Gonzalez-Espinosa et al.,

2016). Moreover, exposure to maternal obesity was associated

with an altered epigenome of CD4+ T cells in favor of effector

memory cells, but with significant reduction in cytokine

product ion in response to CD3/CD28 st imulat ion

(Sureshchandra et al., 2021b). UCB monocytes collected from

mothers with obesity had decreased response to LPS stimulation,

which was found to be associated with hypomethylation within

promoters and regulatory regions of genes involved in TLR-

signaling in resting UCB monocytes (Sureshchandra et al.,

2017). Pregnancies complicated by obesity were associated

with reduced fetal monocyte and dendritic cell responses to

TLR ligands (Wilson et al., 2015). The TLR family plays a key

role in the pro-inflammatory response to bacterial infections;

hence dysregulation of TLR signaling is associated with bacterial

diseases including necrotizing enterocolitis (Jilling et al., 2006).

Interestingly, Cifuentes-Zúñiga et al. found that leptin, a pro-

inflammatory adipokine, was elevated in plasma of children

born to mothers with obesity while monocytes and monocyte-

derived macrophages of children exposed to maternal obesity

revealed an anti-inflammatory phenotype, but with a

suppression of anti-inflammatory mediators in response to an

M2 polarization. The unbalanced response of monocytes to M1

and M2 stimulation in children of mothers with obesity might

have detrimental effects on the inflammatory changes that could

explain some of the chronic conditions associated with fetal re-

programming caused by exposure to maternal obesity

(Cifuentes-Zuniga et al., 2017). Again, the majority of these
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studies are performed using circulating immune cells and likely

do not represent the landscape of immune cells in different

organ systems as informed by animal studies [e.g immune cells

within adipose tissue (Corken and Thakali, 2021) and liver

(Nash et al., 2021)]. Nevertheless, these findings raise the

possibility that the long-term function of HSPC is altered in

offspring born to mothers with obesity. Currently, there is only

one murine model that evaluated the acute effects of maternal

high-fat diet on fetal HSPC function. Kamimae-Lanning

investigated the impact of maternal obesity on fetal mice

HSPC isolated from liver, which is the primary hematopoietic

organ in-utero (Kamimae-Lanning et al., 2015). They reported

that fetuses of female mice who were chronically fed a high-fat

diet showed not only indications of adverse fetal programming

including growth restriction, but also a reduction in HSPC in

fetal livers. Despite the decrease in the total number of HSPC,

the proportion of B220+ lymphoid and Gr-1+/Ter119+ myeloid

cells in HFD livers were increased, suggesting a tendency

towards myeloid and B cell differentiation. No significant

difference was observed in the percentage of CD3+ cells. A

competitive transplantation study performed by transplanting

high-fat diet versus control diet-programmed fetal liver cells into

the irradiated mice conditioned with either a high-fat diet or

control diet showed that the chimerism of high fat diet-

conditioned fetal liver cells was significantly compromised in

male high-fat diet fed mice. Transcriptome analysis of high fat

diet-programmed fetal livers revealed several transcriptionally

altered targets that have roles in regulation of multiple pathways

including development, metabolism, immunity and
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inflammation, complement activation, insulin signaling, and

hematopoiesis. Although some of the studies performed on

human and rodents demonstrate controversial results and the

underlying mechanisms need further investigation, it is evident

that exposure to maternal obesity has a momentous impact on

immune response of the offspring (Wilson et al., 2015; Gonzalez-

Espinosa et al., 2016; Enninga et al., 2021; Sureshchandra et al.,

2021b). Figure 2 proposes a new concept into the effects of

maternal obesity on HSPC and potential inflammatory/immune

pathways caused by altered HSPC function that may result in

disorders associated with maternal obesity as mentioned above.
Conclusion

Both human and animal studies demonstrate that offspring

born to mothers with obesity are at higher risk of developing a

wide range of chronic illnesses. However, current understanding

of how different pathways are activated in the context of

offspring of mothers with obesity, and the exact mechanisms

leading to developmental programming, remains poorly defined.

There is now strong evidence that early changes in inflammatory

markers might be predictors of different morbidities later in life.

Thus, evaluation of offspring inflammatory profiles of offspring

at different stages of development needs further investigation.

Additionally, there is a critical need to define the increasingly

recognized sex-differences of disease susceptibility in offspring

using both human epidemiological data and animal studies.

Furthermore, the link between prenatal exposure to metabolic
FIGURE 2

Proposed model of the effects of maternal obesity on placental adaptation and fetal reprogramming that led to end organ changes and adverse health
outcomes in children. Placenta shows adaptation to environmental stressors includingmaternal obesity-associated inflammatory state. Changes in
placenta predisposes the fetus to reprogramming that is associated with a higher risk of childhood obesity, neuropsychiatric disorders, altered HSPC
function, atopic diseases, dysregulated pulmonary development, and/or cancer. Altered HSPC function and the immune cells that originate from the
HSPCs may further predispose children to adverse health outcomes associated with maternal obesity. Created with BioRender.com.
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and inflammatory changes lead by maternal obesity and

childhood/adult offspring diseases involving immune

modulation reveals the necessity of better understanding the

impact of metabolic dysregulation on HSPC.
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