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Abstract: We report on the growth of SiC nanowires on a single crystal Si substrate by pyrolysis of
polycarbosilane and using two catalyst (Al2O3 and Ni) films with different thickness (2, 4, and 6 nm).
The catalyst films were deposited on the Si substrate, and the SiC nanowires were grown according
to two mechanisms, i.e., the oxide-assisted growth mechanism and vapor- liquid-solid mechanism.
As a result, pearl-chain-like SiC nanowires and straight SiC nanowires were obtained. The prepared
nanowires exhibited excellent photoluminescence properties, emission spectra displaying two
emission peaks at 395 and 465 nm, and have good thermal stability below 1000 ◦C. The experimental
results revealed the importance of the catalyst in controlling the morphology and properties of
SiC nanowires.

Keywords: silicon carbide nanowires; vapor-solid-liquid mechanism; oxide-assisted growth
mechanism; photoluminescence; thermal stability

1. Introduction

In the nanometer scale, the surface effect, small size effect, quantum size effect and macroscopic
tunneling effect dramatically change the physical and chemical properties of materials [1–4].
For instance, SiC nanowires, a non-oxide ceramic material, attracted great interest as a highly
promising nanomaterial for many industrial applications due to their superior electric and mechanical
properties, as well as heat, corrosion, and high temperature oxidation resistance [5–7]. These unique
properties enable SiC nanowires to be used as ideal candidates for nanodevices for sensing and
biosensing applications, or in composite materials as a reinforcement [8–10]. To the key role, SiC
nanowires are widely used in aerospace, nuclear, braking systems and other industrial fields [11–13].
The development of high-performance materials and the maturity of preparation technology have
stimulated researchers to design and create the SiC nanowires with higher performance, which further
promoted deeper research on the growth mechanism of SiC nanowires.

Oxides are commonly used as catalysts to grow nanowires through the oxide-assisted growth
(OAG) mechanism, whereas transition metals are often used as catalysts for the growth of nanomaterials
by the vapor-liquid-solid (VLS) mechanism. Zhang [14] studied the growth of Si nanowires with
uniform size and long length by OAG and VLS mechanisms, aiming at achieving a controlled growth of
nanowires. Kang [15] used Au catalyst to prepare III-V semiconductor nanowires with a certain angle
and extended (111) direction on the (001) Si substrate by the VLS mechanism. Zhang [16] prepared
bamboo-like SiC nanowires by doping Al catalyst during the pyrolysis of polycarbosilane (PCS).
The findings highlighted the positive role played by the catalyst during the growth of semiconductor
and oxide nanowires. Wang [17] reported the synthesis of a Si nanowire structure, using tin particles as
a catalyst, and by adjusting the periodic volume change of the catalyst, liquid tin segments periodically
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appeared in the Si nanowires during the growth process. The results clearly show that this abnormal
growth is controlled by the dual effects of VLS and OAG. In the process of preparing Si nanowires,
M. Agati [18] discovered that the nanowires are grown catalyzed by a silicon core (with a diameter of
2 nanometers) and a silicon shell. The combination of advanced transmission electron microscopy
technology proved that the growth of long Si nanowires is carried out by the OAG mechanism, while the
growth of shorter Si nanowires is carried out by the VLS mechanism. Wang [19] uses the electron
beam evaporation method under ultra-high pressure to prepare one-dimensional silicon nanowires.
The results show that during the VLS growth process, Si nanowires can be formed on the Si surface,
but Si nanowires cannot be formed on the SiO2 surface. But in the OAG process, Si nanowires can
grow on the surface of SiO2. Nevertheless, only a few reports on the growth of SiC nanowires in the
presence of catalysts and different growth mechanisms are available in the literature.

This work is focused on the preparation of SiC nanowires, displaying different morphologies,
by changing the type and content of catalysts loaded on the substrate. The nanowires were grown on the
single crystal silicon substrate by VLS and OAG mechanisms. The phase composition, microstructure,
and morphology, as well as the photoluminescence properties and thermal stability of the prepared
SiC nanowires were analyzed. The growth mechanisms of SiC nanowires were described in detail,
providing fundamental knowledge for the rational control of the morphology of SiC nanowires.

2. Experimental

2.1. Synthesis of Samples

The 30 wt.% PCS precursor (Xiamen University) was mixed with xylene under magnetic stirring for
30 min. A multifunctional ion beam assisted deposition (IBAD) device is adopted. The pressure during
the deposition process: 2.5 × 10−2 Pa~3.2 × 10−2 Pa, the ion beam energy is 600 eV, and the deposition
rate is 0.05 nm/s. The deposition time is controlled to obtain nano-films of different thicknesses (2 nm,
4 nm and 6 nm), and the preparation of the catalyst film is characterized by the weight gain and surface
morphology of the substrate. The main components of the target (wt.%) are: 99.99% Ni and Al2O3.
The basic material is a single crystal Si (111) wafer, and the substrate temperature is lower than 100 ◦C
during the deposition process. The precursor was then poured into a crucible, which was transferred
to a tube furnace. The substrate with catalyst film was placed downstream 5 cm from the precursor.
The air in the furnace was replaced with Ar gas at a flow rate of 40 SCCM (standard cubic centimeter
per minute). The temperature was raised to 1350 at a rate of 5 ◦C/min and held for 3 h. The obtained
products were named as A1, A2, A3, respectively for the samples prepared with Al2O3 catalyst film at
a thickness of 2, 4, and 6 nm, and N1, N2, N3, respectively for the samples prepared with Ni catalyst
film at a thickness of 2, 4, and 6 nm.

2.2. Characterization of Samples

The obtained SiC nanowires were coated with a 5 nm layer of gold for scanning electron microscopy
(SEM) imaging. The images were taken using a field emission scanning electron microscope (FE-SEM,
S-4700, Tokyo, Japan). Samples were also observed by transmission electron microscopy (TEM) using
a FEI Talos F200X microscope (Hillsboro, OR, USA). Crystal phases were characterized by an X-ray
diffractometer (X-ray diffraction, XRD, AXS D8, Karlsruhe, Germany) via grazing incidence mode
with an incidence angle of 2◦, and MDI Jade software (California City, CA, USA) was used for fitting
calculation of crystallization rate and crystallite size as an auxiliary method to analyze the evolution of
sample structure and phase composition by using the following equations:

Crystallinit =
diffraction peak strength

total strength
× 100% (1)

Crystallite size =
Kλ

FW(S) cosθ
(2)



Materials 2020, 13, 5179 3 of 12

K is a constant, λ is the wavelength of an X-ray, FW(S) is the width of the sample, and θ is the
diffraction Angle.

The photoluminescence properties were characterized by X-ray fluorescence spectrometry
(Axios-X, Almelo, Netherlands), and the thermal stability of the samples was measured with
thermogravimetric analysis-differential scanning calorimetry (TG-DSC) equipment at 10 ◦C/min
to 1400 ◦C air atmosphere (GCMS QP2010 PLUS, Waltham, MA, USA).

3. Results and Discussion

The morphology and growth mechanism of SiC nanowires were controlled by using different
catalysts. The corresponding surface and cross-section morphology SEM images of all six samples are
illustrated in Figures 1 and 2.
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As shown in Figure 1a, when the thickness of the Al2O3 catalyst is 2 nm, a large number of
pearl-like beads are formed on the surface of the substrate, which are in intimate contact with the
surface (Figure 1d). As the thickness of the catalyst film increases, SiC nanowires begin to form, but they
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are straight and co-exist with the pearl-chain-like nanowires (Figure 1b,c). Also, the thickness of the
nanowire on the substrate surface becomes larger which obviously increased from 11 to 85 µm for the
samples prepared with the Al2O3 film thickness of 4 and 6 nm, respectively (Figure 1e,f). The diameter
of the straight nanowire is about 50 nm. The minimum diameter of the pearl-chain-like nanowire
is about 100 nm, and the maximum diameter of the pearls is about 850 nm. The SEM images of the
samples prepared with Ni catalyst are illustrated in Figure 2. As observed, the diameter of the SiC
nanowires catalyzed by Ni film is about 50 nm while their surface is smooth and clean (Figure 2a–c).
The cross-section image (Figure 2d) shows a mats-like arrangement of the nanowires on the substrate.
As the thickness of the Ni catalyst increases to 4 and 6 nm, the thickness of nanowires increases from
63 to 92 µm, respectively, while the layer of nanowires is denser (Figure 2e,f). These results indicate
that different growth mechanisms of the nanowires in the presence of the two catalysts. For A1, A2,
and A3 samples, amorphous shells were observed on the surface of nanowires. This is a typical feature
of the OAG growth mechanism, so it can be concluded that nanowires grow in accordance with the
OAG growth mechanism [20–22]. In this case, the growth of SiC nanowires is assisted by semi-liquid
Al2O3 when an Si-O-Al amorphous layer is formed on the surface of the nanowires, preventing the
lateral growth of the nanowires. By contrast, the growth mechanism of the nanowires in N1, N2,
and N3 samples is the VLS mechanism. In this case, the catalyst droplets form at lower temperatures.
The catalyst droplet can be used as a template to control the morphology of the SiC nanowire at the top
of the nanowire. Secondly, the solid-liquid interface is formed at the top of the nanowires, so that the
reactants continue to crystallize at the interface to form nanowires.

Figure 3 displays the XRD patterns of SiC nanowires grown in the presence of the two
different catalysts.
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Figure 3. X-ray diffraction (XRD) patterns of SiC nanowires prepared with (a) Al2O3, (b) Ni catalysts. 

As illustrated in Figure 3a, all three samples showed typical diffraction peaks for 3C-SiC. When 
the thickness of Al2O3 is 2 nm, the characteristic peak strength of SiC is extremely weak. As the 
thickness of the Al2O3 catalyst film increases, the characteristic peaks of SiC gradually become sharp 
and clearly visible. This indicates that the catalyst increases, the amount of nanowires is larger or the 
crystallinity gradually increases. In Figure 3b, the typical diffraction peaks of SiC are displayed even 
at the lower thickness of the Ni film. However, the peaks become sharper as the thickness of the Ni 
film increases. To note, for the N3 sample, traces of C can be observed in the XRD pattern. The 
comparison of the crystallinity of samples reveals that a crystallization degree of 22.3% is obtained 
for the N3 sample, which is made of crystallites of 14.3 nm, whereas a crystallinity degree of 35.6% is 
determined for the A3 sample, consisting of crystallites of 21.1 nm (Table 1). This result is consistent 
with the SEM result. The sample with Al2O3 as catalyst has a larger diameter, so the overall 
crystallinity is higher. This is because the semi-liquid catalyst in the OAG growth mechanism is only 
attached to the surface of SiC nanowires, and the limiting force on the diameter of nanowires is 
weaker than that on the tip of the nanowire droplets in the VLS mechanism. 

Figure 3. X-ray diffraction (XRD) patterns of SiC nanowires prepared with (a) Al2O3, (b) Ni catalysts.

As illustrated in Figure 3a, all three samples showed typical diffraction peaks for 3C-SiC. When the
thickness of Al2O3 is 2 nm, the characteristic peak strength of SiC is extremely weak. As the thickness
of the Al2O3 catalyst film increases, the characteristic peaks of SiC gradually become sharp and clearly
visible. This indicates that the catalyst increases, the amount of nanowires is larger or the crystallinity
gradually increases. In Figure 3b, the typical diffraction peaks of SiC are displayed even at the lower
thickness of the Ni film. However, the peaks become sharper as the thickness of the Ni film increases.
To note, for the N3 sample, traces of C can be observed in the XRD pattern. The comparison of the
crystallinity of samples reveals that a crystallization degree of 22.3% is obtained for the N3 sample,
which is made of crystallites of 14.3 nm, whereas a crystallinity degree of 35.6% is determined for the
A3 sample, consisting of crystallites of 21.1 nm (Table 1). This result is consistent with the SEM result.
The sample with Al2O3 as catalyst has a larger diameter, so the overall crystallinity is higher. This is
because the semi-liquid catalyst in the OAG growth mechanism is only attached to the surface of SiC
nanowires, and the limiting force on the diameter of nanowires is weaker than that on the tip of the
nanowire droplets in the VLS mechanism.
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Table 1. Crystallinity and crystallite size of SiC nanowires grown on the substrate surface in the
presence of Ni or Al2O3 as catalysts.

Sample Crystallinity/% Crystallite Size/nm

A3 35.6 21.1
N3 22.3 14.3

The microstructure and composition of the A3 sample are analyzed by high-resolution transmission
electron microscopy (HRTEM), selected area electron diffraction (SAED), and energy-dispersive
spectroscopy (EDS). The results are displayed in Figure 4.
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Figure 4 shows representative HRTEM images of the A3 sample. It can be observed that two
different morphologies co-exist in the sample, a bead-like morphology as well as a smooth and
straight-shaped morphology (Figure 4a). The pearl-like beads of ~150 nm in diameter, which are placed
alongside the nanowire, are amorphous. The core of the beads is crossed by a straight nanowire with a
diameter of 50 nm. The d-spacing between two neighboring lattice fringes is 0.25 nm, according to
Figure 4b. It can be observed from the SAED in the Figure 4b inset, that the crystal diffraction
lattice co-exists with a halo, attributed to the amorphous phase. Hence, it can be stated that the core
of the pearl-like beads is made of a SiC single crystal while the pearl-like structure is amorphous.
From Figure 4c, it can be observed that the straight SiC nanowires, having a diameter of 50 nm,
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are grown in the (111) direction. In addition, defects such as twin defects can be observed inside
the nanowires by magnifying high resolution images in red circles (Figure 4c). The EDS pattern
of pearl-chain-like nanowire clearly shows that the amorphous layer mainly contains Si, O, and Al
(Figure 4d). As listed in Table 2, in the Area 1, the amorphous Si–O ratio is close to 1:2 while a
small amount of Al is also detected. The Si–C ratio of Area 2 is close to 1, and the atomic content
of oxygen is 2.65%, indicating that the core of the nanowire is composed of 3C–SiC single crystals.
The microstructure and composition of the smooth and straight nanowires in A3 are the same as the
core of the beads discussed above (Figure 4e).

Table 2. Elemental analysis results of different regions in A3 displayed in Figure 4d.

Atomic Fraction (%)
Element

Si C O Al

Area 1 29.53 2.06 63.39 5.01
Area 2 52.81 44.54 2.65 –

Since no other metal elements participate in the reactions during the synthesis, but only Al2O3,
it is evident that the nucleation and growth of the A1, A2, and A3 samples are governed by the OAG
mechanism. Figure 5 schematically illustrates the growth of SiC nanowires in the presence of the Al2O3

catalyst via the OAG mechanism.
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Figure 5. Schematic diagram of growth mechanisms of SiC nanowires loaded with Al2O3 catalysts.

In the initial stage of the reaction, the Al2O3 film deposited on the Si substrate is strongly bonded
to the substrate, which limits the agglomeration of the catalyst on the substrate surface. The pyrolysis
temperature of 1350 ◦C is very close to the melting point of the silicon wafer, which weakens the
bonding force between the Al2O3 thin layer and the silicon wafer. The released reactive atoms react
with the pyrolysis byproduct gas (CO and SiOX) of the PCS, the available bonds are directed toward the
surface, and the diffused Al atoms form a Si–O–Al amorphous layer. This amorphous layer plays the
role of adsorbent of reactive gases and promotes the formation of SiC nanowires with a certain crystal
orientation. During the growth of SiC nanowires, the oxygen and aluminum atoms in Si–O–Al may be
expelled by silicon atoms, which diffuse to the edges of the crystal and form amorphous protective
shell, which also guides the growth direction of the nanowires. Therefore, the atomic content of oxygen
in the pearl-shaped amorphous layer is as high as 63.39%. Overall, the highly reactive Si–O–Al layer



Materials 2020, 13, 5179 7 of 12

on the top of the SiC nanowire acts as a collector of gaseous Si–C, whereas the amorphous layer on
the side of the nanowire prevents the increase of the nanowire diameter. Thus, a single crystal SiC
nanowire with a straight center is formed. It is assumed that the twin defects of SiC nanowires are
one of the driving forces of the growth along one direction. The existing twin dislocations in the
growth direction and the formation of facets with low surface energy can also improve growth rate
of nanowires along the (111) crystal plane. Twin steps are more likely to adsorb atoms. When the
rate of amorphous adsorption in the reaction system is greater than the crystallization rate of SiC,
the pearl-like amorphous clusters appear on the nanowires, forming the pearl-chain nanowires.

Representative HRTEM images of N3 sample are depicted in Figure 6.
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As can be seen from Figure 6a, Ni catalyst is placed on the top of SiC nanowires, which is a
typical feature of VLS mechanism [23–25]. This indicates that N1, N2 and N3 have grown according
to the VLS mechanism [26,27]. The Ni catalyst controls the growth of SiC nanowires in the (111)
direction. As shown, the average diameter of nanowires is 50 nm (Figure 6b). Many twin defects
can be observed inside the nanowires, and a periodic sawtooth-shaped crystal structure of the SiC
nanowires is noticed on the surface. As can be seen from the elemental analysis in Table 3, the catalyst
droplet mainly contains 77.76% Ni and a small amount of Si, C and O on the surface. The elemental
composition of single crystal nanowires is mainly Si and C with atomic ratios close to 1:1, and O with
2.38%. The amorphous layer coated on the surface of nanowires is mainly C. The SAED pattern shown
in the illustration in Figure 6b shows a single crystal lattice. The high-resolution image magnified
in red circles shows defects in nanowire growth, such as twin defects. The high-resolution image in
Figure 6c shows that the diameter of the Ni catalyst droplet is about 200 nm. The surface of the droplet
is covered by an amorphous layer of Si–O–C with a thickness of 5 nm. The EDS spectrum of N3 shows
that the catalyst droplets on the top of the nanowires are composed of Si, C, O, and Ni, whereas the
Si–O–C mainly exists on the surface of the catalyst droplet (Figure 6d).

Figure 7 briefly illustrates the growth of SiC nanowires supported with Ni catalyst via the
VLS mechanism.



Materials 2020, 13, 5179 8 of 12

Table 3. Elemental analysis of different regions in N3 corresponding to Figure 6a,b.

Atomic Fraction (%)
Element

Si C O Al

Area 1 12.91 7.79 1.54 77.76
Area 2 49.05 48.57 2.38 –
Area 3 11.68 79.43 8.89 –
Area 4 48.24 44.85 6.92 –
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Figure 7. Schematic diagram of growth mechanisms of SiC nanowires loaded with Ni catalysts.

As the increase of substrate temperature, Ni first forms small droplets on the substrate surface,
followed by the formation of a liquid–solid interface. Subsequently, the by-product gas formed during
PCS pyrolysis is continuously adsorbed on the liquid–solid interface and promotes the crystallization
of Si–O–C amorphous phase. The extra unreacted C is coated on the surface of nanowires, resulting in
the formation of SiC single crystal nanowires. In addition, the lowest surface-energy (111) growth is
allowed. Under these conditions, the increase in nanowire diameter is limited and the single-crystal SiC
nanowires with straight morphologies are produced. It is different from the bead chain-like nanowire
prepared by using Al2O3 as the catalyst.

Figure 8 illustrates the photoluminescence spectra of A3 and N3 samples.
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Figure 8. Photoluminescence spectra of A3 and N3 samples.
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As shown in Figure 8, the photoluminescent spectra at 350 nm of A3 and N3 display two obvious
emission peaks at ~395 and 465 nm, corresponding to 3.13 and 2.67 eV, respectively. This indicates that
the prepared 3C-SiC nanowires emit within a wide range of wavelengths. However, the intensity of the
emission peaks varies according to the catalyst type. It is obvious that the morphology and structural
defects influence the photoluminescence characteristics of nano-SiC crystals [28]. Herein, the shape of
the emission peaks is largely similar, and the center position of the emission peak changes minimally.
However, compared to the conventional SiC crystal with a relatively larger crystallite size for which the
emission occurs at 556 nm, a significant blue shift is noticed for both samples. At this point, the shape
of the emission peak is basically similar, and the central position of the emission peak changes the
least. However, the emission at 556 nm (2.39 eV) showed a significant blue shift in both samples
when compared with conventional SiC crystals with a larger crystallite size. The emission peak of SiC
nanowires at 465 nm has also been reported in other literature [29,30]. This can be explained by the
quantum size effect, which is caused by the size constraint effect due to the small crystallite size and
the displacement of emission peak due to the internal defect [31,32]. Compared with SiC crystals with
larger crystallite size, single crystals with nanowire diameter of ~100 nm were prepared. As previously
observed, there are complex accumulation defects in silicon carbide nanowires. The other peak value
is concentrated at 400 nm, which is basically consistent with the values of 3C–SiC nanotubes [33] and
SiC nanopores [32] The presence of a large number of amorphous phases in A3 leads to the formation
of a bead chain with a diameter of 850 nm, and the presence of amorphous elements also leads to the
blue shift of the emission peak center [34].

The TG and DSC curves of A3 and N3 are displayed in Figure 9.
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Figure 9. (a) Thermogravimetric (TG) and (b) differential scanning calorimetry (DSC) curves of A3 and
N3 samples.

The TG curves show no change before 1100 ◦C. However, above 1100 ◦C, a weight gain is observed
for both samples, indicating that the SiC nanowire sample is further oxidized. The oxidation is more
evident for the A3 sample, of which the residual mass is 105.54% (Figure 9a). In this case, the sample
contains Al with a lower melting point (660 ◦C), while the content of amorphous Si–O–Al is high
and easily oxidized, which is reflected by the weight gain. N3 samples showed a relatively low rate
of mass change. This is because the excess carbon in the PCS precursor is consumed by the trace
of oxygen, forming a thin amorphous layer of carbon on the surface of the nanowire [35]. It can be
observed from the TEM image that there is an amorphous carbon layer on the surface of SiC nanowires,
and the oxidation of the amorphous carbon layer will consume and result in weight loss. Meanwhile,
the weight gain and mass cancellation of the amorphous crystallites and Si–O–C occur during the
oxidation process. N3 shows absorption peaks at 566.69 ◦C, while the adsorption peak of A3 appears
at 654.40 ◦C (Figure 9b). In addition, a peak appears at 1170.36 ◦C, likely due to the introduction of Al.
Therefore, the thermal stability of the oxidizing substance has a great influence on the thermal stability
of the nanowire at high temperatures.
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4. Conclusions

1. SiC nanowires with pearl-chain-like morphology were prepared using Al2O3 as catalyst. Straight
SiC nanowires were prepared with Ni as catalyst. The crystallinity of pearl-chain-like nanowires
is slightly higher than that of straight nanowires. The results showed that the efficiency of the
nanowires formation depends on the thickness of the catalyst film. Moreover, for the both SiC
nanowire samples, the generation of twin structural defects was noticed.

2. The main mechanism governing the formation of SiC nanowires in the presence of Al2O3 is the
OAG mechanism. In this case, the growth of nanowires is mainly controlled by the amorphous
Si–O–Al coated on the surface of the nanowires while the pearl-like beads are generated due
to the twin defects. The SiC nanowires grown in the presence of Ni catalyst follow the VLS
mechanism. As the temperature increases, and in the presence of the catalyst, the crystallization
of SiC is favored, generating the final nanowire structure.

3. SiC nanowire samples prepared with two different catalysts have emissions peaks in the visible
range at 395 and 465 nm. The emission peaks blue shifted in comparison with the conventional
micro-size SiC due to the nanosized dimension of the SiC nanowires, twin defects, and amorphous
phases are identified in the samples.

4. The two samples have good thermal stability under 1000 ◦C in air atmosphere. Beyond this
temperature, the mass of the material begins to change as a result of some slight oxidation of
the material.
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