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Abstract: The paper presents a study of the effect of chemically synthesized selenium nanocomposites
(Se NCs) in natural polymer matrices arabinogalactan (AG) and starch (ST) on the viability of the
potato ring rot pathogen Clavibacter sepedonicus (Cms), potato plants in vitro, and the soil bacterium
Rhodococcus erythropolis. It was found that the studied Se NCs have an antibacterial effect against
the phytopathogenic Cms, reducing its growth rate and ability to form biofilms. It was revealed
that Se NC based on AG (Se/AG NC) stimulated the growth and development of potato plants
in vitro as well as their root formation. At the same time, Se did not accumulate in potato tissues after
the treatment of plants with Se NCs. The safety of the Se NCs was also confirmed by the absence
of a negative effect on the growth and biofilm formation of the soil bacterium R. erythropolis. The
obtained results indicate that Se NCs are promising environmentally safe agents for the protection
and recovery of cultivated plants from phytopathogenic bacteria.

Keywords: Clavibacter sepedonicus; nanocomposites; phytopathogens; potatoes; selenium

1. Introduction

Nanotechnologies have been actively introduced into various fields including agricul-
ture [1–6]. However, despite their great potential benefit, nanocomposite (NC) materials
were relatively rarely used in phytopathology, although the situation is improving, as it
can be also proved by publications in this special issue.

Earlier, we studied silver and selenium (Se) NCs in natural polymer matrices as
potential agents for the protection and healing of potatoes from pathogenic bacteria [7–9].
These substances are water-soluble, easily obtainable, and characterized by a high yield
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and a stable reproducible composition. In addition, NCs are of interest for their structure,
which is composed of bioactive nanoparticles dispersed in a polymer matrix that is safe for
living organisms and degradable by bacterial exoenzymes. It is assumed that plants treated
with such NCs will not be affected themselves, while their phytopathogenic bacteria will
die, and in some cases, such as in case of using NCs based on humic substances, even a
positive effect on plants can be observed.

We are interested in studying effects of NCs on the Gram-positive bacterium Clavibacter
sepedonicus, former Clavibacter michiganense subsp. sepedonicum (Cms) [10], a pathogenic
actinomycete causing ring rot of potato, which is a devastating disease badly affecting
potato yield and for which there are currently no effective means to prevent or control
it [11]. We have shown earlier the antibacterial effect of silver NC in matrices of humic
substances on Cms and the absence of negative effects on potato plants in vitro [7,9]. In
the here-presented study, we tested Se NCs as a potential means of protecting and healing
plants from diseases considering also their effect not only on microorganisms but also
on the potato organism itself, as well as their ability to accumulate in potato tissues after
treatment and to influence the microbiome inhabitants of the environment.

The main aim of the presented work was to study how Se NCs based on arabinogalac-
tan (AG, 6.4% Se) and on starch (ST, 12.0% Se) affects the Cms, potato plants in vitro, and
the soil microorganism Rhodococcus erythropolis.

2. Results
2.1. X-ray Phase Analysis (XPA) of Se NCs

The formation of Se NC was visually identified by the appearance of an orange-red
color of the reaction mixture caused by the formation of a red modification of elemental
Se [12]. The XPA pattern of the Se NC displayed a set of strongly broadened reflections,
suggesting the nanoscale phase of the elemental (red) selenium [12]. While Se nanoparticles
in Se/AG NC had a weakly crystalline structure with a degree of crystallinity of 1% and an
average coherent scattering zone of about 2 nm calculated by the Debye–Scherer method
(Figure 1), Se/ST NC was completely X-ray amorphous.
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Figure 1. Example of a typical diffractogram of Se/AG NC based on the X-ray phase analysis (XPA).

2.2. Transmission Electron Microscopy (TEM) of Se NCs

Using an Leo 906E transmission electron microscope (Carl Zeiss, Germany), it was
found that Se nanoparticles were formed as rounded particles with average sizes of
40–60 nm for Se/AG NCs and 20–40 nm for Se/ST NCs (Figure 2). The significantly
larger size (40–60 nm) of Se nanoparticles observed with TEM in Se/AG NCs compared
to the average size (2 nm) of Se nanocrystallites obtained by X-ray diffraction analysis for
the same NCs can be explained by a very large fraction in the material nanoparticles of an
X-ray amorphous peripheral phase, which is visible through an electron microscope but
whose dimensions are not determined by XPA.
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Figure 2. Microphotographs of Se/AG NC (A) and Se/ST NC (B) taken with a transmission electron microscope (TEM).

2.3. Effect of Se NCs on Clavibacter Sepedonicus Bacteria

In order to detect the bactericidal effect of Se NCs on potato ring rot disease, we studied
their effect on bacterial growth. The results showed that a typical log curve of bacterial
growth was observed in the control (Figure 3A). The BIS precursor of NCs suppressed the
growth of microorganisms. Exposure to NCs was observed after 4 h of incubation with
them. Se/ST NC was found to significantly inhibit Cms growth compared to control. The
effect of Se/AG NC was less pronounced, but there was also a decrease in bacterial growth.
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In addition, we investigated the effect of Se NCs on the critical ability of Cms-biofilm
formation. It is known that this ring rot potato disease leads to the blockage of stems
(wilt) [11,13], which is probably related to the formation of biofilms. Se/ST NC was found
to significantly inhibit the ability of bacteria to form biofilms (Figure 3B).

We have found earlier that the morphology of the Cms cells changes under the in-
fluence of Se NC [8,9]. Cells are shortened and thickened, indicating adverse effects on
bacteria [8,9]. At the same time, with the use of vital dyes, we have shown that almost
half of the cells have died. Thus, the antibacterial effect of Se NC on the phytopathogenic
bacterium Cms has been proven.
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2.4. The Effect of Se NC on Potato Plants In Vitro

The results of experiments on the influence of NCs on potato vegetation showed that
the addition of NC precursor-BIS to the growth medium did not have a stimulating effect
on potato growth, and in the case of Lukyanovsky variety, it even somewhat inhibited
plant growth (Figure 4A). The introduction of Se/AG NC into the plant-age potato culture
medium at the stage of four leafs did not adversely affect the length of the potato plants
when observed for 18 days (Figure 4). Regardless of the potato variety, Se/ST and Se/AG
NCs stimulated plant growth during the entire observation period (Figure 4). The effect of
NCs was more pronounced in the stable potato variety Lugovskoy (Figure 4B).
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Figure 4. Effect of treatments by Se/AG and Se/ST NCs on the growth of Lukyanovsky (A) and Lugovskoy (B) potato
varieties in vitro; CS—control samples.

We also studied the effect of the Se NC treatment on the number of leaves in these
potato plants (Figure 5). Analysis showed that Se/AG and Se/ST NCs slightly reduced the
number of leaves in susceptible variety Lukyanovsky during the first 10 days of treatment,
but further observation did not reveal any effect, the number of leaves was at the level
of control (Figure 4A). In resistant variety Lugovskoy, Se NC stimulated the formation of
leaves throughout the entire period of observation (Figure 5B). The treatment of plants
containing BIS precursor in their media resulted in a decrease in the number of leaves
in both varieties throughout the observation period. The plants did not extend in length
(Table 1).

Table 1. Effect of Se/AG and Se/ST NC treatments on the morphometric traits and peroxidase activity in infected potato
plants in vitro.

Potato Variety Treatment Length of
Internodes, cm Mass of Roots, g Mass of Vegetation

Parts, g
Peroxidase
Activity, U

Lukyanovsky

control 1.18 ± 0.03 0.76 ± 0.02 1.60 ± 0.18 0.129 ± 0.003
Se/ST NC 1.27 ± 0.25 0.75 ± 0.05 1.23 ± 0.15 0.122 ± 0.010
Se/AG NC 0.90 ± 0.10 0.88 ± 0.03 * 1.41 ± 0.50 0.073 ± 0.003 *

BIS 0.50 ± 0.20 * 0.35 ± 0.03 0.85 ± 0.02 0.051 ± 0.001 *

Lugovskoy
control 0.70 ± 0.10 1.68 ± 0.03 1.61 ± 0.10 0.145 ± 0.005

Se/ST NC 0.60 ± 0.30 1.70 ± 0.09 1.92 ± 0.15 * 0.189 ± 0.009 *
Se/AG NC 0.80 ± 0.20 1.56 ± 0.06 1.65 ± 0.20 0.175 ± 0.007

BIS 0.40 ± 0.10 * 0.90 ± 0.20 * 1.30 ± 0.30 0.123 ± 0.004 *

* Statistically different from control at P < 0.05 based on the Mann–Whitney nonparametric test. In each treatment, 25 samples were
measured, except for peroxidase, where only three samples were measured.
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At the end of the experiment, we estimated the biomass of the above-ground part of
plants and their roots (Table 1). It was found that the Se/AG NC stimulated the formation
of roots in the susceptible variety Lukyanovsky compared to control. Se/ST NC increased
the underground biomass of the plants of the resistant potato variety Lugovskoy.

The treatment of plants with BIS, a precursor of NC, negatively affected all plant
performance. However, NCs leveled such negative effects of BIS, so Se/AG NC stimulated
root formation in potatoes of the susceptible Lukyanovsky variety compared to control, and
NC Se/ST increased the underground biomass of potatoes of the stable Lugovskoy variety.

In order to detect the effect of stress in plants during their treatment with Se/AG NC,
a change in the activity of one of the most indicative stress enzyme, peroxidase, which
actively interacts with reactive oxygen species was investigated in potato leaf tissues.
Table 1 shows the results of peroxidase activity under the influence of infection and NC
treatment. BIS was found to reduce enzyme activity in both varieties compared to control
plants. The activity of the enzyme in plants of the susceptible Lukyanovsky variety did not
change significantly after the treatment by NC. Peroxidase activity increased in the tissues
of plants of the stable Lugovskoy variety.

2.5. EDXMA of Se and Six Other Elements in Potato Plant Samples

We checked the accumulation of Se in the potato tissues after two-day treatment by
NCs using EDXMA and a Hitachi TM 3000 scanning electron microscope equipped with
an Xflash 4304 SD detector for imaging (Figure 6).

In addition to Se, the presence and quantity of the following biogenic elements were
also measured in the potato tissues: oxygen, carbon, nitrogen, sodium, phosphorus, and
magnesium. They were not accumulated in plants treated by Se/AG and Se/ST NCs.
Some, but mostly insignificant redistribution of the content of the studied elements was
revealed in the samples from both varieties (Figure 6). No significant difference was
found in the oxygen content in the potato tissues of the studied samples. The amount of
carbon increased with the addition of NC, which was apparently due to the fact that NC
were created on the basis of polysaccharide matrices, AG [(C5H8O4)(C6H10O5)6]n and ST
(C6H10O5)n, which contain many carbon molecules. The nitrogen content in the tissues of
potatoes treated with Se/AG and Se/ST NCs decreased compared to the control. When
Se/AG NC was used, the amount of phosphorus in potato tissues increased, which is
associated with the nature of the origin of nanocomposites, the precursor of which was BIS,
which contained a large number of phosphorus molecules. Similarly, an increase in the
amount of sodium in potato tissues treated with Se/ST NC can be explained. The amount
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of magnesium in potato tissues varied depending on the NC. When treated with Se/ST
NC, it slightly increased, while with Se/AG NC, it decreased.
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The Se content of plant air-dry weight was very low in general in the samples from
both varieties, below 0.00% (Figure 6), probably, even below the detection limit of the
method. This suggests that treatment by Se/AG and Se/ST NCs are safe for all plants.

2.6. The Effect of Se NC on the Viability of the Soil Bacterium Rhodococcus erythropolis

An important aspect of the application of NCs in real practice is their safety for the
environment and soil microbiome. To test it, we checked the impact of Se/ST and Se/AG
NCs on growth and biofilm formation of soil bacteria R. erythropolis, which is a typical
representative of soil microbiome in Siberia.

In previous experiments, the negative influence of the precursor of nanocomposites
BIS on the living objects used also in this study was revealed, but BIS itself is not intended
to be used in pure form for plant treatment. Therefore, in a series of tests with R. erythropolis,
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BIS was not used. The growth curve was not different from the control (Figure 7A). The
method of diffusion in agar also did not detect the bactericidal effect of the studied NCs on
the R. erythropolis.

No significant effect of NC on the ability of bacteria to form biofilms was revealed
(Figure 7B), demonstrating the lack of negative effect on the biofilm formation of Rhodococcus.
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3. Discussion

There are various methods of obtaining Se NCs: physical and chemical synthesis,
as well as using different organisms (bacteria, algae, fungi, plants), which is an example
of the so-called "green chemistry". The chemical synthesis of Se NCs is attractive due
to the fast rate of obtaining the finished product, simplicity, and cost effectiveness. It is
carried out by combining various chemicals. Both organic and inorganic ingredients are
used as precursors. Se NCs can be obtained on the basis of various acids: polymethacrylic
acid, in the process of reduction of selenous acid with succinic acid in the presence of
polyvinylpyrrolidone, and on the basis of acetic, oxalic, and gallic acids [13]. Depending on
the mass ratio of the initial ingredients, nanostructures of different sizes and morphology
(spheres and micelles of irregular shape containing nuclei) can be formed. The nature of
the polysaccharide is a determining factor in the formation of Se NCs and optimization of
their parameters. For example, in a chemical synthesis, Se NCs can be synthesized using
sodium borohydride as a reducing agent and gum as a stabilizer. The size of such NCs can
vary from 44 to 200 nm, with the average size of ≈106 nm. It was shown that such NCs
exhibited high radial absorption activity [14].

Chemically synthesized NCs can be packed in the process of synthesis into polymer
molecules, in particular, into polysaccharides [15–18]. Hybrid nanosystems based on Se
NCs can be synthesized by the method of chemical reduction using various stabilizers and
reducing agents: bovine serum albumin (BSA) + ascorbic acid, chitosan + ascorbic acid,
and glucose. It has been shown that nanocompounds obtained under various synthesis
conditions and using various stabilizers and reducing agents exhibit various antimicrobial
activities, as well as cytotoxicity, which are of key importance for their application [19].

The NCs synthesized in our study were evaluated by the traditional methods used
for such studies; these are TEM and elemental analysis [20]. In addition, XPA was used to
characterize the NCs, which has high accuracy and does not affect stability of prepared
samples. This method is used not only for the study of chemical objects including Se-
containing samples [21], but also for various purposes in geology [22], biology [23], and
medicine [24]. XPA is also attractive because its ability to detect structures that are invisible
with X-ray absorption imaging.
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Potato ring rot is caused by the Gram-positive bacteria Cms, which is a pathogen
in many countries in Europe, the USA, and Canada [25]. Damage from the disease can
reach 40%, but there is currently no effective way to control Cms. In earlier studies, we
demonstrated the bactericidal effect of the Se/AG NC with different levels of Se on Cms [9].
For instance, Se/AG NC with 1.23% of Se decreased the survival of Cms by 20% compared to
the control after an hour incubation of bacteria with it. The bacterial cells looked deformed
(thickened and shortened) after 24 h of incubation [9]. Spherical particles corresponding in
size to the Se nanoparticles were observed attached to their surface [8,9]. Treatment of Cms
by Se/AG NC with higher content of Se (3.4%) showed attachment of the Se nanoparticles
to the surface of bacterial cells leading to the death of the bacteria, which probably was
associated with disruption of the cell membrane function.

It was shown in our study that Se/AG NC (6.4% of Se) and Se/ST NC (12.0% of Se)
reduced the growth of Cms bacteria in comparison with the control. We believe that the
Se NCs had the bactericidal effect on Cms, which was accompanied by a change of the
fatty acid composition in the bacterial cells and inhibited biofilm formation (unpublished
data). Thus, we have shown that all studied Se NCs inhibit the viability of the dangerous
phytopathogenic Gram-positive bacteria Cms. Negative effects of Se nanoparticles were
also described earlier on other bacteria Staphylococcus aureus [19,26], but we have shown it
for the first time for phytopathogens.

An especially interesting aspect of the antimicrobial activity of nanoselenium com-
pounds, which has recently attracted attention, is the inhibition of biofilm formation in
microorganisms [27–30]. Bacterial biofilm is considered as a high level of bacteria strategy
in adaptation to stress [31]. With the use of Se NCs of a different composition, a significant
suppression of biofilm formation of microorganisms S. aureus and Candida albicans was
shown [19]. This revealed fact is extremely important, as it is known that Cms leads to stem
wilt due to clogging of conducting vessels in potato stems [25]. Even greater effect on Cms
was found for the Se/ST NC with high content of Se (12%), which significantly reduced the
growth of bacteria and caused a significant change in the morphology of their cells [9].

However, to recommend Se NCs for practical application in controlling phytopathogens,
their safety for plants and soil organisms should be well-established first. The results
showed no negative effects of the Se/AG (6.4% Se) and Se/ST (12% Se) NCs on growth
of potato plants. Moreover, it was found that the Se/AG NC stimulated the formation
of potato roots in susceptible variety Lukyanovsky compared to control. The Se/ST NC
increased the biomass of the resistant potato variety Lugovskoy. These effects of NCs seem
to be related to the nanoparticles, for which it was shown in pepper Capsicum annuum
cultivar LJ-king that the cultivation of pepper plants in nutrient medium with nanoparticles
of iron, zinc, and copper stimulated root formation [32]. The observed effect is probably
also due to the biological activity of arabinogalactan [33], which may lead to the stimulation
of plant biomass growth.

It was also found that the activity of peroxidase increased in plant tissues of resistant
Lugovskoy variety but not in plants of the susceptible Lukyanovsky variety. The result can
be explained by the different response rate to the stress factor between different varieties:
the resistant variety reacts quickly, increasing the activity of the enzyme and triggering
protective mechanisms in the body of the plant, while the susceptible variety reacts to
external stress factors much slower, which leads to greater susceptibility to pathogens and
other stress factors.

In addition, we investigated the accumulation of Se in potato tissues after treatment
plants with NCs using EDXMA. It is a widely accepted method in medical and biological
research. For example, it is used in the study of drugs that carry out a targeted delivery
of active substances to target cells, and it is also an important tool for the detection of
nanoparticles. It is often used to improve the therapeutic characteristics of some chemother-
apeutic agents. In addition, EDXMA is also used to study environmental pollution and to
characterize minerals accumulated in the tissues of different organisms. It is considered a
useful tool in all studies requiring the determination of endogenous or exogenous elements
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in different tissues, cells, or any other biological samples [34]. We have shown that Se was
not found in potato tissues after treatment with Se NCs.

A key aspect of the application of Se NCs in real practice is their safety also for the
environment. We have shown that Se/AG (6.4% Se) and Se/ST (12% Se) NCs were harmless
for the common soil bacterium R. erythropolis. The Se/AG (6.4% Se) and Se/ST (12% Se)
NCs had neither bacteriostatic nor bactericidal effect and did not interfere with the ability
of bacteria to form biofilms. It is known that biofilm formation is an important property of
bacteria that greatly helps them resist external factors [31] and is extremely important for
soil microorganisms.

4. Materials and Methods
4.1. Synthesis of Selenium Nanocomposites (Se NCs)

The AG was obtained from a polysaccharide of Siberian larch (Wood Chemistry Ltd.,
Irkutsk, Russia). The average MW of AG was 20 kDa with a degree of polydispersion of
1.7. It was additionally purified from impurities and flavonoids by passing it through a
polyamide column.

A reaction flask was filled with 1 g of AG, 0.136 g of sodium bis(2-phenylethyl)diseleno
phosphinate [35], and 50 mL of water. The solution was stirred on a magnetic stirrer and
thermostated for 3 h at 35–40 ◦C. Then, 5 mL of concentrated (30%) H2O2 was added, and
the reaction mixture was additionally held at the same temperature for 1 h. Isolation of the
Se-containing NC and its purification from the sodium bis(2-phenylethyl)phosphinate by-
product was carried out by pouring the reaction mixture into a fourfold excess of acetone
or ethanol followed by washing on a filter with the same solvent.

4.2. Energy-Dispersive X-ray Microanalysis (EDXMA) of Se NCs and Seven Elements Including
Se in Potato Plant Samples

The yield of the NCs with a Se and percentage of seven elements, oxygen, carbon, ni-
trogen, sodium, phosphorus, magnesium, and Se, in potato plant samples were determined
based on the EDXMA data obtained using a Hitachi TM 3000 scanning electron microscope
(Hitachi High-Tech America, Inc., Schaumburg, IL, USA) equipped with an Xflash 4304 SD
detector. Se NCs as well as samples of crushed and slightly dried plant tissue were adhered
to a microscope stage using electroconductive glue and placed into a Hitachi TM 3000 scan-
ning electron microscope chamber, where they were subjected to electron impact. Atoms
of the samples were excited by electron beam, and, thus, emitted X-rays of wavelengths
characteristic of each chemical element. Analyzing the energy spectrum of X-ray emissions,
we assessed the sample qualitative and quantitative composition. The resulting Se/AG
NC represented a pale pink-red powder, which is readily soluble in water. The synthesis
and isolation of the Se/ST NC was carried out according to the procedure described above,
but ST (Sigma Aldrich, Inc., St. Louis, MO, USA) was used instead of AG. The yield of
the NC with an Se content of 12.0% (based on EDXMA) was 89% (in terms of Se from its
precursor). The resulting NC represented an orange-red powder that is well-soluble in
water. NC solutions with the Se content of 0.000625% were used in the experiments.

To determine percentage of seven elements including Se, the plants were infected with
Cms and treated with a Se NC solution after the plants were completely colonized by the
pathogen. We used three plants per variety to prepare samples for analysis after two days
of co-cultivation with Se NC solution under constant conditions of 16 h of day light and
8 h of dark at 21–22 ◦C. The number of repetitions for each sample was five, as well as five
measurement areas in each sample; the error of determination was no more than 5%.

4.3. X-ray Phase Analysis (XPA) of Se NCs

XPA was used to determine the crystalline modification, degree of crystallinity, and
crystallite size (mean coherent scattering region) of the Se nanoparticles. XPA of Se NCs
was performed on tablets made of compressed Se NC powders using a powder diffrac-
tometer D8 ADVANCE under monochromatized Cu-Kα radiation mode Locked Coupled
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(Bruker Corporation, Bremen, Germany). The crystallographic phase of elemental Se in
nanoparticles was identified by comparing the reflections of the experimental and reference
diffractograms as described in [12].

4.4. Transmission Electron Microscopy (TEM) of Se NCs

TEM was used to visually determine the shape and size of the Se nanoparticles. The
Se NCs dissolved in water were applied to formvar-coated grids and dried. Then, the
dimensional and geometric characteristics of nanoparticles in Se NCs were studied using a
Leo 906E transmission electron microscope (Carl Zeiss, Oberkochen, Baden-Württemberg,
Germany) at an accelerating voltage of 80 kV. Microphotographs were taken using a
MegaView II camera (Arecont Vision Costar, LLC, Glendale, CA, USA) and processed
using Mega Vision photoshoot capture software version 4.0 (MegaVision, Santa Barbara,
CA, USA).

4.5. Plant Material

Two potato varieties contrasting in resistance to pathogens were used in the in vitro
experiments: resistant Lugovskoy and susceptible Lukyanovsky varieties, respectively [36].
Twenty-five plants per variety were propagated by cuttings and grown on the Murashige
and Skoog growth medium (Sigma Aldrich, Inc., St. Louis, MO, USA). Potatoes were
cultivated for 20 days at 26 ◦C and illumination of 5–6 kLk.

4.6. Plant Experiments

Plants were grown on the Murasige–Skug liquid nutrient medium. During the plant
development phase of four leafs, an aqueous Se NC solution was added only once into
the liquid culture medium with the final concentration of Se in the medium of 0.000625%.
Plants were incubated for 18 days with measuring biometric traits every two days, such as
length of plants, number of leaves, length of internodes, mass of roots, and vegetation parts.

Guaiacol-dependent peroxidase activity in potato leaves was determined according to
the Boyarkin method [37] after three days of incubation of plants with NC.

The accumulation of Se in potato tissues was studied after treatment with Se NC using
the standard technique of energy-dispersive X-ray spectroscopy microanalysis.

4.7. Clavibacter sepedonicus (Cms), Strain Ac-1405

Clavibacter sepedonicus (Cms) bacterial strain Ac-1405 that causes circular potato rot
disease was obtained from the All-Russian Collection of Microorganisms (Pushchino,
Moscow Region, Russia). It was grown on medium with glucose, peptone, and yeast
extract (GPY) [38].

To study the bacteriostatic activity of Se NC on the ring rot of potatoes, the liquid
culture of Cms was grown in the dark at 26◦ C on a rocker (80 rpm) in flasks containing
GPY medium, pH 7.2.

4.8. Measuring Effect of NC on Soil Bacteria Rhodococcus erythropolis

The bacteria Rhodococcus erythropolis was isolated by us from the soil, endo- and
risosphere of plants growing at the oil-contaminated territory near Tyreti Village in Zalarin
District of Irkutsk Region, Russia. A major oil spill accident occurred in the area in
1993, resulting in the spilling of approximately 14 tons of oil. Samples of meadow soil
and the following species of plants have been studied: greater burdock (Arctium lappa),
common silverweed (Potentilla anserina), couch grass (Elytrigia repens), and acute sedge
(Carex acuta). R. erythropolis was cultured for one day in the dark on a solid medium
consisted of a liquid agar containing beef broth or a liquid nutrient medium of similar
composition. To study the effect of NC on these bacteria, the following methods were
used: antimicrobial tests by diffusion into agar, assessment of bacteriostatic activity using
the optical density of the bacterial suspension, and the tablet method for determining the
intensity of biofilm formation.
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To determine the optical density of the bacterial suspension, R. erythropolis was grown
on a liquid growth bacterial medium for one day. Then, aqueous solutions of Se NC with
a final Se concentration of 0.000625% were added. The optical density of the bacterial
suspension was measured after 0, 2, 4, 24, 28, 48, and 52 h using a tablet Bio-Rad spec-
trophotometer model 680 (Bio-Rad Laboratories, Inc., Hercules, CA, USA) at a wavelength
of 595 nm.

The agar well diffusion method was used to study the antibacterial effect of NC in
relation to R. erythropolis. The intensity of exposure to NC was determined by the size of
the precipitation zone.

To study the effect of NC on the R. erythropolis biofilm formation, the culture was
grown during one day in a liquid growth medium; then, the studied NC was added into the
suspension and cultivated under aerated conditions for one day. Then, the optical density
of the bacterial suspension (595 nm) was measured, and the suspension was transferred to
96-well polystyrene plates that were stained with 1% gentian violet at room temperature
for 45 minutes after 48 h of incubation. Then, wells were washed three times with distilled
water to remove unabsorbed cells. The paint from bacterial cells was extracted with alcohol,
and the optical density was measured at 595 nm using a tablet Bio–Rad spectrophotometer
model 680 (Bio-Rad Laboratories, Inc., Hercules, CA, USA) using the tablet method.

The experiments were carried out in three independent biological replicates. The
data obtained were subjected to statistical analysis using the MS Excel statistic add-in
software package.

5. Conclusions

In this study, two Se NCs were generated using chemical synthesis. They were
water-soluble powders with Se nanoparticles in the size range of 20–60 nm. Thus, in the
present work, the effect of the Se NCs in natural matrices (AG and ST) on the viability of
the potato ring rot causing Cms bacterium, potato plants in vitro, and soil R. erythropolis
bacterium was studied. It was found that the tested Se NCs inhibited the growth of the
phytopathogen Cms. Se/AG NC with an increased Se content of 6.4% has a positive effect
on the growth of potato plants in vitro. Se/CT NC containing 12% Se stimulated potato
growth and increased the number of leaves in plants. Treatment of plants with Se NCs
increased the activity of the protective enzyme peroxidase in potato leaf tissues. It has been
shown that after treatment of plants with Se/AG and Se/ST NCs, Se did not accumulate
in potato tissues. Thus, the studied NCs not only have a pronounced negative effect on
phytopathogen but also stimulated plant growth and did not affect soil microflora. Se/AG
and Se/ST NCs did not have bacteriostatic, bactericidal, and anti-biofilm effect to the
common soil bacteria R. erythropolis. The findings make it possible to consider Se/AG and
Se/CT NCs as potential environmentally friendly agents for the recovery of agricultural
plants from pathogenic bacteria.
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