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Wnt signalling is a fundamental pathway involved in embryonic development and adult tissue homeostasis. Mutations in the
pathway frequently lead to developmental defects and cancer. As such, therapeutic intervention of this pathway has generated
tremendous interest. Dickkopf-1 (DKK1) is a secreted inhibitor of β-catenin-dependent Wnt signalling and was originally char-
acterized as a tumour suppressor based on the prevailing view that Wnt signalling promotes cancer pathogenesis. However, DKK1
appears to increase tumour growth and metastasis in preclinical models and its elevated expression correlates with a poor
prognosis in a range of cancers, indicating that DKK1 has more complex cellular and biological functions than originally appre-
ciated. Here, we review current evidence for the cancer-promoting activity of DKK1 and recent insights into the effects of DKK1 on
signalling pathways in both cancer and immune cells. We discuss the rationale and promise of targeting DKK1 for oncology.
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Introduction – an overview of Wnt
signalling and cancer
Wnt signalling is a multifaceted pathway that regulates stem
cell maintenance, cell fate decisions, cell proliferation, sur-
vival, migration and polarity determination during develop-
ment and adult tissue homeostasis (Logan and Nusse, 2004;
MacDonald et al., 2009; Clevers and Nusse, 2012; Clevers
et al., 2014; Sedgwick and D’Souza-Schorey, 2016). Given
the diverse cellular outcomes mediated by Wnt signalling, it
is not surprising that it is exceedingly complex, involving
19 Wnts, 10 Frizzled (FZD) Wnt receptors, other classes
of receptors including low-density lipoprotein receptor-
related proteins 5 and 6 (LRP5/6), agonists and antagonists.
Wnt signalling is classified into two main branches:
β-catenin-dependent and β-catenin-independent. The
β-catenin-dependent Wnt pathway is better characterized
and understood and is mediated by the tight regulation of
β-catenin stability (MacDonald et al., 2009). In the absence
of Wnt, signalling is kept off through β-catenin degradation
by the action of the ‘destruction’ complex which consists of
axin, adenomatous polyposis coli (APC), casein kinase Iα
and glycogen synthase kinase 3 (Figure 1A). Through phos-
phorylation of β-catenin, the ‘destruction’ complex targets
β-catenin for ubiquitin-mediated proteasomal degradation.
The β-catenin-dependent Wnt signalling pathway is initiated
by Wnt binding to FZD receptors and the LRP5/6 co-receptor
(Figure 1B). This begins a signalling cascade that inhibits
the ‘destruction’ complex and leads to the stabilization of
β-catenin. The β-catenin protein then translocates to the nu-
cleus and interacts with DNA-binding T-cell factor/lymphoid

enhancer factor family members, thereby activating a
Wnt-responsive transcriptional programme. Mutations in
β-catenin-dependent Wnt signalling components occur fre-
quently in cancer and result in constitutive β-catenin accu-
mulation and signalling (Polakis, 2012; Zhan et al., 2017).
For example, loss-of-function APC mutations are prevalent
in colorectal cancer, and CTNNB1 (β-catenin) stabilizing mu-
tations have been identified in colorectal cancer and a high
percentage of liver and endometrioid tumours (Kwong and
Dove, 2009; McConechy et al., 2014; Zucman-Rossi et al.,
2015). Additionally, loss-of-function alterations in zinc and
ring finger 3 (ZNRF3)/ring finger protein 43 (RNF43), which
are ubiquitin ligases promoting FZD degradation, or translo-
cations involving R-spondin proteins, which are secreted
Wnt agonists by inhibiting ZNRF3/RNF43, are also found in
colorectal cancer and other malignancies (Seshagiri et al.,
2012; Assie et al., 2014; Giannakis et al., 2014; Hao et al.,
2016). As such, targeting/inhibiting β-catenin-dependent
Wnt signalling has garnered much attention and there are
multiple oncology candidates in preclinical and clinical
development (Anastas and Moon, 2013; Lu et al., 2016).
Although targeting the β-catenin-dependent Wnt pathway is
attractive, caution is warranted due to the ubiquitous nature
of the pathway and the possibility for serious side effects
(Kahn, 2014).

The β-catenin-independentWnt signalling pathway regu-
lates cell motility and polarity throughout development
(Wang, 2009; Sedgwick and D’Souza-Schorey, 2016). It is
not nearly as well characterized as β-catenin-dependent Wnt
signalling and involves multiple overlapping pathways, of
which the Wnt/planar cell polarity (PCP) pathway is best

Figure 1
Overview of β-catenin-dependent Wnt signalling. (A) In the absence of Wnt, β-catenin is bound by the ‘destruction’ complex and phosphorylated
by GSK3 and casein kinase I (CKI). Phosphorylation results in targeting for ubiquitin-mediated degradation. (B) Wnt binding to a FZD receptor and
the LRP5/6 co-receptor disrupts the ‘destruction’ complex and stabilizes β-catenin. The β-catenin protein translocates to the nucleus, interacts
with T-cell factor/lymphoid enhancer factor (TCF/LEF) family transcription factors and activates a Wnt-responsive transcriptional programme.
β-TrCP, β-transducin repeat containing protein; DVL, Dishevelled.
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understood and others, such as a Wnt/Ca2+ pathway, have
been proposed (Semenov et al., 2007; Liu et al., 2016a). β-ca-
tenin-independent Wnt signalling does not require LRP5/6
and is instead initiated through Wnt interaction with FZD
or additional receptors, such as receptor tyrosine
kinase-like orphan receptor (ROR) and receptor-like
tyrosine kinase (RYK) (Green et al., 2014). Many down-
stream mediators are utilized adding further complexity
(Sugimura and Li, 2010; van Amerongen, 2012). For example,
heterotrimeric G-proteins, Rho-family small GTPases, JNK
and calcium/calmodulin-dependent protein kinase II have
all been implicated as downstream components. Some inves-
tigators have suggested that, similar to β-catenin-dependent
Wnt signalling, these β-catenin-independent pathways may
directly tie into gene regulation through nuclear factor of ac-
tivated T-cells (NFAT), ATF2 and c-Jun transcription factors,
although this requires further substantiation (Saneyoshi
et al., 2002; Schambony and Wedlich, 2007; Rao and Kuhl,
2010; Bengoa-Vergniory et al., 2014). Not surprisingly, given
that β-catenin-independent Wnt signalling regulates cell
motility, the pathway has been implicated in promoting
cancer (Katoh, 2005; Wang, 2009; Sedgwick and D’Souza-
Schorey, 2016). For example, Wnt-5a activates β-catenin-
independent Wnt pathways, leading to invasion, metastasis
and proliferation of some cancers (Asem et al., 2016;
Kumawat and Gosens, 2016). ROR1, a receptor for Wnt-5a,
is also involved in cancer progression and is over-
expressed in both haematological and solid malignancies
(Borcherding et al., 2014). The therapeutic intervention
of β-catenin-independent Wnt signalling has promise;
however, a better understanding of this pathway will be
necessary to fully exploit targeting it for oncology.

Discovery and characterization of DKK1
Dickkopf-1 (DKK1) is a member of the Dickkopf family
and has most extensively been characterized as a secreted
protein that is an inhibitor of β-catenin-dependent Wnt sig-
nalling. The Dickkopf family consists of four members
(DKK1–4), which contain two conserved cysteine-rich (Cys)
domains involved in protein–protein interactions (Niehrs,
2006). The Cys domains define the family and there is not a
high degree of sequence similarity outside of these regions.
DKK1 is essential for development, and homozygous null
mice die at birth with severe head defects and limb
dysmorphogenesis (Mukhopadhyay et al., 2001). Mice with
reduced DKK1 expression levels are viable but have increased
bone mass, indicating a role for DKK1 in bone development
and homeostasis (MacDonald et al., 2007; Pinzone et al.,
2009). DKK1 expression in adult tissues does not appear to
be as ubiquitous; however, DKK1 has been detected in various
tissues including bone, placenta, intestine, colon and pros-
tate (Glinka et al., 1998; Fedi et al., 1999; Monaghan et al.,
1999; Zhang et al., 2004; Forget et al., 2007; Aguilera et al.,
2015). Of the Dickkopf family members, DKK1 is the best
understood.

DKK1 was originally identified in Xenopus as an inhibitor
of β-catenin-dependent Wnt signalling and an inducer of
head formation during embryogenesis, a phenotype that
coined the Dickkopf (German for ‘big head, stubborn’)

nomenclature (Glinka et al., 1998). Its human homologue
was also characterized as a potent Wnt inhibitor (Fedi et al.,
1999). Thereafter, multiple labs demonstrated that DKK1 im-
peded β-catenin-dependent Wnt signalling by binding to the
LRP6 co-receptor with high affinity and blocking signalling
(Bafico et al., 2001; Mao et al., 2001; Semenov et al., 2001).
More recent structural studies have supported this model
and expanded our understanding of DKK1-mediated inhibi-
tion of β-catenin-dependent Wnt signalling. The crystal
structures of DKK1 and LRP6 along with binding data suggest
that DKK1 occupies multiple Wnt domains on LRP6 and that
this presumably prevents virtually all Wnt binding to the co-
receptor (Ahn et al., 2011; Bourhis et al., 2011; Chen et al.,
2011; Cheng et al., 2011; Bao et al., 2012). Furthermore,
DKK1 binding to LRP6 can induce a conformational change
that may allosterically impede Wnt binding (Matoba et al.,
2017). DKK1 can also form a ternary complex with the
kremen 1 co-receptor and LRP6, possibly leading to deple-
tion of LRP6 from the cell surface and decreased signalling;
however, this model remains controversial (Mao et al., 2002;
Semenov et al., 2008; Wang et al., 2008; Zebisch et al.,
2016). Although DKK1 clearly regulates Wnt signalling
through inhibition of the β-catenin-dependent pathway, this
may be an oversimplification because DKK1 has also been
linked to the activation of β-catenin-independent Wnt sig-
nalling. For example, DKK1 has been implicated in promot-
ing β-catenin-independent Wnt signalling during Xenopus
and zebrafish development, neurite outgrowth, in
Alzheimer’s disease pathogenesis, as well as in oncology
models (Pandur et al., 2002; Caneparo et al., 2007; Endo
et al., 2008; Thudi et al., 2011; Wang and Zhang, 2011;
Tao et al., 2013; Killick et al., 2014; Krause et al., 2014; Marzo
et al., 2016). DKK1 activation of β-catenin-independent Wnt
signalling is not well understood but is probably indirect
and involves DKK1 shifting the Wnt signalling balance from
the β-catenin-dependent pathway to β-catenin-independent
pathways (discussed in a later section). Thus, the effect
of DKK1 on cellular function presumably involves the
interrogation of outputs from both β-catenin-dependent
and independent Wnt pathways, adding further complex-
ity to its regulation of Wnt signalling.

Based on the ability of DKK1 to inhibit β-catenin-
dependent Wnt signalling, a pathway that is frequently
overactivated in cancer, it is not surprising that DKK1 was ini-
tially characterized as a tumour suppressor. Early studies in
gastrointestinal cancer showed that DKK1 expression was de-
creased in tumours and that the gene was frequently methyl-
ated and silenced (Gonzalez-Sancho et al., 2005; Aguilera
et al., 2006; Sato et al., 2007). Additional studies indicated
DKK1 could suppress tumours by inducing apoptosis and
inhibiting tumour growth, proliferation, invasion and angio-
genesis (Lee et al., 2004; Maehata et al., 2008; Mikheev et al.,
2008; Qiao et al., 2008; Hirata et al., 2011; Kim et al., 2012;
Menezes et al., 2012; Qi et al., 2012). However, paradoxically,
many correlative and functional studies have linked DKK1 to
the promotion of cancer (Tables 1 and 2) (Mazon et al., 2016).
The ability of DKK1 to function as a tumour suppressor or
promoter is probably dependent on numerous contextual
factors such as the type of cancer, heterogeneity within the
tumour, Wnt signalling pathway wiring and the tumour
micro-environment. Deciphering this will advance the
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development of DKK1-targeted therapies for oncology cur-
rently undergoing clinical development (Lu et al., 2016).

DKK1 overexpression in cancer
Clinical studies in a range of cancers have detected ele-
vated levels of DKK1 in patient serum or tumours and this
was frequently associated with a poor prognosis, such as
advanced stage, decreased overall survival, vascular inva-
sion and metastasis (Table 1). For example, DKK1 staining
has been detected in a high percentage of oesophageal
and cholangiocarcinoma tumours and this correlated with
a decrease in overall survival (Yamabuki et al., 2007; Shi
et al., 2013). In tumours from breast, cholangiocarcinoma,
laryngeal squamous cell carcinoma, liver, rectal and
gastric cancers, elevated levels of DKK1 have been observed
with vascular invasion, lymphatic invasion or VEGF-C ex-
pression, implicating DKK1 in promoting cancer cell migra-
tion and metastasis (Smadja et al., 2010; Kemik et al., 2011;
Tung et al., 2011; Shi et al., 2013, 2014; Tao et al., 2013;
Liu et al., 2016b). In support of this, DKK1 positivity
has been associated with lymph node metastasis in

cancers (Kemik et al., 2011; Li et al., 2013; Shi et al.,
2013; Shi et al., 2014; 2016). DKK1 staining in tumours
has also been co-detected with β-catenin, and in some in-
stances, patients with dual staining had a worse prognosis,
including decreased overall survival (Yu et al., 2009; Xu
et al., 2012; Chen et al., 2013, 2014; Shi et al., 2014,
2016). It is puzzling that DKK1, an inhibitor of β-catenin-
dependent Wnt signalling, is detected in tumours with
β-catenin, an indicator of activated Wnt/β-catenin signal-
ling. However, activated β-catenin-dependent Wnt signal-
ling can result in the up-regulation of DKK1, potentially
as a negative feedback mechanism under physiological
conditions (Niida et al., 2004; Chamorro et al., 2005;
Gonzalez-Sancho et al., 2005; Bu et al., 2008; Chen et al.,
2016). In tumours that stain for β-catenin and DKK1, the
negative feedback may have been disrupted by, for exam-
ple, stabilizing mutations in β-catenin that would render
the inhibitory activity of DKK1 inoperative. It is interesting
to speculate that in the context of constitutively activated
β-catenin-dependent Wnt signalling, the increased ex-
pression of DKK1 is contributing to tumour growth and
poor prognosis. Further research is required to address
this issue.

Table 1
Cancers with tumours that express DKK1 or induce elevated patient serum levels

Cancer Reference

Bladder (Sun et al., 2015)

Breast (Forget et al., 2007; Voorzanger-Rousselot et al., 2007; Bu et al., 2008; Sato et al., 2010;
Smadja et al., 2010; Xu et al., 2012; Zhou et al., 2014; Rachner et al., 2014a)

Chondrosarcoma (Chen et al., 2014; Zarea et al., 2016)

Cholangiocarcinoma (Sato et al., 2010; Shi et al., 2013; Shi et al., 2016)

Cervical (Jiang et al., 2009; Sato et al., 2010; Jiang et al., 2013)

Colon/rectal (Kemik et al., 2011; Gurluler et al., 2014; Aguilera et al., 2015)

Endometrial (Jiang et al., 2009)

Oesophageal (Yamabuki et al., 2007; Darlavoix et al., 2009; Makino et al., 2009; Li et al., 2011;
Begenik et al., 2014; Lyros et al., 2015)

Gastric (Sato et al., 2010; Gao et al., 2012; Gomceli et al., 2012; Lee et al., 2012; Liu et al., 2016b)

Glioblastoma (Zhou et al., 2010)

Kidney (Wirths et al., 2003; Forget et al., 2007)

Liver (Wirths et al., 2003; Patil et al., 2005; Yu et al., 2009; Sato et al., 2010; Tung et al., 2011;
Shen et al., 2012; Chen et al., 2013; Tao et al., 2013; Yang et al., 2013; Huang et al., 2014;
Zhang et al., 2014; Kim et al., 2015; Desert et al., 2016)

Laryngeal (Shi et al., 2014)

Lung (Forget et al., 2007; Yamabuki et al., 2007; Sheng et al., 2009; Sato et al., 2010; Li et al., 2013;
Chu et al., 2014; Dong et al., 2014; Xiang et al., 2015; Kimura et al., 2016; Yao et al., 2016)

Malignant fibrous histiocytoma (Matushansky et al., 2007)

Multiple myeloma (Tian et al., 2003; Politou et al., 2006; Qian et al., 2007)

Osteosarcoma (Lee et al., 2007)

Ovarian (Chamorro et al., 2005; Shizhuo et al., 2009; Wang and Zhang, 2011)

Pancreatic (Sato et al., 2010; Takahashi et al., 2010; Han et al., 2015; Kimura et al., 2016)

Prostate (Hall et al., 2008; Rachner et al., 2014b)

Solid tumours, meta-analysis (Liu et al., 2014)

Urothelial (Shen et al., 2010)
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Table 2
Preclinical evidence for DKK1 promoting cancer pathogenesis

Cancer
Selected evidence for DKK1
cancer-promoting activity Reference

Breast • DKK1 increased tumour growth and
neovascularization in a xenograft model

• Cancer cells with metastatic potential avoided
immune clearance by expressing DKK1

(Voorzanger-Rousselot et al., 2007; Smadja et al., 2010;
Malladi et al., 2016)

Cholangiocarcinoma • DKK1 knockdown decreased migration, invasion,
proliferation, tumour growth and expression of
VEGF-C and MMP9

(Shi et al., 2013; Shi et al., 2016)

Colorectal • DKK1 regulated the expression of cancer-related
genes

(Aguilera et al., 2015)

Oesophageal • Overexpression of DKK1 increased proliferation
and invasion

(Li et al., 2011)

Liver • DKK1 promoted migration, invasion, tumour
growth, metastasis and angiogenesis

• Cancer stem cell-like liver cells had increased
expression of DKK1

(Yu et al., 2009; Tung et al., 2011; Chen et al., 2013;
Tao et al., 2013; Huang et al., 2014; Kim et al., 2015;
Chen et al., 2016)

Laryngeal • DKK1 knockdown reduced migration, invasion
and proliferation

(Shi et al., 2014)

Lung • An anti-DKK1 antibody had efficacy in a
syngeneic mouse model

• Cancer cells with metastatic potential avoided
immune clearance by expressing DKK1

• An anti-DKK1 antibody induced apoptosis,
reduced invasion, decreased proliferation and
had efficacy in a xenograft model

• DKK1 overexpression promoted invasion,
migration and proliferation

• DKK1 activated PI3K/Akt signalling through
a novel receptor (CKAP4)

(Sato et al., 2010; Li et al., 2013; Salim et al., 2015;
D’Amico et al., 2016; Kimura et al., 2016;
Malladi et al., 2016; Yao et al., 2016; Pang et al., 2017)

Melanoma • An anti-DKK1 antibody had efficacy in a
syngeneic mouse model

(D’Amico et al., 2016)

MFH • DKK1 promoted transformation of hMSCs
to MFH cells

(Matushansky et al., 2007)

Multiple myeloma • Anti-DKK1 antibodies had efficacy in
mouse models

• Anti-DKK1 antibodies improved bone health
in mouse models

(Yaccoby et al., 2007; Fulciniti et al., 2009;
Heath et al., 2009; Pozzi et al., 2013)

Osteosarcoma • An anti-DKK1 antibody had efficacy in
PDX models

• DKK1 overexpression increased proliferation
and tumour growth

(Gregory et al., 2003; Krause et al., 2014;
Goldstein et al., 2016)

Ovarian • DKK1 knockdown had efficacy in a xenograft
model

(Wang and Zhang, 2011)

continues
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DKK1 promotes proliferation, invasion
and tumour growth in preclinical
models
In addition to clinical data, direct evidence for DKK1 cancer-
promoting activity exists for preclinical cancer models
(Table 2). For example, DKK1 promoted migration and/or in-
vasion in cholangiocarcinoma, oesophageal, liver, laryngeal,
lung and pancreatic cancer cell lines (Table 2). For some of
these cancer cell lines, this may have occurred through
DKK1 regulation of MMP expression, a family of proteases
with well characterized roles in cancer cell migration
(Kessenbrock et al., 2010; Chen et al., 2013; Shi et al., 2013;
Shi et al., 2016). Furthermore, DKK1 knockdown reduced
the expression of VEGF-C, a protein associated with promot-
ing metastasis to lymph nodes, in cholangiocarcinoma (Park
et al., 2006; Shi et al., 2013). Along with migration and inva-
sion, DKK1 also stimulated proliferation in cell culture exper-
iments (Table 2). However, this was not a universal feature,
and for certain cancers, DKK1 promoted migration and/or in-
vasion without having a detectable effect on proliferation
(Tung et al., 2011; Wang and Zhang, 2011; Chen et al., 2013;
Li et al., 2013). It is currently not well understood why there
was this difference, but it may be due to variations in Wnt
signalling pathways across cancer cell lines or different cell
culture conditions. Elevated DKK1 expression also occurred
in liver, breast and lung cancer cells that had stem cell-like
characteristics, suggesting that it may contribute to the devel-
opment of an undifferentiated phenotype (Chen et al., 2016;
Malladi et al., 2016). Supporting this, DKK1 overexpression
prevented the differentiation of osteosarcoma cells and
increased the level of the cancer stem cell marker aldehyde
dehydrogenase 1 in these cells (Krause et al., 2014). Taken
together, there is ample evidence from cell culture model
systems that DKK1 may contribute to cancer progression by
promoting migration, invasion, proliferation and cancer
stem cell-like properties.

DKK1 has been documented to affect tumour growth in
in vivo models representing a range of cancers. For example,
tumour models for breast cancer, cholangiocarcinoma, liver
cancer, lung cancer, melanoma, multiple myeloma, osteosar-
coma, ovarian cancer and prostate cancer all responded to

changes in DKK1 levels (Table 2). In multiple myeloma, treat-
ment with anti-DKK1 antibodies reduced disease burden and
improved bone health in mouse models (Yaccoby et al., 2007;
Fulciniti et al., 2009; Pozzi et al., 2013). Lung cancer, mela-
noma, osteosarcoma and prostate cancer also responded to
anti-DKK1 antibody treatment in vivo (Hall et al., 2010; Sato
et al., 2010; D’Amico et al., 2016; Goldstein et al., 2016). In
both breast cancer and hepatocellular carcinoma xenograft
models, DKK1 increased tumour growth and promoted an-
giogenesis, suggesting that DKK1 has pro-angiogenic activity
(Smadja et al., 2010; Tung et al., 2011). In support of this,
knockdown of DKK1 decreased tumour growth and angio-
genesis in hepatocellular carcinoma (Huang et al., 2014). In
addition to affecting primary tumour growth, DKK1 has also
been linked to the development of metastasis in bone, breast,
liver, lung and prostate cancer models, possibly related to the
prominent role of DKK1 in stimulating migration and inva-
sion observed in vitro (Thudi et al., 2011; Tao et al., 2013;
Huang et al., 2014; Goldstein et al., 2016; Malladi et al.,
2016; Pang et al., 2017). Taken together, these data demon-
strate that DKK1 has tumour-promoting activity in animal
models via effects on tumour growth, metastasis and
angiogenesis.

DKK1 modulation of signalling
pathways in cancer cells
Emerging evidence is improving our understanding of how
DKK1 can promote tumour growth and metastasis through
the modulation of signalling pathways in cancer cells. For ex-
ample, an elegant study has demonstrated that DKK1 con-
tributes to metastasis in an in vivo model through inhibition
of β-catenin-dependent Wnt signalling (Figure 2A) (Malladi
et al., 2016). The authors initially identified and characterized
latency competent cancer (LCC) cells that had a stem cell-like
phenotype and tumour-initiating capability by avoiding im-
mune clearance. Impeding DKK1 expression re-sensitized
these LCC cells to β-catenin-dependent Wnt signalling and
up-regulated the expression of activating ligands for natural
killer (NK) cells, leading to NK cell-mediated clearance of
the LCC cells and reduced metastasis. These results suggest

Table 2 (Continued)

Cancer
Selected evidence for DKK1
cancer-promoting activity Reference

Pancreatic • DKK1 knockdown decreased migration,
invasion and proliferation

• DKK1 activated PI3K/Akt signalling through
a novel receptor (CKAP4)

(Takahashi et al., 2010; Kimura et al., 2016)

Prostate • DKK1 overexpression increased tumour growth
and metastasis

• An anti-DKK1 antibody reduced tumour growth
in a xenograft model

(Hall et al., 2010; Thudi et al., 2011)

MFH, malignant fibrous histiocytoma; hMSCs, human mesenchymal stem cells; PDX, patient-derived xenograft.
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the intriguing possibility that the reactivation of β-catenin-
dependent Wnt signalling could be an effective way to elimi-
nate tumour-initiating cells with metastatic potential
through immune surveillance. However, caution and further
studies are warranted, since the reactivation of β-catenin-
dependent Wnt signalling may also induce proliferation of
LCC cells and in principle increase tumour growth. An impor-
tant issue to address is how to enhance tumour immune sur-
veillance without promoting tumour growth.

For certain cancer cells, inhibition of β-catenin-
dependentWnt signalling by DKK1 can favour the formation
of an undifferentiated phenotype, which in general is more
malignant. For example, DKK1 has been implicated in having
a role in limiting the ability of malignant fibrous
histiocytoma cells to differentiate by blocking β-catenin-
dependent Wnt signalling (Matushansky et al., 2007). In
osteosarcoma, DKK1 inhibited β-catenin-dependent Wnt sig-
nalling and impeded differentiation (Goldstein et al., 2016).
Treatment with an anti-DKK1 antibody reduced tumour
growth in patient-derived xenograft models, increased nu-
clear β-catenin staining and increased the expression of
osteopontin, a bone differentiation marker. Taken together,
these results indicate that for some cancers DKK1 can contrib-
ute to tumour growth by impeding β-catenin-dependentWnt
signalling.

DKK1 can also promote cancer pathogenesis by activating
β-catenin-independent Wnt signalling. This finding is not
unexpected, given the role of β-catenin-independent Wnt
signalling in cell migration and polarity during development
(Sedgwick and D’Souza-Schorey, 2016). In liver cancer cells,
knockdown of DKK1 decreased metastasis and reduced the
levels of phosphorylated JNK, a downstream mediator of
the Wnt/PCP pathway, suggesting that signalling was occur-
ring through β-catenin-independent Wnt pathways (Tao
et al., 2013). The overexpression of DKK1 in prostate cancer
cells increased metastatic potential and resulted in JNK

activation without affecting β-catenin levels, suggesting that
DKK1 was acting primarily through a β-catenin-independent
Wnt pathway (Thudi et al., 2011). A similar result has been
observed in ovarian cancer cells where DKK1 promoted cell
invasion and increased phosphorylated JNK without affect-
ing β-catenin levels (Wang and Zhang, 2011). Furthermore,
DKK1 staining in ovarian tumours correlated with that of
phosphorylated JNK. In osteosarcoma, DKK1 overexpression
increased tumour growth, RhoA expression and JNK phos-
phorylation, further supporting its role in activating
β-catenin-independent Wnt signalling (Krause et al.,
2014). Taken together, these results implicate DKK1 acti-
vation of β-catenin-independent Wnt signalling in cancer
cells as a potential driver of tumour growth and metastasis.
Even though evidence exists for DKK1 activation of
β-catenin-independent Wnt signalling in developmental
and cancermodels, themechanistic details have not been elu-
cidated. It has been hypothesized that DKK1 shifts the Wnt
signalling balance from the β-catenin-dependent pathway to
β-catenin-independent pathways (Figure 2B) (Endo et al.,
2005, 2008; Caneparo et al., 2007; Wang and Zhang, 2011;
Krause et al., 2014). This potentially occurs through DKK1
binding to the LRP5/6 co-receptor blocking Wnt and
increasing the availability of a Wnt pool to activate
β-catenin-independent signalling pathways. Likewise,
DKK1 could shift FZD receptors to β-catenin-independent
pathways since there would be fewer Wnt bound LRP5/6 co-
receptors to interact with. Going forward, it will be important
to increase our understanding of how DKK1 promotes the
activation of β-catenin-independent Wnt signalling and the
extent that this contributes to tumour growth andmetastasis.

DKK1 modulates β-catenin-dependent and -independent
Wnt signalling in cancer cells, but is it limited to these path-
ways? For instance, even thoughDKK1 showed a clear pheno-
typic response in lung, pancreatic and prostate cancer cell
lines in culture, attempts to detect measurable changes in

Figure 2
DKK1 regulation of signalling pathways. (A) DKK1 inhibition of β-catenin-dependent Wnt signalling. DKK1 inhibits β-catenin-dependent Wnt
signalling by binding to the LRP5/6 co-receptor and blocking Wnt binding, which results in β-catenin degradation. (B) Model of DKK1 activation
of β-catenin-independent Wnt signalling. DKK1 binding to the LRP5/6 co-receptor shifts Wnt and the FZD receptor to β-catenin-independent signal-
ling pathways. A simplified version of the β-catenin-independent Wnt/PCP pathway is shown as an example. (C) DKK1 activation of a non-Wnt
signalling pathway. DKK1 binds to the CKAP4 receptor and activates PI3K/Akt signalling. GSK3, glycogen synthase kinase 3; CKI, casein kinase I;
β-TrCP, β-transducin repeat containing protein; RYK, receptor-like tyrosine kinase; DVL, Dishevelled; ROCK, Rho-associated protein kinase.
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either β-catenin-dependent or independent Wnt signalling
pathways were largely unsuccessful, leading the authors to
speculate that the effects of DKK1 occurred through an unde-
fined signalling pathway (Hall et al., 2010; Sato et al., 2010;
Takahashi et al., 2010). This question has begun to be ad-
dressed by a screening approach that has identified the
cytoskeleton-associated protein 4 (CKAP4) as a novel DKK1
receptor (Kimura et al., 2016). Further characterization indi-
cated that CKAP4 interacted with PI3K and that DKK1 bind-
ing resulted in the activation of Akt signalling and increased
the proliferation of the cancer cells (Figure 2C). Disrupting
DKK1–CKAP4 signalling with either a shRNA-targeting
DKK1 or a CKAP4 antibody impeded tumour growth in pan-
creatic and lung xenograft models. These data suggest a
scenario in which DKK1 can signal through a Wnt receptor-
independent pathway to promote tumour growth.

DKK1 modulation of signalling
pathways in immune cells
Immune modulation has revolutionized the treatment para-
digm for cancer and delivered significant clinical benefit
(Topalian et al., 2015). With the approval of immune check-
point inhibitors, such as therapeutic antibodies targeting
cytotoxic t-lymphocyte-associated protein 4 (CTLA-4), pro-
grammed cell death 1 (PD-1) and programmed cell death
ligand 1 (PD-L1), it has become possible to harness the
immune system for an anti-tumour response. However, only
a subset of patients responds to these therapies, and many
novel immune mediated strategies are being pursued to
overcome this limitation. For example, the presence of
myeloid-derived suppressor cells (MDSCs) in the tumour
micro-environment is associated with a poor prognosis, and
blocking the function of these cells may have therapeutic
benefits (Draghiciu et al., 2015). Recently, DKK1 was shown
to signal to MDSCs through the inhibition of β-catenin-
dependent Wnt signalling and thereby promote tumour
growth in murine syngeneic models (D’Amico et al., 2016).
An anti-DKK1 antibody resulted in tumour regression and
a shift in the tumour micro-environment from anti-
inflammatory to pro-inflammatory, suggesting that the anti-
DKK1 antibody was having immune modulatory activity. This
was supported by linking DKK1 to MDSC immunosuppressive
activities, such as the production of ROS and suppression of
T-cell proliferation. Interestingly, the primary source of DKK1
was not from the tumour, but rather from bone, suggesting
that high levels of DKK1 in tumours may not necessarily be a
prerequisite for efficacy from a DKK1-targeted therapy. Mecha-
nistically, this study gives a clear example of DKK1 signalling to
immune cells and the benefit of blocking DKK1 in order to
promote an anti-tumour immune response.

DKK1 may also contribute to an immunosuppressive tu-
mour micro-environment by modulating signalling in addi-
tional immune cells besides MDSCs. DKK1 from activated
platelets signalled to CD4+ T-cells and promoted a patho-
genic CD4+ T-helper 2 response as a result of environmental
challenges (Chae et al., 2016). Intriguingly, this may not oc-
cur through β-catenin-dependent Wnt signalling. Even
though this study was not conducted in a cancer model,
DKK1 antagonized T-helper 1 polarization and suppressed

the secretion of the pro-inflammatory cytokine interferon γ,
which are both cellular events that are usually not favourable
for an anti-tumour immune response (Fridman et al., 2012).
Given these clinical implications, it will be important to elu-
cidate whether DKK1 signals to CD4+ T-cells and additional
immune cells in the tumour micro-environment and the ex-
tent this contributes to immunosuppression.

A model for DKK1 cancer-promoting
activity and clinical implications
DKK1 has diverse functional consequences on cancer and im-
mune cells that contribute to cancer progression. Here, we
propose a model highlighting the multitude of potential
mechanisms involving DKK1 (Figure 3). DKK1 from the tu-
mour or a host tissue source, such as bone, signals to both tu-
mour cells and immune cells to promote tumour growth. The
modulation of Wnt signalling in immune cells by DKK1 re-
sults in an immunosuppressive tumour micro-environment.
In addition, DKK1 regulation of Wnt signalling and
PI3K/Akt signalling in cancer cells contributes to tumour
growth and immune evasion and may favour a cancer stem
cell phenotype.

Even thoughDKK1 can clearly promote tumour growth, it
has also been hypothesized to function as a tumour suppres-
sor by inhibiting β-catenin-dependent Wnt signalling in can-
cer cells. This apparent paradox can be explained in part by
the diverse functional outcomes of Wnt signalling and thus
DKK1, which can vary depending on cancer types. Here, we

Figure 3
Model for DKK1 cancer-promoting activity. DKK1 signals to tumour
cells and immune cells, resulting in an immunosuppressive tumour
micro-environment, tumour growth, metastasis, a cancer stem cell
(CSC) phenotype and immune evasion.
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propose three non-mutually exclusive mechanistic models to
reconcile how DKK1, an inhibitor of β-catenin-dependent
Wnt signalling, can have tumour promoting activity. (i)
Depending on the Wnt signalling wiring in a cancer cell, in-
hibition of β-catenin-dependent Wnt signalling is not neces-
sarily tumour suppressive. As discussed earlier, DKK1 and its
inhibition of β-catenin-dependent Wnt signalling favoured
an undifferentiated phenotype in osteosarcoma and the
tumour-initiating ability of LCC cells. (ii) The characteriza-
tion of DKK1 as only an inhibitor of β-catenin-dependent
Wnt signalling in cancer cells is an oversimplification. It is
important to consider other potential regulatory outcomes
of DKK1. For example, DKK1 activation of β-catenin-
independent Wnt signalling and/or PI3K/Akt signalling in
cancer cells or DKK1 signalling to immune cells may out-
weigh any tumour-suppressive activity of DKK1 inhibition
of β-catenin-dependent Wnt signalling in cancer cells. (iii)
In some tumours, β-catenin-dependent Wnt signalling is
constitutively activated downstream of DKK1. In this con-
text, it can be hypothesized that DKK1 is unable to inhibit
β-catenin-dependent Wnt signalling, thereby eradicating its
potential tumour suppressor activity. Further mechanistic
insights are crucial for understanding the cancer-promoting
activities of DKK1 and deciding which indications are most
likely to respond to DKK1-targeted therapies.

Two anti-DKK1 neutralizing antibodies have been or are
currently being evaluated clinically for potential use in on-
cology (Lu et al., 2016). BHQ880, an antibody developed by
Novartis Pharmaceuticals, has completed phase 1B trials in
multiple myeloma (NCT00741377, NCT01337752 and
NCT01302886). Published data indicate that BHQ880 is well
tolerated, and some clinical benefit was observed when it was
given in combination with zoledronic acid and anti-
myeloma therapies (Iyer et al., 2014). Leap Therapeutics is
developing DKN-01, a humanized anti-DKK1 monoclonal
antibody. An initial dose finding study (NCT01457417) in
patients with advanced malignancies demonstrated that
DKN-01 monotherapy was well tolerated, and clinical activ-
ity in patients with refractory non-small cell lung cancer
was observed (Edenfield et al., 2014). Currently, DKN-01 is
being evaluated in phase 1B trials for advanced cholangio-
carcinoma and relapsed/refractory oesophageal/gastro-
oesophageal junction and gastric cancer in combination
with standard of care chemotherapy (NCT02375880 and
NCT02013154). Preliminary data indicate promising clinical
activity in both diseases, and DKN-01 continues to be well
tolerated (Eads et al., 2016; Ryan et al., 2016). Based on
these results and the increasing understanding of DKK1 tu-
mour promoting activity, further clinical development is
warranted.

Wnt signalling is exceedingly complex, and the role of
DKK1 in modulating this pathway and additional signalling
pathways in both cancer and immune cells to promote tu-
mour growth and metastasis has not been fully elucidated.
Even given the complexity, we believe that DKK1 is a prom-
ising oncology target for the following reasons. (i) Prelimi-
nary clinical data with anti-DKK1 therapeutic antibodies
are encouraging, demonstrating a good safety profile and
potential benefit when used as a monotherapy or in combi-
nation. (ii) For many cancers, elevated tumour levels of
DKK1 correlated with a poor prognosis. (iii) Emerging

evidence suggests that DKK1 signals to both tumour and
immune cells to promote cancer. Therefore, a DKK1-
neutralizing therapy could have the benefit of both a direct
anti-tumour effect and the stimulation of a pro-
inflammatory anti-tumour response. (iv) DKK1 does not ap-
pear to be widely expressed in adult tissues, suggesting that
on target toxicity from a DKK1-directed therapy would be
limited, possibly avoiding or ameliorating the immune-
mediated adverse events observed with approved check-
point inhibitors.

Concluding remarks
Wnt signalling is a fundamental pathway involved in devel-
opment and adult tissue homeostasis. It is frequently dysreg-
ulated in oncology, and multiple therapeutics are currently in
preclinical and clinical development. DKK1 is an attractive
therapeutic target for oncology given its potential for broad
clinical applicability. Elevated levels of DKK1 are detected in
the serum and tumours of many cancer patients, spanning a
wide range of malignancies and frequently correlate with a
poor prognosis. Preclinically blocking DKK1 activity de-
creases proliferation, migration and invasion in cancer cell
lines and has efficacy in multiple mouse tumour models.
Clinically, anti-DKK1 neutralizing antibodies have shown
promise and are well tolerated. Although the mechanisms
of action of DKK1 are not fully characterized, it is becoming
increasingly apparent that it can modulate signalling path-
ways on both cancer and immune cells to promote tumour
growth and metastasis. Current and future clinical trials will
address the promise of therapeutically targeting DKK1 for
oncology.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Southan
et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (Alexander et al.,
2015a,b,c).
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