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Emerging functions and clinical applications 
of exosomes in human oral diseases
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Abstract 

Exosomes are cell‑derived membranous vesicles of endosomal origin secreted by all type of cells and present in 
various body fluids. Exosomes are enriched in peptides, lipids, and nucleic acids, emerging as vital modulators in 
intercellular communication. Exosomes are increasingly being evaluated as biomarkers for diagnosis and prognosis of 
diseases, because the constituents of exosomes could be reprogrammed depending on the states of diseases. These 
features also make exosomes a research hotspot in oral diseases in recent years. In this review, we outlined the charac‑
teristics of exosomes, focused on the differential expressions and altered biological functions of exosomes in oral dis‑
eases, including oral squamous cell carcinoma, oral leukoplakia, periodontitis, primary Sjögren’s syndrome, oral lichen 
planus, as well as hand foot and mouth disease. Besides, accumulated evidence documents that it is implementable 
to consider the natural nanostructured exosomes as a new strategy for disease treatment. Herein, we highlighted the 
therapeutic potential of exosomes in oral tissue regeneration, oncotherapy, wound healing, and their superiority as 
therapeutic drug delivery vehicles.
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Background
It has been more than 30 years since exosomes were first 
described as small vesicles which were generated dur-
ing the process of reticulocyte maturation and mediated 
the selective externalization and removal of transferrin 
receptor from the erythrocyte [1]. Exosomes have a char-
acteristic lipid bilayer with an average thickness of about 
5  nm and a cup-shaped morphology, appearing as flat-
tened spheres with diameters ranging from 30 to 150 nm 
[2] (Fig. 1a). Exosomes are derived from almost all types 
of cells and present in various biological fluids, such as 
plasma, serum, saliva, urine and human milk [1, 3–5]. In 
recent years, exosomes represent a new signaling para-
digm to mediate intercellular communication because of 

their capacity to exchange components, including pro-
teins, nucleic acids, and lipids [6, 7] (Fig. 1b).

The critical involvement of exosomes in different types 
of diseases may clarify the potential mechanisms of path-
ological processes. At present, tumor-derived exosomes 
are of most interest, because of their promotion in tumor 
proliferation, migration and invasion ability, and their 
contribution to immune suppression in tumor microen-
vironment [8, 9]. In addition, exosomes are reported to 
play a role in regulating inflammatory and immune dis-
eases, such as rheumatoid arthritis, Sjogren’s syndrome 
and systemic lupus erythematosus [10]. It was reported 
that TNF-α+ exosomes promoted the T cell mediated 
pathogenesis of rheumatoid arthritis by inhibiting T cell-
activation induced death [11]. Meanwhile, other studies 
focus on the potentially clinical applications of exosomes 
in tissue regeneration, targeted therapy, artificial exo-
some mimetics, or as biomarkers [12, 13]. For exam-
ple, the combination of exosomes from human adipose 
stem cells and polydopamine-coating PLGA scaffold 
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successfully accelerated the restoration of critical-sized 
mouse calvarial defects [14]. Zheng et al. found that pro-
teasome subunit alpha type 7 (PSMA7) was remarkably 
higher in patients with inflammatory bowel disease (IBD) 
than healthy controls, which indicated that exosomal 
PSMA7 may be a biomarker for IBD diagnosis, therefore 
releasing patients from the pain of colonoscopy [15].

Recent studies have revealed the multifaceted roles of 
exosomes in oral diseases. Oral cancer-derived exosomes 
exacerbated the malignancy of cancers [16–19]. Li 
et  al. proved the hypoxic oral squamous cell carcinoma 
(OSCC) cells secreted miR-21-rich exosomes in a HIF-
dependent manner [20]. Increased exosomal miR-21 
markedly enhanced the expression of snail and vimen-
tin, but decreased E-cadherin level in OSCC cells, which 
ultimately contributed to the migration and invasion 
of OSCC cells [20]. Exosomes were also a kind of mes-
sage transmitter that transmitted signals between tumor 
cells and other type cells. Exosomal miR-29a-3p from 
OSCC cells promoted M2-type macrophages polariza-
tion, and such macrophages enhanced the proliferation 
and migration of OSCC cells [21]. The ubiquitous exist-
ence of exosomes in human body fluids makes exosomal 
composition promising biomarkers for real-time moni-
toring in clinical application. In our previous work, cir-
culating exosomal miRNAs were identified differentially 
expressed in oral lichen planus (OLP) patients. Espe-
cially, the increased expression of circulating exosomal 

miR-34a-5p in OLP was positively correlated with the 
disease severity [22]. Of importance, in regenerative 
medicine, exosomes derived from oral mesenchymal 
stem cells (MSCs) were able to regenerate oral tissues 
such as dental pulp and periodontal tissues [23–26].

Based on the current knowledge, we describe the 
mechanisms of exosomes formation and signal trans-
mission, and summarize the latest studies on the roles of 
exosomes in different oral diseases. Moreover, we empha-
size the potentially clinical applications of exosomes on 
oral tissue regeneration, oncotherapy, wound healing, 
and as therapeutic drug vehicles for oral diseases.

Characterization of exosomes
Exosomes originate from an endocytic compartment. 
Originally, early endosome is formed by inward budding 
of plasma membrane. During maturation of early endo-
some, the inward budding of limited areas of the endo-
somal membrane to form intraluminal vesicles (ILVs) 
produces multivesicular bodies (MVBs), also known as 
late endosomes [27]. During the inwarding process of 
ILVs, many cytoplasmic components are encapsulated. 
Two fates have been identified for MVBs: some of them 
deliver to lysosomes or autophasome for degradation, 
while others fuse with the plasma membrane. In the 
former process, MVBs directly fuse with lysosomes to 
form autolysosome or fuse with autophasosome to form 
amphisome, where endocytosed cargos are degraded; 

Fig. 1 Characteristics of exosomes. a electron microscopic image of exosomes. Exosome showed a characteristic lipid bilayer with an average 
thickness of ∼ 5 nm and typical cup‑shaped morphology, appearing as flattened spheres with diameters ranging from 30 to 100 nm. b Main 
constituent of molecules included in exosomes. Many proteins are common among all exosomes regardless of their maternal cell types, including 
tetraspanins, flotillin, heat shock proteins (HSP70, HSP90), MHC I, GTPases (Rab, RAL) and endosome‑associated proteins (Alix, Tsg101). Exosomes 
also enrich in lipid rafts on the surface, including flotillin, LBPA, cholesterol, sphingomylein, and nucleic acids in the lumen, including DNAs (mtDNA, 
ssDNA, dsDNA), and RNAs (mRNA, miRNA, rRNA, and tRNA)
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while, in the latter process, MVBs fuse with plasma mem-
brane inducing exosome secretion [28, 29]. It is usually 
considered that exosome secretion requires formation 
of an endosomal sorting complex required for transport 
(ESCRT) machinery [22].

Evidence demonstrated that exosomes were closely 
associated with cell proliferation, apoptosis, antigen 
presentation, immune regulation, tissue regeneration 
and tumor initiation [30–32]. How exosomes transmit 
the signals into incorporating cells is still an unresolved 
question, but three potential mechanisms have been 
demonstrated (Fig.  2): (1) exosomes are endocytosed/
internalized and then fuse with the endosomal limiting 
membrane of recipient cells; (2) exosomal membranes 
directly fuse with the plasma membrane of recipi-
ent cell; (3) exosomes attach to recipient cell surface by 
receptor-ligand interaction [33, 34]. After reception, it is 
the diverse biological composition within the exosomes, 
including proteins, lipids and nucleic acid that functions 
in exosomes mediate intercellular signaling transmission, 
which play key roles in maintaining homeostasis and reg-
ulating the physiopathological processes [35, 36].

Exosomes in oral diseases
Exosomes in oral squamous cell carcinoma
Oral squamous cell carcinoma (OSCC) is the most 
common epithelial cancer of the head and neck [37, 
38]. OSCC is highly malignant and prone to local inva-
sion and cervical lymph node metastasis, causing facial 
deformity, speech and esthetic disorders and leading to 
low survival rate and poor quality of life [38].

Proteins in OSCC cell‑derived exosomes
Exosomal proteins can promote tumor development in 
both paracrine and autocrine ways. Exosomes contain-
ing EGFR from OSCC cells were capable of transforming 
normal epithelial cells into a mesenchymal phenotype in 
a paracrine fashion [17]. Hou et al. found that exosomes 
from salivary adenoid cystic carcinoma cell line SACC-83 
enhanced the migration and invasion ability of the paren-
tal SACC-83 by targeting cell junction-associated pro-
teins, including claudin-1, ZO-1, and β-catenin [16, 39].

The protein composition in OSCC cell-derived 
exosomes (OSCC-Exos) could be changed significantly 
after ionizing radiation [40, 41]. This alteration reinforced 
the exosome secretion, the survival of irradiated OSCC 

Fig. 2 Schematic representation of exosome biogenesis, release and intercellular communication. Exosomes originate from an endocytic 
compartment. Early endosome is formed by the inward budding of plasma membrane. During maturation of early endosome, the inward budding 
of limited areas of the endosomal membrane to form intraluminal vesicles (ILVs) produces multivesicular bodies (MVBs). MVBs faced two fates, 
where some of them are delivered to lysosomes or autophasome for degradation, while others fuse with the plasma membrane inducing the 
secretion of exosomes. During the inwarding process of ILVs, many cytoplasmic components are encapsulated, such as proteins, lipids and nucleic 
materials, which makes them represent a new signaling paradigm to interfere cell‑to‑cell communication. Moreover, this intercellular signal 
transmission might be mediated through three pathways, including endocytosis/internalizatioin, direct membrane fusion, or receptor‑ligand 
interaction
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cells, and the proliferation of non-irradiated OSCC cells, 
because exosomes were able to repair the broken DNA-
double strand [40]. Furthermore, differential expression 
patterns of protein in OSCC-Exos probably reflected 
the states of disease. Ono et  al. revealed that exosomes 
secreted by metastatic phenotype of OSCC cells com-
prised larger amount of oncogenic proteins, including 
EpCAM, EGFR, and HSP90 than their parental OSCC 
cells. In addition, highly expressed HSP90, TRAP1 and 
HSP105 were correlated with poor prognosis of OSCC 
and thus could be potential prognostic biomarkers for 
OSCC [42].

Moreover, OSCC-Exos internalized by NK cells could 
up-regulated the expression of interferon regulatory fac-
tor 3 (IRF-3) and its phosphorylation by releasing NF-κB-
activating kinase-associated protein 1 into NK cells [43]. 
Overexpressed IRF-3 drove NK cells to express type I 
interferon, chemokine and costimulatory molecules, 
hence enhancing their tumor-suppressing functions, 
including cell proliferation, release of perforin and gran-
zyme M, and cytotoxicity toward tumor cells [43].

MiRNAs in OSCC cell‑derived exosomes
Hypoxia is a common feature of OSCC and associated 
with aggressiveness and poor outcomes [44]. Li et  al. 
found that exosomes purified from supernatants of 
hypoxic OSCC cell lines SCC-9 and CAL-27 significantly 
overexpressed miR-21 in a HIF-1a and HIF-2a–depend-
ent manner, which promoted the migration and invasion 
of OSCC cells in  vitro and induced tumor growth and 
metastasis in xenograft mice model [20]. Interestingly, 
exosomes derived from cisplatin-resistant OSCC cells 
could transfer miR-21 into their OSCC parental cells 
[18]. This transference of miR-21 exerted an enhance-
ment effect on chemoresistance and decreased the DNA 
damage signaling in response to cisplatin by targeting 
phosphatase and tensin homolog and programmed cell 
death 4 [18]. Therefore, hypoxia and cisplatin treatment 
may simultaneously stimulate tumor cells to generate 
miR-21-rich exosomes, which in turn reinforce the pro-
metastatic behaviors and the resistance to chemotherapy, 
respectively.

Sakha et  al. identified that exosomes secreted from 
highly metastatic human oral cancer cell line HOC313-
LM (HOC313-LM-Exo) could induce cell growth via 
activating the ERK and AKT pathways. HOC313-LM-
Exo expressed highly amount of miR-342–3p and miR-
1246, enhancing the cell motility of its parental cell line 
HOC313 and the establishment of the metastatic niche 
by communication between cancer cells and normal cells. 
Exosomal miR-1246, in particular, was significantly asso-
ciated with the malignancy by directly targeting DENN/
MADD Domain Containing 2D [19].

OSCC cell-derived exosomal miRNAs can exacerbate 
the severity of disease not only by functioning on the 
OSCC cells itself, but also by boosting the M2-polariza-
tion of macrophages. Macrophages are documented to 
play critical roles in the tumor microenvironment. With 
the induction of tumor cells they can differentiate into 
tumor-associated macrophages (TAM), which is simi-
lar to M2-like phenotype polarization, showing great 
diversity and plasticity [45]. We have previously identi-
fied that the expression of  CD163+ macrophages (M2 
macrophages) was higher in oral leukoplakia (OLK) and 
OSCC than that in normal oral mucosa [46, 47]. Oth-
ers also proved a marked positive correlation between 
the increased  CD163+ macrophages and the pathologi-
cal grade of OSCC [48], supporting the importance of 
M2 macrophages in the progression of OLK and OSCC. 
Recently, a report found the positive participation of 
OSCC-Exos in M2-subtype macrophages polariza-
tion [21]. This M2 polarization was induced by highly-
expressed miR-29a-3p in OSCC-Exos, which negatively 
regulated the activity of SOCS1/STAT6 signaling path-
way, aggravating the proliferation and invasion of SCC9 
and CAL-27 [21].

Carcinoma associated‑fibroblast‑derived exosomes
Carcinoma associated-fibroblasts (CAFs) are a highly 
enriched cellular stromal component of many solid 
tumors [49, 50]. By secreting diverse cytokines, growth 
factors and chemokines, CAFs enhanced the drug-resist-
ance acquisition, induced the EMT, and contributed to 
the progression, invasion, metastasis, and angiogenesis 
of cancer cells [51]. Recently, extracellular vesicles were 
reported to play a central role in the crosstalk between 
tumor cells and CAFs [52–55].

Jiang et  al. showed that normal human gingival fibro-
blasts exhibited a phenotype switch to CAFs after co-
culture with CAL-27-derived microvesicles [55]. The 
microvesicle-activated CAFs in turn promoted the migra-
tion and invasion of OSCC cells via producing more lac-
tate [55]. In addition, exosomal miR-155 derived from 
melanoma cells upregulated the expression of proangio-
genic factors, such as VEGF, FGF2, MMP9, in CAFs by 
targeting SOCS1/JAK2/STAT3 signaling pathway, which 
resulted in the increase of melanoma angiogenesis [56].

On the other hand, CAF-derived exosomes modi-
fied the metabolic reprogramming of cancer cells, and 
upregulated the expression of invasion-associated genes, 
such as ROCK2, FLOT1 and FAM129B [54]. Li et  al. 
found that the expression of miR-34a-5p in CAF-derived 
exosomes was significantly reduced, while overexpres-
sion of exosomal miR-34a-5p could inhibit the tumo-
rigenesis of OSCC [53]. After binding with its direct 
downstream target AXL, miR-34a-5p strengthened 
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OSCC malignancy through directly targeting the AKT/
GSK-3β/β-catenin/Snail signaling pathway [53]. Besides, 
Languino et  al. proved that, in OSCC, CAF-derived 
exosomes could stimulate the TGF-β signaling pathway 
in keratinocytes by exosomal TβRII [52], which enhanced 
the possibility that TGF-β signaling might be influenced 
by intercellular communication between tumor and the 
microenvironment.

Body fluids‑derived exosomes in OSCC
Liquid biopsy has been extensively investigated in recent 
years because of obvious advantages, such as its minimal 
invasiveness, painlessness, inexpensiveness, and repeata-
bility [57]. Since biological cargos of exosomes from vari-
ous physiological fluids changed greatly depending on 
different stages and types of diseases, it is of great poten-
tial to exploit exosomal cargos as biomarkers in the field 
of liquid biopsy.

Salivary exosomes in OSCC
Zlotogorski-Hurvitz et  al. identified that the size and 
concentration of OSCC-Exos from oral fluid were larger 
and higher than that of healthy individuals and the 
expression of CD81 was significantly lower in OSCC [58]. 
Gai et al. revealed an upregulation of miR-412-3p, miR-
512-3p, miR-27a-3p, miR-373-3p and miR-494-3p in sali-
vary exosomes from OSCC patients [59]; furthermore, 
miR-302b-3p and miR-517b-3p were expressed specifi-
cally only in samples from OSCC group [59].

In addition, proteome analysis showed that salivary 
exosomes isolated from OSCC patients were enriched in 
proteins related to the inflammatory system, transport 
of metals, as well as cellular growth and proliferation 
[60]. These functional biomolecules within the salivary 
exosomes were able to induce inflammatory cells migrate 
to the tumor sites through chemotactic mechanisms, 
which may be important in the subsequent immunoedit-
ing of inflammatory cells [60].

Fourier-transform infrared (FTIR)-based spectrum of 
salivary exosomes could differentiate OSCC from healthy 
individuals with a sensitivity of 100% and specificity of 
89%, displaying a specific mid-infrared spectral signa-
ture for OC salivary exosomes [61]. This difference was 
caused by the subtle changes of exosomal proteins, lipids 
and nucleic acids in salivary from patients with OSCC 
[61].

Circulating exosomes in OSCC
It was reported that plasma exosomes from OSCC 
exerted suppressive effects on immune system by down-
regulating the expression of NKG2D in NK cells [62]. 
In patients with active disease, plasma exosomes were 
more effective to establish an immune suppressive 

microenvironment by increasing the apoptosis of  CD8+ 
T cells, inhibiting the proliferation of  CD4+ T cells, and 
promoting the production of Treg cells [62]. These find-
ings indicated that circulating exosomes from OSCC may 
contribute to the development of OSCC by suppressing 
the anti-cancer effects of NK cells and T cells.

In addition to affecting the anti-cancer immunity, cir-
culating exosomes also displayed a tight connection with 
OSCC status. Compared to plasma free miRNAs, the 
expression profiles of plasma exosomal miRNAs from 
tongue SCC patients more resembled the tumor tis-
sues [63]. Similarly, the level of PD-L1 carried by plasma 
exosomes instead of soluble PD-L1 level was correlated 
with disease severity, the UICC stage and the lymph 
node status [64]. Moreover, Wang et  al. have identified 
a higher expression of laminin-332 in plasma exosomes 
from OSCC patients with lymph node metastasis [65]. Li 
et al. found that serum exosomal miR-21 level was closely 
associated with HIF-1a/HIF-2a expression, T stage, and 
lymph node metastasis [20]. Therefore, cargos in circu-
lating exosomes were of potentiality to be used as novel 
diagnostic biomarkers for the surveillance of tumor con-
ditions and lymph node metastasis in OSCC.

Exosomes in oral leukoplakia
Oral leukoplakia (OLK) refers to a white patch or plaque 
of the oral mucosa that cannot be defined as a known dis-
ease or disorder and carries an increased risk of progress-
ing to OSCC [66]. OLK is one of the most common oral 
premalignant disorders (OPMD) with  malignant  trans-
formation rates of 2% to 5% [67].

A newly published study reported that exosomal miR-
8485 secreted by MSCs derived from OLK with dysplasia 
played a promoting role in the proliferation, migration 
and invasion of DOK and SCC-15 cell lines [68]. Another 
research demonstrated that in hamster OPMD model, 
bone marrow-MSCs-derived extracellular vesicles with 
genetically modified overexpression of miR-185 (MSC-
EV-miR-185) were capable of remarkably attenuating 
inflammation severity and decreasing degree of dysplasia 
in the OPMD tissue [69].The MSC-EV-miR-185 treat-
ment obviously reduced the expression of prolifera-
tion marker PCNA and angiogenic marker CD31, and 
induced cell apoptosis in the buccal lesions, indicating 
their potential value as a novel therapeutic option for 
OPMD [69].

Exosomes in periodontitis
Periodontitis is a chronic multifactorial inflammatory 
disease of supporting tooth structures initiated by dysbi-
otic plaque biofilms [70, 71]. It is primarily characterized 
by the loss of periodontal tissue support including clini-
cal attachment loss, alveolar bone destruction, presence 
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of periodontal pocketing and gingival bleeding, irre-
versibly impairing the integrity of the periodontium and 
finally leading to tooth loss [72, 73].

Periodontal ligament fibroblasts (PDLFs) are the main 
cell populations that contact pathogenic microorganisms 
in early periodontal inflammation [74]. After lipopolysac-
charide (LPS) stimuli, human PDLF-derived exosomes 
slightly upregulated the expression of IL-6 and TNF-α in 
osteoblasts, and concomitantly significantly inhibited the 
expression of osteogenesis-related elememts, including 
collagen-I and osteoprotegerin, and reduced the activity 
of alkaline phosphatase [75]. PDLFs also engage in the 
maintenance of periodontal tissue homeostasis in the 
oral mechanical environment [76]. Stimulated with cyclic 
stretch,  PDLFs secreted exosomes that could suppress 
IL-1β production in LPS-treated macrophages through 
the inhibition of NF-κB signaling pathway [77].

Periodontal ligament stem cells (PDLSCs) is a unique 
MSC population that displays self-renewal ability and 
multipotency when interacts with their surrounding 
inflammatory microenvironment [78]. Compared with 
exosomes extracted from normal PDLSCs, exosomes 
derived from LPS-stimulated PDLSCs contained a higher 
amount of miR‐155 and its downstream target Sirtuin‐1, 
which reduced the expression of Th17 but increased the 
expression of Treg, thereby alleviating the inflammation 
through the Th17/Treg/miR‐155‐5p/Sirtuin‐1 regulatory 
network [79].

In salivary, the level of exosomal PD-L1 mRNA 
was  higher in periodontitis than controls, and high 
expressions of PD-L1 were associated with advanced 
stages of periodontitis [80]. On the contrary, the level of 
salivary CD9 and CD81 exosomes was  reduced in peri-
odontitis and negatively correlated with disease status 
[79, 81].

Exosomes in primary Sjögren’s syndrome
Primary Sjögren’s syndrome (pSS) is a chronic autoim-
mune disorder characterized by focal lymphocytic infil-
tration of the exocrine glands, such as salivary gland and 
lacrimal gland, mostly leading to dry eyes and dry mouth 
[82, 83]. Although the exact etiology and pathogens 
still remain unclear, evidence imply the critical role of 
exosomes in the dysregulation of immune system in pSS.

In pSS, salivary gland epithelial cells (SGECs), one 
main source to secrete autoantigens such as Ro/SSA and 
La/SSB, played a pivotal role in the initiation and pro-
gression of pSS in the local immune response [84, 85]. 
Recently, SGECs was reported to secreted exosomes that 
were highly contained autoantigens of Ro/SSA, La/SSB 
and Sm, demonstrating a novel mechanism of autoan-
tigen presentation causing the autoimmune response 
[86]. In addition, Aqrawi et al. identified novel potential 

biomarkers of APMAP, GNA13, WDR1 in saliva-derived 
exosomes and APEX1, PRDX3, CPNE1 in tear-derived 
exosomes from pSS that may be used as an additional 
diagnostic process to increase diagnostic accuracy [87].

Epstein–Barr virus (EBV) was considered as another 
important factor contributing to the pathogenesis of pSS 
because of its tropism for salivary glands and the ability 
to preferentially infect B cells [88]. Gallo et  al. showed 
that exosomal ebv-miR-BART13-3p derived from EBV-
infected B cells was functionally transferred into SGECs 
[89]. The exosomal ebv-miR-BART13-3p directly tar-
geted stromal interacting molecule 1 (STM1) in SGECs, 
and then resulted in loss of store operated  Ca2+ entry and 
 Ca2+-dependent activation of nuclear factor of activated 
T cells, leading to the salivary dysfunction in pSS [89].

Exosomes in oral lichen planus
Oral lichen planus (OLP) is a common inflammatory 
autoimmune disease involving oral mucosa with unclari-
fied etiology [90]. Clinically, OLP usually presents as 
symmetrical, bilateral or multiple lesions with 6 differ-
ent clinic patterns of reticular, papular, plaque, erosive, 
bullous, and atrophic [91]. Pathogenesis of OLP has not 
been completely elucidated yet. However, T cell-medi-
ated antigen-specific mechanism was found to play a 
key role in the pathogenesis of OLP, which leaded to the 
disruption of basement membrane by inducing the apop-
tosis of keratinocytes [92].

Recent studies indicated that the aberrant expression of 
exosomal miRNAs might participate in the development 
of OLP. J-S Byun et al. reported that exosomal miR-4484 
from salivary was increased in patients with OLP [93]. 
Our group showed that plasma-derived exosomal miR-
34a-5p and miR-130b-3p were significantly upregulated 
while exosomal miR-301b-3p was downregulated in OLP, 
and a positive correlation was found between expression 
of exosomal miR-34a-5p and the severity of OLP [22]. 
We also found that circulating exosomes from OLP, espe-
cially the erosive type, could significantly enhance T cell 
proliferation and attenuate the apoptosis, and remarkably 
increase the migration capacity of T cells as well as the 
ratio of IFN-γ/IL-4, potentially accelerating the OLP pro-
gression by regulating the T cell-mediated inflammatory 
response [94].

Exosomes in hand, foot and mouth disease
Hand, foot, and mouth disease (HFMD) is a worldwide 
epidemic acute viral illness, in which two major causa-
tive agents human enterovirus 71 (EV71) and coxsacki-
evirus A16 (CVA16) account for more than 70% of cases 
in recent outbreaks [95, 96]. The extremely severe HFMD 
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(ESHFMD) mainly caused by EV71 has severe neurologic 
clinical symptoms and significant fatalities [97].

Jia et  al. validated three significantly differential 
expressed serum exosomal miRNAs (miR-671-5p, miR-
16-5p and miR-150-5p) between children with HFMD 
and healthy controls, where exosomal miR-671-5p and 
miR-150-5p were decreased while exosomal miR-16-5p 
was increased in patients with a specificity of 72–100% 
and sensitivity of 78–100% [98]. In addition, significant 
difference was also identified among the three exosomal 
miRNAs between mild HFMD and ESHFMD, where 
miR-671-5p was only detectable in healthy and mild 
HFMD, providing supplemental biomarkers for subtyp-
ing HFMD infections [98] (Table 1).

Present and future prospects of exosomes on oral 
treatments
Therapeutic potential of mesenchymal stem cell‑derived 
exosomes
Mesenchymal stem cells (MSCs) are progenitor cells 
with differential potential and self-renewable capacity 
[99], originally isolated from bone marrow and subse-
quently from other tissues [100]. In addition to the well-
known bone marrow-derived MSCs (BM-MSCs) and 
adipose-derived stem cells (ADSCs), in the field of dental 
research, several types of dental stem cells isolated from 
mature and immature teeth, such as dental pulp stem 
cells (DP-MSCs), stem cells derived from dental pulp of 
human exfoliated deciduous teeth (SHEDs) and perio-
dontal ligament stem cells (PDLSCs), are attracting more 
and more attention [99].

Notably, in the latest studies, MSCs-derived exosomes 
are increasingly recognized as promising strategies to 
alleviate tissue injury and promote tissue regeneration in 
dental treatment, including dental pulp regeneration, oral 
oncotherapy and periodontal regeneration.

Exosomes and dental pulp regeneration
Huang et  al. showed that exosomes derived from DP-
MSCs (DP-MSCs-Exos) cultured under odontogenic 
differentiation conditions triggered dental pulp-like tis-
sue regeneration, such as increased expression of DMP1, 
DPP and active blood vessels in a tooth root-slice model 
[101]. Normally, dental pulp is highly vascularized which 
is fundamental to nutrient supply, waste removal and 
anti-inflammatory response [102]. It was reported that 
dental pulp cells-derived exosomes contributed to the 
vascularization via promoting the proliferation, pro-
angiogenic factor expression (VEGF-A, MMP-9, FGF-
2, KDR), and tube formation of human umbilical vein 
endothelial cells [103].

In addition, the tooth development was modulated by 
interaction between the epithelial cells and mesenchymal 

cells, and exosomes was critical in this process. Exosomes 
derived from epithelial cells promote mesenchymal cells 
to produce dentin sialoprotein and undergo minerali-
zation while exosomes secreted by mesenchymal cells 
escalated the expression of basement membrane compo-
nents, ameloblastin and amelogenenin in epithelial cells 
[104]. Moreover, it is worth noting that schwann cells, the 
principal glial cells in peripheral nervous system, played 
an important immunomodulatory role in dentin repair. 
Exosomes from schwann cells accelerated the prolif-
eration and matained the multipotency and self-renewal 
capacities of dental pulp cells through upregulation 
of Oct4, Sox2 and Nanog, providing great application 
potential in tissue regeneration [105].

To be brief, exosomes may lead to dental pulp regen-
eration via increasing the expression of specific proteins, 
promoting the vascularization, modulating the interac-
tion between epithelial and mesenchymal cells, and aug-
menting the abilities of dental pulp cells, which might 
serve as an important therapeutic method in the future.

Exosomes and oncotherapy
In 2016, Altanerova et  al. demonstrated that DP-MSC-
Exos may inhibit tumor through its dual tumor cell killing 
activity. For one thing, exosomes released from DP-MSCs 
that transduced with yCD::UPRT mRNA (yCD::UPRT-
DP-MSCs-Exos), a suicide gene, could be internalized 
by tumor cells and allow tumor cells to translate non-
toxic 5-FC to toxic 5-FU, leading to cancer cell death in 
a dose-dependent manner in the presence of a prodrug 
5-fluorocytosine [24]. For another, the yCD::UPRT-DP-
MSCs-Exos labeled with iron oxide (Venofer) behaved 
as magnetic nanoparticles, which were more effective at 
inducing tumor cell death by alternating magnetic field-
induced intracellular hyperthermia and/or by exposure to 
the prodrug 5-FC [24, 67]. Moreover, exosomes derived 
from menstrual mesenchymal stem cells (MenSC-Exos) 
exerted an antitumor effect by decreasing the angiogen-
esis in OSCC model [106].

Besides, exosomes derived from SHEDs (SHEDs-
Exos) displayed potent anti-inflammatory properties by 
suppressing edema, cathepsin B and MMPs induced by 
carrageenan in mice [107]. Under oxidative stress condi-
tions, SHEDs-Exos was reported to show neuroprotec-
tive abilities via inhibiting the apoptosis of dopaminergic 
neurons [108].

Exosomes and periodontal regeneration
It was found that MSCs mediated periodontal regen-
eration through secretion of exosomes. In rats with peri-
odontal intrabony deficiencies, collagen sponges that 
contained human MSCs-Exos could more efficiently 
repair the defects than control rats with newly-formed 
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bone and PDL, and concomitantly lead to the prolif-
eration of  PCNA+ cells [25]. The followed experiments 
performed in PDL cells proved that, human MSCs-Exos 
could be rapidly taken up by PDL cells and promoted the 
migration and proliferation of PDL cells through CD73-
mediated adenosine receptor activation of AKT and ERK 
signaling pathways [25]. Researchers also observed that 
exosomes secreted by adipose-derived stem cells (ASCs-
Exos), exerted a better therapeutic effect on ligature-
induced periodontitis compared to ADSCs themselves, 
which manifested as a higher area of newly formed tis-
sues [109].

Wound healing efficiency of exosomes
The oral mucosa displays unique regenerative proper-
ties such as foetal-like wound healing and antibacterial 
properties [110, 111]. On contrary to the “reparation” 
of skin wounds that heal with scar, the “regeneration” of 
wounds in the oral mucosa tends to heal without scar 
[112]. Therefore, sheets of oral mucosal epithelial cells 
(OMECs) are currently used after endoscopic removal of 
superficial tumours in the esophagus to alleviate esopha-
geal stricture and improve mucosal healing.

The latest research showed that, exosomes isolated 
from conditioned media of human OMECs sheets exhib-
ited pro-regenerative effects on skin wound healing [26]. 
These exosomes attenuated the proliferation of human 
skin fibroblasts in a dose-dependent manner and con-
siderably increase the gene expression of growth factor 
HGF, VEGFA, FGF2 and CTGF in vivo, and significantly 
reduced the wound size in rat models in vitro [26]. These 
findings revealed the clinical application potential of 
combining cell sheets with exosomes in the future treat-
ment of patients with early esophageal cancer.

Application of exosomes as therapeutic drug 
delivery vehicles
Although chemotherapy have already exhibited excel-
lent therapeutic effects on OSCC treatment at present, it 
often shows severe side effects. In recent years, nanodrug 
delivery system have emerged as a key advance in can-
cer treatment for its multiple advantages than traditional 
drugs, including diminished drug degradation, increased 
targeting efficiency and prolonged drug release [113]. 
Notably, exosomes derived from different cells with spe-
cific cell tropism and enhanced ability to target specific 
tissues or organs are newly recognized natural nanocarri-
ers [114, 115]. Besides, it seems more easier for exosomes 
to escape phagocytosis by the mononuclear phagocyte 
system than the synthetic nanodrugs, making them func-
tion as an “invisibility cloak” for incorporated therapeutic 
agents [116].

Signal regulatory protein α (SIRPα), a cell-surface pro-
tein mainly expressed on macrophages and dendritic 
cells, could bind to CD47 [117]. In our previous study, 
we identified that CD47 was overexpressed in OSCC 
lesions and cell lines, and the CD47-SIRP-α interaction 
inhibited the engulfment of tumor cells by macrophages 
and promoted M2 macrophages differentiation, mediat-
ing the anti-phagocytosis and immune escape of OSCC 
cells [46, 47]. Accordingly, Koh et  al. established a type 
of exosomes engineered with SIRPα variants (SIRPα-
exosomes) [118]. The SIRPα-exosomes significantly 
increased the phagocytic capacity of macrophage, attenu-
ated tumor growth. Moreover, the SIRPα-exosome based 
platform remarkably augmented T cell infiltration in syn-
geneic mouse models of cancer [118]. It is plausible to 
speculate that exosomes equipped with specific antago-
nists, an emerging strategy for nano-immuno cancer 
therapy, may be promising for tumor treatment in the 
future.

Paclitaxel, performing best to induce the apopto-
sis of OSCC cells (40–50%) in comparison with dauna-
rubicin, doxorubicin and vincristine, and exhibiting a 
highest negative correlation with multiple drug resist-
ance  (MDR)-linked gene expression, may be the best 
choice of treatment for the studied OSCC patients [119]. 
Kim et  al. showed that the incorporation of paclitaxel 
into exosomes significantly augmented paclitaxel accu-
mulation in drug-resistant lung cancer cells and was 
50 times more cytotoxic than conventional paclitaxel 
in vitro [116]. All the results imply the superior inhibition 
of exosomes carrying paclitaxel on OSCC cells and merit 
further exploration and confirmation.

Efforts to develop RNA interference therapeutic 
technology have been significantly intensified for bio-
medical application. Delivering short interfering RNA 
(siRNA) to recipient cells is an effective method to 
selectively suppress target mRNA of interest, showing 
great potential for use in disease treatment [120]. How-
ever, naked siRNA is rapidly degraded by nucleases in 
the blood circulation and might fail to pass into target 
cell membranes due to their negatively charged surface 
[121, 122]. Encapsulation of siRNAs in exosomes is 
a promising novel strategy to overcome most of these 
delivery issues. It is noteworthy that DNA damage-
related response plays a central role in maintaining 
genomic stability and cellular survival. RAD51, as a 
DNA repair gene, is involved in DNA damage response, 
cell cycle checkpoint and maintains the stability of the 
gene [123, 124]. Overexpression of RAD51 was docu-
mented in diverse human tumors, and was predicted 
significantly related to OSCC prognosis [125]. Shtam 
et  al. have successfully transfected two different siR-
NAs against RAD51 and RAD52 into exosomes [121]. 
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They proved that exosome-delivered RAD51 siRNA 
functionally inhibited RAD51 expression in tumor 
cells, induced the accumulation of cells in S and G2/M 
phases, and then caused massive reproductive cell 
death [121]. Similarly, encapsulation of RAD51 siRNA 
into exosome is of great potential to improve OSCC 
therapeutic efficiency.

Conclusions
Growing evidence suggests that exosomes act as an 
important regulator in oral diseases. Exosomes derived 
from OSCC cells and body fluids function as key pro-
moters in the angiogenesis, invasion, migration and 
metastasis of OSCC, which is a research focus all along. 
In recent years, the effects of exosomes on other oral 
diseases such as periodontitis and oral lichen planus 
are also receiving attentions, providing us with a more 
comprehensive understanding about the roles that 
exosomes play in oral diseases. Moreover, exosomes 
containing multiple biological molecules display great 
potential to be exploited to assist clinical diagnosis 
and evaluate prognosis. Exosomes-based therapies are 
promising strategies in oral tissue regeneration, cancer 
treatment, and as drug delivery vehicles in the coming 
future. However, researches are still largely limited at 
present. Future studies should not only investigate the 
biological functions and precise molecular mechanisms 
of exosomes in oral diseases, but also address the clini-
cal applications of exosomes to facilitate  the  clinical 
translation.
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