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ABSTRACT
Medical advancements in the diagnosis, surgical techniques, periop-
erative care, and continued care throughout childhood have trans-
formed the outlook for individuals with tetralogy of Fallot (TOF),
improving survival and shifting the perspective towards lifelong care.
However, with a growing population of survivors, longstanding chal-
lenges have been accentuated, and new challenges have surfaced,
necessitating a re-evaluation of TOF care. Availability of prenatal
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RÉSUMÉ
De grandes avanc�ees m�edicales touchant le diagnostic de la t�etralogie
de Fallot (TF), les techniques chirurgicales, les soins p�eriop�eratoires
ainsi que les soins continus au cours de l’enfance ont transform�e le
pronostic de cette maladie et prolong�e la survie des patients, d’où la
n�ecessit�e d’adopter une approche th�erapeutique à long terme. Compte
tenu du nombre croissant de survivants, certains d�efis prennent une
plus grande ampleur et de nouvelles difficult�es s’y ajoutent. Il convient
Tetralogy of Fallot (TOF) is a complex congenital heart dis-
ease (CHD) that has been the subject of extensive research.1

Management of these patients requires specialized expertise,
intricate diagnostic procedures, and individualized treatment
strategies to ensure optimal outcomes throughout their
lifetime. Historically, the treatment of TOF has been guided
by a combination of expert medical knowledge, clinical
experience, and technological advancements. However, the
integration of artificial intelligence (AI) applications into the
management of patients with TOF has the potential to
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diagnostics, insufficient information from traditional imaging tech-
niques, previously unforeseen medical complications, and debates
surrounding optimal timing and indications for reintervention are
among the emerging issues. To address these challenges, the inte-
gration of artificial intelligence and machine learning holds great
promise as they have the potential to revolutionize patient manage-
ment and positively impact lifelong outcomes for individuals with TOF.
Innovative applications of artificial intelligence and machine learning
have spanned across multiple domains of TOF care, including
screening and diagnosis, automated image processing and interpre-
tation, clinical risk stratification, and planning and performing cardiac
interventions. By embracing these advancements and incorporating
them into routine clinical practice, personalized medicine could be
delivered, leading to the best possible outcomes for patients. In this
review, we provide an overview of these evolving applications and
emphasize the challenges, limitations, and future potential for inte-
grating them into clinical care.

donc de r�e�evaluer les soins pour les patients atteints de TF. L’accès
limit�e au diagnostic pr�enatal, les informations fragmentaires obtenues
avec les techniques d’imagerie traditionnelles, les complications
m�edicales inattendues et les d�ebats sur les indications et le moment
appropri�e pour les interventions chirurgicales subs�equentes sont de
nouveaux enjeux. Pour y faire face, l’int�egration des outils d’intelli-
gence artificielle (IA) et d’apprentissage automatique (AA) est pro-
metteuse et pourrait r�einventer la prise en charge des patients atteints
de TF en plus d’am�eliorer leurs r�esultats à long terme. L’utilisation
innovante de l’IA et de l’AA touche de nombreux aspects des soins
offerts à ces patients, par exemple le d�epistage et le diagnostic,
l’analyse et l’interpr�etation automatiques d’images, la stratification du
risque clinique de même que la planification et la r�ealisation d’inter-
ventions cardiaques. L’adoption de ces avanc�ees technologiques et
leur int�egration dans la pratique clinique courante ouvrent la voie à
une approche de m�edecine personnalis�ee dans l’espoir d’obtenir les
meilleurs r�esultats possibles pour les patients. Notre article de syn-
thèse pr�esente ces applications en pleine �evolution et met en �evidence
leurs perspectives d’int�egration aux soins cliniques, mais aussi les
d�efis et les limites qui accompagnent cette approche.

Jacquemyn et al. 441
Impact of AI and ML Models on Patient Care in TOF
revolutionize the field, offering more precise, personalized,
and efficient care that can have a lifelong positive impact.
These applications can possibly enhance every stage of patient
care, including assisting with clinical examination and diag-
nosis, cardiac imaging, planning and management of cardiac
interventions, prognosis and risk stratification, cardiac pa-
thology, and even extending into omics and precision medi-
cine.2e6 In addition, the emergence of technologies providing
“big data”, such as whole-genome sequencing, wearables, and
telemedicine, necessitates cardiologists to effectively interpret
and use information from diverse origins.3 Consequently, AI,
with its ability to handle complex datasets, holds tremendous
promise for improving the care of these patients. Despite
recent advancements, there remains a significant underutili-
zation of AI within the clinical domain, and a recent review on
the implementation of AI in the context of CHD raised a call
to action.7 This underutilization may be attributed to several
factors, including the requisite technical expertise required for
the establishment, the lack of validation through rigorous
clinical trials, the inherent opacity of AI/machine learning
(ML) models often referred to as the “black box” criticism,
and the prevailing questions regarding data privacy in relation
to clinical applications.

The aim of the present review is to provide an overview of
AI and ML algorithms developed in the context of TOF,
including new possibilities, current and future applications,
and how these can influence patient management and out-
comes. We considered the following domains where AI/ML
could revolutionize the care of patients with TOF and will be
covered in the following sections: (1) screening and diagnosis,
(2) automated image processing and interpretation, (3) clinical
risk stratification, and (4) planning and management of car-
diac interventions. Although this review is to provide a concise
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overview of how AI in the context of TOF, it is important to
note that certain technical concepts related to AI or ML will
not be explained in detail; readers seeking a deeper under-
standing of these concepts are encouraged to consult relevant
resources available elsewhere, covering these topics
extensively.2,3,8
Screening of Patients for Tetralogy of Fallot

Prenatal screening with fetal echocardiography

TOF, like other complex forms of CHD, is often diag-
nosed prenatally. In patients with severely obstructed pul-
monary blood flow, fetal diagnosis allows for better planning
of perinatal management and facilitates timely intervention
with prostaglandin therapy to maintain ductal patency,
avoiding life-threatening cyanosis in the early newborn
period.1 Traditional prenatal CHD screening has a moderate
sensitivity between 59.6% and 75.5% and a high specificity
between 99.7% and 99.9%, respectively, resulting in a non-
negligible proportion of false-negative screening for TOF.9

False negatives for TOF screening can be due to various
reasons, including technical limitations of the screening
methods, variations in fetal anatomy and position, and the
inability to visualize specific cardiac structures adequately.10,11

In the past, prediction models using traditional statistical
methods, such as logistic regression, have been employed to
improve CHD detection rate by providing an a priori prob-
ability of diagnostic finding. One study of prenatal screening
between 19 and 36 weeks of gestation demonstrated that in a
cohort of 44 fetuses with d-transposition of the great arteries,
44 with TOF, and 200 with an anatomically normal heart, a
prediction model using multivariable regression analysis
including 10 ultrasound variables showed an increase in
detection sensitivity to 94.3% for d-transposition of the great
arteries and TOF.12 Although this is already a substantial
improvement, AI-based algorithms can integrate and use
diverse prenatal data sources, including ultrasound images,
maternal biomarkers, and genetic information, to improve
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diagnostic accuracy and provide valuable insights.13 For
example, AI/ML models can be trained on labelled ultrasound
slices from images of normal and abnormal fetal hearts and
subsequently offer real-time visualization and continuously
learn to recognize specific anatomic structures and identify
abnormal cardiac morphology.14e17 One pioneering study
presented findings from an ensemble of neural networks
trained on a dataset consisting of 107,823 images derived
from 1326 retrospective fetal echocardiograms.17 Among
these, 400 (30.2%) encompassed various forms of complex
CHD, with 83 cases specifically identified as TOF (20.8%).
The study aimed to accomplish 3 objectives: first, to identify
recommended cardiac views; second, to differentiate between
normal hearts and complex CHD cases; and third, to calculate
standard fetal cardiothoracic measurements using segmenta-
tion models on screening ultrasounds performed between 18
and 24 weeks of gestational age.17 After training, model
performance was evaluated externally using 5 independent
validation sets with different prevalences of CHD. The results
demonstrated an area under the receiver operating character-
istic curve (AUC) ranging from 0.89 to 0.99 for accurately
identifying complex CHD.17 In addition, binary classifiers
were trained for each specific view to detect TOF, with the
highest AUCs observed in the 3-vessel trachea view and the
3-vessel view (AUC of 0.98 and 0.97, respectively), reflecting
the observation that these 2 views provide the most clinically
apparent visualization of TOF.17 In contrast, the AUC values
for the left ventricular (LV) outflow tract view, axial 4-
chamber view, and abdomen view were substantially lower,
ranging between 0.69 and 0.81.17 Furthermore, the authors
demonstrated that fetal cardiothoracic biometric measure-
ments, such as cardiothoracic ratio, cardiac axis, and fractional
area change, could be accurately derived from image seg-
mentation.17 These findings demonstrate good agreement
with previously reported values, particularly in TOF, and
underscore the feasibility of detecting the digital signature of
TOF using prenatal ultrasound images.17 As such, integrating
AI/ML models can improve the detection rate significantly,
reducing the incidence of false negatives. Although initial
classification models were limited to the detection of “normal”
or “abnormal” anatomy, current AI algorithms have been
developed specifically for the detection of certain types of
CHD, primarily focusing on atrial septal defects and ven-
tricular septal defects.16 A recent study used data obtained
from 76 pregnant women (31 had fetuses with CHD and 45
controls), yielding a dataset of 1129 ultrasound images (969
for training and 160 for the validation process) of fetuses with
and without CHD, to train their deep learning (DL) model.18

Their optimal convolutional neural network (CNN) (Dense-
Net201 architecture) demonstrated high intrapatient sensi-
tivity (86%-100%), specificity (94%-100%), and accuracy
(95%-100%) in classifying CHD vs normal cases.18 Inter-
patient results were comparably high (sensitivity [91%],
specificity [92%], and accuracy [92%]). In a second step, the
authors also trained, validated, and tested classifiers for 7 types
of CHDs (ventricular septal defect, atrial septal defect, atrio-
ventricular septal defect, Ebstein’s anomaly, TOF, trans-
position of great arteries, and hypoplastic left heart syndrome)
and anatomically normal hearts.18 Using this 8-class classifi-
cation model interpatient performance decreased substantially,
showing moderate sensitivity (62%), specificity (68%), and
accuracy (71%). This early analysis revealed that challenges
remain when trying to create prediction models to identify
fetuses with TOF, which were often misclassified as an atrial
septal defect, Ebstein’s anomaly, or transposition of the great
arteries.18 This is potentially because certain structural ab-
normalities, such as a complicated ventricular septal defect,
can be present in both TOF and other types of CHDs,
making it more difficult to distinguish them solely based on
the echocardiogram images.

Further complicating the creation of robust detection
models is the scarcity of training data specific to TOF. The
lack of training data can be partially addressed through data
augmentation techniques, such as geometric transformation of
echocardiogram (image rotation �15�, shifting height and
width, and flipping images vertically and horizontally). In a
previous study, this method was used to increase the training
dataset from the original 1,129 to 23,504 image slices (19,626
for training and 3,878 for the validation process).18 The
augmentation process significantly increased performance in
the CNN model with intrapatient sensitivity, specificity, and
accuracy reaching 100% and interpatient measures demon-
strating 30%-35% increases in sensitivity (62%-97%), spec-
ificity (68%-98%), and accuracy (71%-99%).18 These levels
of performance are approaching or even on par with the ac-
curacy levels of expert cardiologists, paving the way for
enhanced prenatal CHD detection and diagnosis; however, as
indicated previously, further refinement will be needed to
achieve reliable detection of specific diagnoses, including
TOF, using AI algorithms. One important outcome of the
creation of AI/ML models that can help improve the diagnosis
of CHD and/or TOF for fetal echocardiograms is the po-
tential to bridge the gap in expertise in fetal CHD outside of
tertiary-level medical centres or low- and lower-middle-
income countries, thus improving access to tools for accu-
rate CHD detection and diagnosis.19e21 The latter setting is
especially important, as it has been demonstrated that of the
1.35 million children born each year with CHD, 90% live in
places that do not have adequate access to diagnostics or
care.22

Prenatal molecular screening for TOF

Besides fetal sonography, other approaches based on
various “omics” techniques exist for the prenatal diagnosis of
TOF. These methods are at an experimental stage at this
point, but as many of them rely on ML algorithms, discussion
is warranted.23 One approach is to use genomic data; as the
placenta grows, fetal cells and DNA are shed into the maternal
circulation, which can subsequently be isolated, using its
unique aspects such as fetal-specific single nucleotide poly-
morphisms and epigenetic markers, and analysed from a blood
sample from the pregnant woman.24 Recently, an epi-
genomics study using circulating maternal cell-free DNA,
whole-genome epigenetic in combination with AI/ML algo-
rithms demonstrated a consistently accurate prenatal detection
of fetal CHD (12 fetuses with CHD [2 with TOF] vs 26
controls).25 The study found significant methylation changes
in 5918 cytosine nucleotide or CpG loci, located in 4976
genes, in the CHD group compared with controls. Both hy-
per- and hypomethylation of cytosine loci were observed,
indicating potential effects of CHD on gene expression.25 The
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study employed 10-fold cross-validation to generate predic-
tion models using 6 different AI models, including random
forest, support vector machine, linear discriminant analysis,
prediction analysis for microarrays, generalized linear model,
and DL.25 From this analysis, a predictive model using a
combination of 5 cytosine DNA markers achieved an AUC of
>0.92 in all ML models (better than logistic regression), and
the DL model combining 50 CpG loci achieved an AUC of
0.98 (95% confidence interval [CI]: 0.86-1.00) with 92.0%
sensitivity and 92.9% specificity.25 In an additional analysis,
the authors used hierarchical cluster analysis, an unsupervised
ML method used to identify groups of alike observations, to
show excellent separation of the CHD and normal controls
based on the methylation profile.25 Despite challenges with
routine clinical deployment, these molecular epigenetic
markers might be promising for TOF detection because
studies have demonstrated significantly differentially methyl-
ated CpG sites in patients with TOF compared with healthy
controls.26,27 Another closely related area that might result in
tools for the molecular diagnosis of CHD or TOF in utero is
the transcriptomics profile, which studies the expression of
mRNA in cells or tissues and often requires AI/ML methods
for the proper analysis and the identification of high-risk
profiles.23 Circulating mRNA profiles have been found to
differ in women carrying fetuses with CHD.23,28,29

AI/ML methods can also allow the use of nongenomic
biomarkers, such as proteomics or metabolomics, to assist in
the identification of TOF through maternal serum or other
fluids that hold some potential.23 An example of this is the
detection of fetal CHD using amniotic fluid, which contains
fetal urine and other metabolites reflecting fetal developmental
condition.30 One study analysed global metabolite profiles in
amniotic fluid samples from 71 pregnancies with fetuses
affected by CHD (8 cases with TOF) and 149 controls.30

Orthogonal projections to latent structures discriminant
analysis revealed a clear separation of the metabolic profiles
from amniotic fluid between both classes, with 9 metabolites
showing different concentrations between the groups in the
training cohort, and 2 metabolites, uric acid and proline, also
presenting in different concentrations in the validation
cohort.30

Postnatal screening of TOF

A substantial proportion of children with TOF are iden-
tified in the postnatal period. These children are usually
identified through auscultation. As heart murmurs are com-
mon in paediatric cardiology and can often be uncharacter-
istic, distinguishing between an innocent and a pathologic
murmur can be challenging, and the experience of the
examiner is crucial for identifying the distinctive properties of
an innocent murmur.31 One of the initial applications of AI in
the realm of postnatal identification of CHD involves the
automated identification of the first and second heart sounds
on auscultation, followed by the detection of sounds and
murmurs specifically associated with CHD.32e34 Algorithms
have also been developed to specifically diagnose specific types
of left-to-right shunt CHD.33 In the case of a newborn with
TOF with right-to-left shunting, auscultation may reveal a
systolic ejection murmur at the left upper sternal border
caused by pulmonic stenosis, and/or a holosystolic murmur at
the left mid sternal border attributed to a ventricular septal
defect.1 Thus, smart digital stethoscopes, in addition to being
one of the early examples of successful AI implementation in
clinical practice, might be capable of augmenting the diag-
nostic accuracy of TOF in the future.35,36

Applications of AI algorithms to interpret electrocardiog-
raphy (ECG) tracings could also aid in the detection of TOF.
In a recent study, a supervised DL technique using CNNs has
been employed to convert routine ECG data into a prediction
model for atrial septal defects, revealing that the diagnostic
accuracy of the DL model surpassed that of paediatric cardi-
ologists.37 When assessing diagnostic performance, 5 paedia-
tricians had an average accuracy of 63%, sensitivity of 56%,
and specificity of 76% in the diagnosis of atrial septal defects
from ECG tracing. Paediatric cardiologists (n ¼ 12) demon-
strated an average accuracy of 58%, sensitivity of 53%, and
specificity of 67%. The DL model exhibited an AUC of 0.95,
with a mean accuracy of 87%, sensitivity of 71%, and spec-
ificity of 94%.37 Nevertheless, the clinical significance of these
findings applied specifically to TOF may be limited, as it is
uncertain whether they can be extrapolated to the develop-
ment of a functional model for the detection of TOF.
Image Processing and Interpretation
Cardiovascular imaging, particularly echocardiography and

cardiac magnetic resonance imaging (CMR), plays a pivotal
role in the diagnosis and management of heart diseases;
however, it necessitates both a considerable amount of time
for image acquisition and expertise for proper processing and
interpretation. Despite the successful implementation of AI-
based automation of processing and to a lesser extent inter-
pretation of echocardiograms in adults with heart disease other
than CHD, progress in adult or paediatric CHD has been
relatively limited.4 These limitations are mostly due to the
smaller patient population available for algorithm training and
the structural differences in anatomy that renders most
existing algorithms unusable. Nevertheless, despite these
limitations, AI/ML technology is still having an impact for
patients with TOF.

View identification

As the necessary first step in the automated interpretation
of echocardiography images, views need to be correctly
identified. However, most commercially available software
packages to identify views have been trained on hearts with
normal structural characteristics, resulting in suboptimal
application when applied to patients with CHD. A recent
comparative analysis to evaluate the accuracy of a CNN
developed using general cardiology cohorts against a deep
neural network (DNN) trained on a specific dataset of
139,910 frames obtained from CHD patients and validated
on 35,614 frames demonstrated this limitation clearly.38

Overall, the general cardiology DNN had an accuracy of
48.3%, with the highest accuracy of the subcostal 4-chamber
and the parasternal long-axis view (87.7% and 76.5%,
respectively).38 However, the model had low accuracy in
distinguishing the different parasternal short-axis views and
apical views (varying between 3.2% and 69.9%).38 In com-
parison, the DNN trained on patients with CHD demon-
strated improved accuracy with an overall accuracy of 76.1%
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and the subcostal 4-chamber and the parasternal long-axis
view of 100% and 94%, respectively.38 These findings
demonstrate the superior performance in accurately identi-
fying echocardiographic views within patients with CHD
when a model is trained on a CHD-oriented dataset.38

Image segmentation

After image acquisition and view classification, the seg-
mentation of cardiac structures serves as a crucial initial phase
in the assessment of cardiac morphology, regardless of the
imaging modality employed. This process involves dividing
the image into distinct cardiac structures, such as the ventri-
cles, atria, great arteries and veins, and the coronary arteries.
Automating this segmentation step can enhance morpholog-
ical and functional evaluation and improve the accuracy of
measurements. Nevertheless, specific challenges related to
paediatric cardiology emerge in this domain as well. For
example, fully automated CMR segmentation provides good
segmentation of cardiac structures in healthy adults and a
group of left-sided CHD, whereas right-sided lesions with
TOF and univentricular hearts did not provide adequate
segmentation.39 In response to observations of these unsatis-
factory results, a recent study retrained a CNN ventricular
contouring algorithm using a cohort of 91 patients with TOF
(59 for training and 32 for testing).40 The results demon-
strated a significant improvement in segmentation accuracy on
CMR images.40

Automated functional assessment

Assessment of cardiac volume and function is a critical
aspect of quantitative analysis in cardiac imaging. In the field
of general adult cardiology, fully automated functional
assessment using echocardiography has shown tremendous
advancements,21,41 and a recent randomized controlled trial
demonstrated that AI-guided initial evaluation of LV ejection
fraction was found to be superior to sonographer-guided
initial evaluation in an adult cohort without CHD.42

Although the use of AI in automated functional assessment
based on echocardiography is currently limited in the context
of CHD,43 there is significant adoption and progress in AI
applications based on CMR imaging. Previous studies have
demonstrated feasibility and effectiveness,44 and the study
highlighted earlier, which retrained a CNN ventricular con-
touring algorithm, also demonstrated improvement in the
accuracy of ventricular ejection fraction compared with
commercially available vendor packages.40 In addition,
quantitative analysis of cardiac imaging often involves recon-
structing 3-dimensional images of the heart from
2-dimensional slices. However, this process is time-consuming
and tedious due to manual image analysis and segmentation.45

To address this, a knowledge-based reconstruction (KBR)
approach has been developed.45 KBR, a postprocessing
approach, uses anatomic landmarks to reconstruct a
3-dimensional surface model by fitting a few border points to
a pre-existing catalog of 3-dimensional surfaces.45 The effec-
tiveness of KBR has been confirmed in studies using echo-
cardiography and CMR imaging.46e48 KBR has also been
implemented in TOF for measurement of right ventricular
(RV) volumes and function.48 The authors leveraged a dataset
of CMR images that encompassed information regarding the
RV configuration across a diverse range of patients who have
undergone TOF repair.48 The intraclass correlation coefficient
was 0.983, 0.942, and 0.796 for the end-diastolic volume,
end-systolic volume, and ejection fraction, respectively,
demonstrating good accuracy.48

End-to-end imaging platform

Assembled, these tools can form a comprehensive end-to-
end pipeline encompassing automated view classification,
slice selection, phase selection, anatomic landmark localiza-
tion, and myocardial image segmentation to provide cardiac
shape modelling.49 Although such pipelines are not novel in
the broader field of cardiac imaging,50 a study by Govil et al.49

showed the first successful generation of reliable 3-
dimensional biventricular shape models, encompassing all 4
valves, from a raw CMR image dataset that specifically ad-
dresses the challenging anatomies observed in TOF. The
model was then validated on an independent, multi-
institutional test set, which encompassed a diverse range of
CMR scanners, including those that were not included in
either the training or validation sets.49 Cardiac view classifi-
cation predictions were good with precision, recall and F1
score ranging between 78% and 100%, 79% and 96%, and
79% and 96%, except for the 3-chamber view, which showed
worse predictions at 38%, 83%, and 52%, respectively.49

Optimal slice selection precision, recall, and F1 score were
81%, 93%, and 86%, respectively.49 Lastly, myocardial image
segmentation demonstrated Dice scores ranging between 83%
and 94% for the LV and between 54% and 91% for the
RV.49

Synthetic image generation

Recent efforts have been made to mitigate the limitations
imposed by small dataset sizes and the need for extensive
annotation, both of which are significant challenges for CHD/
TOF. A particular technique employed for this purpose in-
volves the use of generative adversarial networks (GANs), a
type of neural network dedicated to the creation of synthetic
data that is like a real reference dataset (Fig. 1).51 This method
allows for the generation of synthetic frames from existing
images to expand the pool of training data. A progressive
generative adversarial network (PG-GAN) was employed to
generate 100,000 synthetic images based on CMR imaging
data from 303 patients diagnosed with TOF.52 Two hundred
pairs of randomly positioned images (each pair consisting of
an image generated by the PG-GAN and a frame from the
study dataset) were presented to both experienced cardiolo-
gists and CMR experts. The short-axis view generated by the
PG-GAN was recognized by 68.7% and 85.3%, respectively,
whereas the 4-chamber views were recognized by 72.2% and
88.0%, respectively.52 Human observers classified 100% of
the synthetic CMR frames as anatomically plausible,
demonstrating the effectiveness of the approach.52 Further-
more, training segmentation networks on these synthetic
images yielded only slightly inferior results to those obtained
by training on images derived from original patient data,
which suggests that the anatomically accurate images pro-
duced by the PG-GAN have the potential to be used for
training other networks in downstream tasks.52 In line with
the previous discovery, a recent study has employed a deep



Figure 1. Overview of the mechanism behind generative adversarial networks (GANs). A GAN consists of 2 interconnected deep neural networks: a
generator and discriminator. The generator creates synthetic data from random noise, whereas the discriminator determines if data presented are
real or fake. The aim of the discriminator is to distinguish between real and fake data, whereas the generator aims to produce synthetic data that
closely resemble the real data to deceive the discriminator. Practically, GANs are trained in a 2-step process. First, the generator is trained by
feeding it random noise to generate samples, in this example cardiac magnetic resonance images. The generated images are then fed to the
discriminator, which is optimized to classify them as real or fake, and the error signal is backpropagated to train the generator. In a second step, the
discriminator is trained to correctly differentiate between real and synthetic by presenting it both types of data and optimizing predictions. This
process is iterated until the discriminator can no longer distinguish between real and fake data.
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convolutional-GAN to generate synthetic CMR images and
their corresponding segmented images simultaneously.53 The
model was subsequently validated using a diverse dataset
comprising paediatric patients with complex CHD and
demonstrated high sensitivity (ranging from 83.5% to 91.7%)
and specificity (ranging from 99.8% to 99.9%) for detecting
right- and left-, end-diastolic and end-systolic ventricular
volumes.53
Management, Prognosis, and Risk Stratification
of Patients With TOF

Postnatal management

Early detection of CHD is important as previous studies
have demonstrated notable improvement in early risk strati-
fication and preoperative management based on prenatal
diagnosis from fetal echocardiography.54 A study was con-
ducted to assess the accuracy of assigning an anticipated
postnatal level of care using a simple algorithm based on fetal
echocardiography findings for fetuses with CHD.54 The study
included 8,101 fetuses, of which 696 had CHD. The study
categorized the fetuses into different care levels based on
cardiac status at birth: level 1 (nursery consult/outpatient
follow-up), level 2 (stable in the delivery room with transfer to
a cardiac hospital), and level 3 or 4 (delivery room instability/
urgent intervention needed).54 Among the 47 fetuses with
TOF and patent pulmonary valve, 30 were assigned to level 1
(predicted acyanotic “pink” TOF in all), 17 were assigned to
level 2 (predicted cyanotic “blue” ductal-dependent TOF in
14), and 1 was assigned to level 3 or 4 (TOF with congenital
lobar emphysema).54 Using this basic algorithm, prediction of
the need for prostaglandin infusion and neonatal repair in
TOF had a sensitivity of 100% and specificity of 97%,
respectively.54 Prediction models using prenatal data from AI/
ML models may also lead to improvements in TOF and CHD
perinatal risk stratification and management.

Perioperative risk management

Risk stratification and prognosis are primary areas of
research for AI in the context of CHD and TOF (Fig. 2).
Risk prediction is particularly complex in TOF due to its
multimodal nature and the presence of numerous unique
patient profiles (n of 1 instance). As such, these areas might
be most improved using AI/ML models. Prediction of
postoperative complications after the primary repair of TOF
is one area of considerable importance.55,56 As expected,
cardiopulmonary bypass time emerged as the primary risk
factor, with other significant factors identified including
gestational age, preoperative RV global longitudinal strain,
pulmonary valve Z-score, RV outflow tract gradient, use of a
transannular patch during surgery, and immediate post-
operative arterial oxygen level.55,56 Clinical implementation
of these prediction models can be performed through dy-
namic nomograms integrated in electronic health records.
However, it is important to note that external validation of
these nomograms is currently lacking.56 When a patient with
TOF undergoes cardiac surgery, intraoperative haemody-
namic monitoring and management is required to guarantee
adequate organ perfusion.57 At this time, the ideal moni-
toring device does not exist, and transesophageal echocardi-
ography is the current reference standard for assessing LV



Figure 2. Applications of AI in prognosis and risk stratification of patients with TOF. The integration of various sources of information, including
medical records, cardiac images, other imaging modalities, medication lists, and precision medicine and omic data, into machine learning models
such as neural networks, decision trees, random forest, k-nearest-neighbour (kNN) clustering, and support vector machines (SVM) enables the
prediction of surgical outcomes, clustering of patients into subgroups, assessment of arrhythmic risk, and estimation of the likelihood of death or
cognitive decline. Another approach is based on the integration of unstructured text data derived from the free-text fields included in the electronic
medical records, which can offer incremental value as it eliminates the need for manual data processing and thus can be implemented on a larger
scale.64 TOF, tetralogy of Fallot.
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function.57 However, there is a lack of real-time intra-
operative imaging for evaluating the RV, which is particu-
larly important in certain CHD like TOF.58,59 To address
this, a contactless imaging technique called video kinematic
evaluation has been developed and validated.60,61 This
technique involves recording high-resolution videos of the
epicardial movement of the exposed beating heart to calcu-
late kinematic parameters before and after surgery.58,59 Re-
searchers found a correlation between presurgery video
kinematic parameters and the preoperative RV end-diastolic
volume index.59 Consequently, the authors employed 2 su-
pervised ML models, k-nearest neighbour and support vector
machine, to classify video kinematic parameters as either
before or after surgery in 12 patients with TOF undergoing
pulmonary valve replacement (PVR).60 The initial accuracy
of these models was 86% and 79%, respectively, which
improved to an AUC of 0.97 and 0.99 after optimization
using cross-validation and classification error minimiza-
tion.60 External validation on 2 additional patients demon-
strated both models’ ability to correctly classify video
kinematic parameters (75%), including a noteworthy
misclassification of a postoperative parameter as preoperative,
with prediction of an unfavourable outcome for a patient
who died 2 weeks after surgery.60

Neurological development

Several neuropsychologic domains can be impacted in
patients with TOF, and the most profound deficits occur in
executive function.61 ML models can also be leveraged to
identify children with complex TOF who have a greater risk
of developing executive function deficits.62 In regression tree
analysis, postoperative neurologic events emerged as the most
important predictor of executive function deficits, followed by
genetic diagnosis, age at primary surgery, and social class.62

AI/ML models also have potential applications beyond car-
diology for patients with TOF. For instance, a recent study
focused on patients with TOF who underwent brain magnetic
resonance imaging.63 In this study, ML was employed to
segment white matter hyperintensities and automatically
differentiate between periventricular and deep hyper-
intensities. This precise characterization of brain health
through AI-assisted neuroimaging holds promise in identi-
fying individuals at risk of cognitive decline.
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Clinical progression and long-term complications

The management of the care for patients with TOF can
also be impacted by the creation of specific DL models based
on natural text data, that is, without any need for manual data
processing, derived from the free text fields included in the
electronic medical records. A study from a single tertiary
centre, including 10,019 patients (1018 with TOF [10.2%]),
used this approach to predict cardiac anatomy, disease
complexity based on the Bethesda classification, and New
York Heart Association class, with an accuracy of 91.1% in
the validation cohort.64 In addition, DL models based on
diagnosis, clinical status, and current medical treatment ob-
tained from raw data were developed to estimate the need for
discussion at multidisciplinary team meetings within 6
months of clinical presentation; these models showed an ac-
curacy of 90.2% and an AUC of 0.86.64 Models were also
able to predict treatment with specific cardiac medication
groups based on diagnosis and symptoms/clinical presentation
as well as concomitantly administered medications (accuracy
and AUC of 89%, 89%, and 91% and 0.86, 0.90, and 0.91
for b-blocker, angiotensin-converting enzyme inhibitors or
angiotensin II receptor blocker, and anticoagulation, respec-
tively).64 Lastly, the derived disease severity obtained from the
DL models was included in a multivariable Cox regression
model with age, laboratory data, ECG parameters, and car-
diopulmonary exercise data, which was independently related
to all-cause mortality (hazard ratio for a disease severity score
>0.9: 34.0 [95% CI: 14.9-77.5], P < 0.001). It has been
proposed that these techniques can potentially construct
powerful prognostic tools for patient management that can
automatically be incorporated in electronic health record
systems for direct clinical application. However, findings from
this study need to be critically appraised, as the data was
obtained from a single-centre study with limited follow-up
and the results have not yet been externally validated.64

Prediction models for specific long-term complications of
TOF have also been developed using ML/DL. For example, a
multicentre retrospective case-control study was conducted to
ascertain the factors associated with life-threatening arrhythmic
events in patients with TOF.65 The study encompassed 275
patients with repaired TOF. Among these patients, 67 with
TOF experienced cardiac arrest, sustained ventricular tachy-
cardia, or received an appropriate implantable cardioverter-
defibrillator shock.65 Leveraging readily available clinical risk
factors such as surgical characteristics, arrhythmia symptoms,
and ventricular dysfunction, the authors constructed a classifi-
cation tree based on a random forest model to stratify the risk of
ventricular arrhythmias and life-threatening events as low,
moderate, or high.65 This risk score was then used as a surrogate
for long-term adverse outcomes in a study using automated atrial
CMR measurements, with the objective of investigating the use
of these atrial measurements in risk stratification.66

Diller et al.44 used a DL algorithm to analyse CMR images
of 372 patients with TOF. The algorithm was trained to
identify features, both atrial and ventricular, that were asso-
ciated with adverse outcomes, such as cardiac death and
documented episodes of ventricular tachycardia.44 Various
features, such as median right atrial area and RV long-axis
strain, were significantly associated with an increased risk.44

The latter, when included in a composite score, were able
to identify a specific TOF subgroup with increased risk of
adverse events.44 Another application of imaging-based
prognostication is the use of shape associations; for example,
in a recent study, shape associations identified by principal
component analysis were explored as a means of identifying
remodelling patterns linked to adverse events.67 The study
employed linear discriminant analysis, and initial models,
including only conventional predictors, found that RV ejec-
tion fraction had the highest discriminatory ability (AUC ¼
0.72).67 A second model incorporating regional volumes
(RV apex, pulmonary valve, and tricuspid valve centroids)
yielded comparable results (AUC ¼ 0.73).67 A third model
using the identified shape modes displayed slightly lower
discriminatory ability (AUC ¼ 0.66).67 However, the final
multivariable model that combined conventional measure-
ments, regional volumes, and shape modes showed improved
results (AUC ¼ 0.73-0.77).67 These findings suggest that
incorporating shape associations into prognostic models may
enhance the prediction of adverse events.67 Subsequently, in
those where an increased risk of VA is identified, AI can assist
in care management, as models have been developed to assess
the eligibility for subcutaneous implantable cardioverter-
defibrillator in adult CHD.68 This demonstrated that
among 16 patients with TOF, more patients passed right-
sided screening than left-sided screening, and only 17%
passed both right- and left-sided screening, whereas 50% of all
patients failed both.68

In a recent prospective cohort study, the prognostic value of
late gadolinium enhancement on CMR was assessed.69 The
study also aimed to develop a weighted-risk score incorporating
all the independent risk factors for the prediction of death and
VA.69 A total of 550 patients with TOF with CMR late gad-
olinium enhancement were enrolled, with an average follow-up
duration of 6.4 years.69 Multivariate analysis revealed several
independent predictors of mortality, which were then assigned
weights and used to develop a risk score that categorized the
population into low-, medium-, and high-risk groups.69 A risk
score exceeding 51 (high-risk) demonstrated 93% specificity
and 51% sensitivity for 1-year mortality, with an annual
mortality rate of 4.4%.69 Compared with several other existing
risk models, the proposed risk score was superior, with an AUC
of 0.87 (95% CI: 0.78-0.95, P < 0.001).69 Similarly, inde-
pendent risk factors for ventricular arrhythmias were identified
and incorporated into a separate risk score.69
Planning of Cardiac Interventions
One of the most important applications of AI in the first

stages of the lives of patients with TOF is the use of AI/ML to
assist in surgical planning. In TOF with pulmonary artery
(PA) stenosis, an appropriate patch to enlarge the narrowed
artery is required. However, the choice of patch size is crucial,
as a larger patch could lead to outflow obstruction due to
abnormal angles between the main and left PA branches,
whereas a smaller patch may fail to adequately augment the
stenosed artery to a normal shape. In a recent study, a 3-
dimensional reconstruction of the PA obtained from cardiac
computed tomography angiography was used to train GANs,
which were then used to optimize patch size, shape, and
location.70 This was done by transforming the cardiac
computed tomography image (original image) by the



Figure 3. Application of optimal patch size estimation for repair of stenotic pulmonary arteries (PAs) in a patient with TOF. Generative adversarial
networks or other machine learning models can be trained to calculate the optimal size and location of a PA patch from preprocedural imaging to
mimic normal pulmonary patency.70 Furthermore, simulation modelling of fluid dynamics can also be performed and integrated in the decision
function to evaluate the impact of patch geometry on flow patterns and pressure gradients. CT, computed tomography; PA, pulmonary artery; TOF,
tetralogy of Fallot.
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generator into a reference normal PA image (normal image)
under the assumption that the normal image would represent
the original image with the optimal expansion patch.70 Thus,
the DL layers in the CNN had a different objective than
outlined previously; here the model had to estimate both the
size and location of the patch to mimic the normal PA area.70

The estimated patch size and location were then augmented
using haemodynamic analysis.70 In a last step, the discrimi-
nator then gets fed an image (either a normal image or a
repaired image) and has to distinguish whether the input is
normal or not.70 After repair, postoperative CMR was
considered as ground truth, and the diameters of the repaired
PAs were measured and compared with the predicted model;
this demonstrated a significant advantage in finding the best
balance point of patch optimization, with an accuracy of
93%.70 These AI/ML computational simulations could offer
significant benefit over currently used methods, such as con-
ventional 2-dimensional echocardiographic, cardiac computed
tomography, or CMR imaging, which has limitations in
conveying the true 3-dimensional relationship between anat-
omy and pathology.71,72 These simulations have been shown
to be promising in individualized surgical and transcatheter
approaches, particularly in complex cases and redo sur-
geries.71,72 Going further than just 3-dimensional recon-
struction and simulation of interventions, these techniques
could be paired with computational fluid dynamics.71,72 This
involves the simulation and analysis of blood flow patterns
and pressures within the entire cardiovascular system.71,72 By
accurately representing patient-specific geometry of the vessels
and cardiac chambers, the impact of interventions on flow
patterns and pressure gradients can be examined, further
guiding a more individualized approach (Fig. 3).71,72

AI/ML can also be used in the planning of PVR in
adolescent patients with TOF. As patients with TOF age, they
may experience progressive ventricular dilation and dysfunc-
tion, which have been demonstrated to predict adverse events.
Consequently, some patients may require PVR. However, the
optimal timing of PVR in those without clear indications, such
as symptomatic patients, significant pulmonary regurgitation,
heart failure, or new arrhythmias, remains a subject of
debate.73,74 Determining the appropriate timing is crucial, as it
should be early enough to prevent irreversible adverse remod-
elling but delayed enough to minimize the need for repeat
interventions.73 However, predicting the decline in RV func-
tion and the optimal timing of PVR is challenging due to the
complex and diverse anatomic variations, as well as intrinsic
limitations to the assessment of ventricular function.73 Con-
ventional regression analyses in previous studies have been
unsuccessful in identifying patients at risk for deterioration in
ventricular size and function. However, ML holds promise as a
superior approach in this domain. This was demonstrated in a
study that used a 5-fold cross-validation linear support vector
machine classifier to predict deterioration in TOF (n ¼ 153).75

The deterioration was categorized as major (n ¼ 37), minor
(n ¼ 78), or none (n ¼ 38) based on changes in indexed RV
end-diastolic volume, as well as both RV and LV ejection
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fraction during longitudinal follow-up over a median period of
2.7 years. Subsequently, baseline variables obtained during the
initial CMR assessment were used in multiple prediction sce-
narios.75 The first scenario aimed to differentiate patients with
major deterioration from those without deterioration. The
second scenario focused on distinguishing individuals with any
deterioration (major and minor) from those without deterio-
ration. The third scenario involved classifying patients into
major deterioration and all other categories (minor deteriora-
tion and no deterioration). Lastly, in the fourth scenario, a 3-
group classification was employed to categorize patients into
specific deterioration groups. The predictive models performed
well in each scenario, with respective AUC scores of 0.87, 0.82,
0.77, and 0.70.75 These AI techniques uncovered predictive
abilities of variables that were previously unrecognized using
traditional methods. For instance, a prior analysis using con-
ventional statistical techniques found no differences in pul-
monary regurgitant fraction between groups with major
deterioration and those without deterioration.76 However, with
an ML approach, the authors demonstrated that combining LV
ejection fraction and pulmonary regurgitant fraction signifi-
cantly increased the AUC of the models (from 0.77 to 0.84 in
scenario 1).75

In summary, by leveraging ML/AI algorithms, clinicians
can make more informed choices regarding interventions and
medical therapy and optimize patient management. Future
studies should investigate whether targeted interventions
based on ML techniques to predict these intermediate end-
points can improve clinical outcomes. In addition, the
translational outlook of these innovations to low- and lower-
middle-income countries holds tremendous potential, as its
estimated 58% of CHD burden could be averted if surgical
practices of high-income countries were brought to scale in
these resource-limited settings.22
Challenges and Future Perspectives
AI/ML algorithms have immense potential for enhancing

the care of patients with TOF and CHD. However, there are
important challenges and limitations still to be addressed.
Current limitations to the development and implementation
of AI/ML algorithms in the context of TOF include limited
data availability, data quality and standardization issues,
clinical interpretability and explainability, generalizability, and
ethical considerations. The first addressable limitation relates
to data quality and standardization issues, where standardized
reporting guidelines such as DECIDE-AI, TRIPOD-AI, and
PROBAST-AI (the latter 2 still under development) will
improve study quality by addressing the presence of bias, poor
calibration, and other methodological limitations.77,78 This
will in turn facilitate the appraisal of these studies and repli-
cability of their findings. This is especially important as,
currently, many studies on ML-based models show poor
methodological quality and are at high risk of bias,79 which is
also a problem in the diagnostic and prognostic articles
regarding patients with TOF. In imaging-related AI/ML
studies, such as those about classification or image recon-
struction, adherence to acknowledged methodological stan-
dards (Checklist for Artificial Intelligence in Medical Imaging
[CLAIM] or Proposed Requirements for Cardiovascular
Imaging-Related Machine Learning Evaluation [PRIME])80,81
was low, and thus a substantial number of studies were at high
risk of bias. Strides to tackle the limitations imposed by small
datasets have been made by many studies included in this
review, one of which is by the use of synthetic data.52,53

Considering these limitations, clinical adoption of AI has
been cautious, with interpretability and explainability being
crucial for gaining trust and acceptance by health care pro-
viders.82 For example, it has been demonstrated that clinicians
tend to favour transparent models that can be explained based
on the underlying pathophysiology of the disease, or clinical
and diagnostic reasoning, a preference commonly known as
the “black box” criticism.83 Neural networks, random forests,
and gradient boosting models are examples of “black box”
algorithms, whereas logistic regression and decision trees are
considered “white box” algorithms, which are explainable by
design. This is coupled with the uncertainty regarding the
additive value of AI/ML over traditional statistical models, as
systematic reviews have not been able to demonstrate clear
performance benefits over logistic regression.84 As with gen-
eral applications of AI/ML in health care settings, its use in
TOF raises multiple ethical concerns related to data security,
patient data protection and HIPAA compliance, and several
biases, including automation bias, which is an over-reliance of
health care personnel on decision support systems. In response
to ethical questions, governance models have been proposed
to address both ethical and regulatory issues surrounding
application of AI/ML and governance of AI in health care.85

One additional barrier regarding the application and
adoption of AI/ML models, developed in well-resourced
centres of excellence to different centres and settings, con-
sists of generalizability of its findings. This can be explained
by a variety of factors, such as data representation (represen-
tative of the target population or setting, here only the former)
or resource disparities (hardware limitations, expertise needed
to implement and maintain AI medical devices). As
mentioned earlier, patients with TOF are characterized by
significant variations in anatomic and physiological charac-
teristics, comorbidities, and treatment responses. This di-
versity further raises a significant obstacle in the
generalizability of AI/ML models. A potential solution to
address this challenge is model retraining. As previously
mentioned, a study demonstrated the effectiveness of
retraining an existing CNN ventricular contouring algorithm,
specifically tailored to patients with TOF, to improve its
performance in this specific population.40

Innovative approaches will be essential to harness the full
potential of thesemodels in the field of TOF.One such example
is the creation of multicentre collaborations and publicly
available standardized data registries, as currently there is a
paucity of available data for AI research in TOF. Such initiatives
would promote the development of novel algorithms. Another
future application of AI/ML in TOF might be the use of
wearables for arrhythmia detection. These wearable devices can
provide continuous, real-time monitoring of heart rhythm,
enabling early detection and intervention for arrhythmias, as
demonstrated by large-scale studies in adults with reliable
detection of atrial fibrillation.86,87 The integration of AI/ML
models in decision support systems, ideally using hybrid ap-
proaches where these models are combined with expert clinical
knowledge guidelines, is another exciting field.78 Moreover,
models can be extended to application inmedical education and
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training programmes, for example, using 3-dimensional print-
ing, virtual- and augmented reality, and computational
modelling.71,88 Finally, in an ideal setting, these models can
enable personalized medicine approaches.89 By integrating
patient-specific data, such as genetic profiles, surgical history,
findings at clinical examination, exercise capacity, and changes
in imaging data during follow-up, AI can assist in personalizing
treatment plans, planning interventions, and predicting indi-
vidual outcomes. This can be summarized as the “digital twin
concept,” which involves creating a comprehensive virtual tool
that integrates clinical data and evolves over time with the pa-
tient.90 These applications should follow the traditional
pathway into contemporary medical practice by proving supe-
riority or at the very least noninferiority in randomized
controlled trials.
Conclusions
In conclusion, we have highlighted some of the current ap-

plications, limitations and challenges, and future applications in
TOF. The integration of AI and ML algorithms in the man-
agement of TOF holds substantial promise for enhancing pa-
tient care. Althoughmany of the current applications are limited
to moderate-scale, single-centre, proof-of-concept in-
vestigations, they demonstrate groundbreaking performance.
Yet, further research and external validation are needed to
address the current challenges and to refine the models. Further
clinical application of AI could potentially lead tomore efficient
and personalized management for individuals with TOF.
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