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Abstract: Metabolic disorders are public health prob-
lems that require prevention and new efficient drugs for
treatment. Cellular repressor of E1A-stimulated genes
(CREG) is ubiquitously expressed in mature tissues and
cells inmammals and plays a critical role in keeping cells
or tissues in a mature, homeostatic state. Recently, CREG
turns to be an important mediator in the development
of metabolic disorders. Here in this review, we briefly
discuss the structure and molecular regulation of CREG
along with the therapeutic strategy to combat the meta-
bolic disorders.
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Introduction

Metabolic homeostasis is important for maintaining a
healthy lifespan. Due to unhealthy lifestyle behaviors such
as high-calorie diet, sedentary and physical inactivity, the
prevalence of metabolic disorders, including metabolic
syndrome, obesity, type 2 diabetes mellitus (T2DM), non-
alcoholic fatty liver disease (NAFLD) [1], poses a huge
challenge to human health, which is the leading cause
of global human death. There are a number of cells and
molecules that contribute to altered metabolic homeosta-
sis [2]. Out of which cellular repressor of E1A-stimulated
genes (CREG) turns to be an important mediator in the
development of metabolic disorders. Here in this review,
we briefly discuss the structure andmolecular regulation of

CREG along with the therapeutic strategy to combat the
metabolic disorders.

Structure of CREG

CREG was cloned in yeast two-hybrid screening of a
Drosophila cDNA library in 1998 [3]. CREG is initially
postulated as a transcription repressor for the oncoprotein
E1A-activated genes, antagonizes 12SE1A-mediated tran-
scriptional activation of both adenovirus E2 and cellular
heat shock protein 70 promoters. It inhibits E1A-mediated
transformation of primary cultured rat kidney cells and
promotes human embryonic carcinoma cell differentiation
even in the absence of an inducer such as retinoic
acid [4, 5]. Later it has been proposed that CREG acts as an
extracellular ligand binding to a cell surface receptor. A
functional signal sequence at its amino terminus targets
the CREG protein into the endoplasmic reticulum and
shows its location in the perinuclear region, a typical
site for secreted proteins [4, 6]. Of the several proteins
that had been reported to interact with CREG, the cation-
independent mannose-6-phosphate (M6P)/insulin-like
growth factor II receptor (IGF2R) has been shown to be
required for its growth-suppressive activity [5]. Since this
interaction was shown to depend on N-glycosylation of
CREG, it was inferred that CREG binds to M6P/IGF2R via
M6P residues located in its N-glycans. Other studies have
shown that CREG interacts with M6P/IGF2R in a M6P-
dependent manner [7–9]. In vitro binding assay revealed
that CREGbound toM6P/IGF2R extracellular domains 7–10
and 11–13 in a glycosylation-dependent and -independent
manner, respectively [10]. Recently, Schahs et al. [11]
revealed that CREG is a lysosomal protein that underwent
proteolytic maturation in the course of its biosynthesis,
carried the M6P recognition marker and depended on
the interaction with M6P receptors for efficient delivery to
lysosomes.

Previous studies suggest that CREG is ubiquitously
expressed in mature tissues and cells in mammals and is
expressed at very low levels in immature cells such as
pluripotent mouse embryonic stem cells and human em-
bryonic carcinoma cells. Induction of CREG protein and
mRNA during the differentiation of these cell types have
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been investigated, with studies suggesting that CREG plays
a critical role in keeping cells or tissues in a mature, ho-
meostatic state.

The role of CREG in obesity

Obesity is one of the most common preventable diseases,
which is now recognized as a major independent risk fac-
tor for metabolic diseases including insulin resistance,
T2DM, coronary artery disease, stroke, NAFLD and certain
cancers [12–14], as well as a disease associated with
serious morbidity and increased mortality [15]. CREG+/−

mice were used to explore the role of CREG in obesity
because global knockout of CREG leads to embryonic death
around E7.5 (unpublished data). CREG+/− mice were viable
and exhibited no apparently abnormal phenotype under
normal feeding conditions, although CREG expression was
reduced by –50% in most tissues. However, when fed with
high fat diet (HFD), CREG+/− mice displayed significant
body weight gain and visceral/subcutaneous fat adiposity
compared with their wild type (WT) littermates [16]. Of
note, the overt obese phenotype was not resulting from
increased food intake. Additionally, the role of CREG in
obesity was further investigated by creating adipocyte P2-
-CREG-transgenic (Tg) mice [17]. There were no phenotypic
differences in body weight, food intake, and tissue weight
between the WT and Tg mice under a normal feeding
conditions, in which CREG mRNA level was 20–35 fold
higher in each adipose tissue in the Tg mice than in theWT
mice. Under the HFD condition, the Tg mice were found to
be more resistant to diet-induced obesity than WT mice in
the absence of a difference in food intake.

The increased adipose tissue is one of the key char-
acteristics of obesity. Mammals have two types of adipose
tissue, white adipose tissue (WAT) and brown adipose
tissue (BAT), which can be distinguished by their
morphology and function [18].WAT stores excess energy as
triglycerides and BAT is specialized in the dissipation of
energy through the production of heat [19]. The CREG+/−

mice displayed more deposited fat in inguinal, epididymal
and peri-renal WAT when fed with HFD compared to WT
controls [16]. Additionally, histology of epididymal WAT
showed that the size of adipocyte was larger in CREG+/−

mice than that of WT controls on HFD (–2 folds) [17].
Nutrient overload-induced obesity is associated with a
state of low grade chronic systemic inflammation pre-
dominantly resulting from adipose tissue [20]. Interest-
ingly, CREG haploinsufficiency in the heterozygous mice
amplified HFD-induced systemic as well as WAT inflam-
mation as indicated by increased expression of cytokines

and chemokines through the activation of the NF-κB
signaling pathway, including TNF-α, IL-6, and MCP-1 [16].

In contrast to WAT, BAT has entirely different func-
tions on energy metabolism [21, 22]. Researchers have tried
to transform WAT into brown to explore a new way for
obesity treatment [23]. CREG exhibited the ability to stim-
ulate brown adipogenesis, including the induction of
uncoupling protein 1 (UCP1) in murine mesenchymal stem
cell line C3H10T1/2 [24]. Moreover, the expression of UCP1
and fibroblast growth factor-21 and browning were both
significantly higher in Tg mice than in WT littermates. It
was also found that CREG binds to retinoid X receptor α,
which interacts with thyroid hormone receptor for brown
adipogenesis, indicating CREG stimulates brown adipocyte
formation and browning, ameliorating obesity and its
related pathology in vivo [17].

In addition, age-related body weight gain was also
significantly suppressed in Tg mice compared to that in
WT mice. As expected, CREG levels were higher in each
adipose tissue in young Tg mice, and this augmented
expression was maintained in aged Tg mice compared to
that in their WT littermates. Consequently, increased brown
fat formation was detected in aged Tg mice, in which age-
associated metabolic phenotypes such as body weight gain
were improved compared with those in WT mice under
normal feeding conditions [25]. These studies suggest that
CREGplays an important role in energymetabolism through
the regulation of adipocyte function and contributes to the
improvement of obesity and its related pathology.

The role of CREG in insulin
resistance

High fat induced obesity is usually accompanied by insulin
resistance and dyslipidemia [26, 27]. Obesity-induced in-
sulin resistance is one of the largest noncommunicable
disease epidemics that we are facing at the moment [28].
Insulin resistance is the condition where the body does not
respond appropriately to circulating insulin [29, 30]. In-
sulin resistance occurs in several tissues, including the
liver, muscle and adipose tissue. The liver helps to main-
tain fasting glucose levels through gluconeogenesis
and glycogenolysis. However, when the liver is insulin-
resistant, the suppression of hepatic glucose production is
impaired and thus gluconeogenesis and glycogenolysis
continue at inappropriately high levels despite normal or
high circulating glucose levels. Adipose tissue and muscle
are similarly affected by insulin resistance, although the
problem here relates more to the impaired ability of insulin
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to promote glucose disposal [29]. To compensate for the
insulin resistance in these tissues, pancreatic β-cells pro-
duce more insulin. However, there is a limit to how much
can be produced, and when this has been reached, the
β-cells fail. T2DM occurs when an inappropriately low level
of insulin is produced in response to a given concentration
of glucose.

Blood glucose and insulin levels of CREG+/− mice were
similar to those of WT controls under normal diet. It’s not
surprisingly to see that the glucose level in CREG+/− mice
was significantly higher when fed with HFD, beginning as
early as 4 weeks of HFD feeding and continuing to the end
of the experiment, and so was the plasma insulin level as
compared with WT controls. Integrated plasma glucose
concentration, as calculated by AUC, wasmore profoundly
increased in CREG+/− mice as compared with WT controls
on HFD but not normal diet [16]. However, the adipocyte
and hepatocyte specific CREG Tg mice reversed the high
blood glucose and high serum insulin levels induced by
HFD feeding, as well as exhibited an improvement of in-
sulin tolerance compared with WT mice as assessed by
glucose tolerance tests, insulin tolerance tests, and insulin
signaling analysis [17, 31].

There is increasing evidence showing that inflamma-
tion is an important pathogenic mediator of the develop-
ment of obesity-induced insulin resistance [32]. The plasma
level of the pro-inflammatory cytokines (TNF-α and IL-6),
the pro-inflammatory adipokine leptin and the anti-
inflammatory adipokine adiponectin in CREG+/− mice was
similar to that in theWTcontrol onND. Thepro-inflammatory
chemokine MCP-1 showed a tendency of increase in CREG+/−

mice but failed to reach significance, suggesting that reduc-
tion of CREG may affect some cytokine expression even on a
normal diet. By contrast, on HFD, CREG+/− mice had signifi-
cantly higher levels of tumor necrosis factor -α, interleukin-6,
monocyte chemoattractant protein-1, leptin and a lower
level of adiponectin in plasma [16]. Furthermore, CREG
haploinsufficiency caused a more robust, 2-fold increase of
p-NF-κB (p65) as compared with the WT control on HFD [16],
indicating that CREG haploinsufficiency increases HFD-
induced systemic inflammation, which may be closely
related to insulin resistance. In addition, the benefits pro-
videdbyCREG-induced expressionoffibroblast growth factor
21 are showing promise in pharmacological application for
improving insulin resistance [33, 34].

The role of CREG in NAFLD

NAFLD represents a spectrum of conditions ranging from
increased intrahepatic accumulation of triglyceride, that is

fatty liver aka hepatic steatosis, to non-alcoholic steato-
hepatitis, a state of hepatocellular inflammation and
ballooning with possible collagen deposition, which
can progress further to fibrosis, cirrhosis and hepatocel-
lular carcinoma [35]. NAFLD affects 25% of the world’s
population [36] and increases in line with obesity and
T2DM, and there is no approved drug therapy [37].

The elevation of plasma total cholesterol, triglyceride,
low density lipoprotein-cholesterol and free fatty acid in
CREG+/− mice suggested dysfunction in lipid metabolism,
possibly resulting from abnormalities of WAT and/or the
liver [16]. In a mouse NAFLDmodel, the mRNA and protein
expression levels of CREG were clearly decreased after
being fed an HFD for 12 weeks compared with those of
the normal diet-treated control mice. Hepatocyte-specific
CREG deletion dramatically exacerbates HFD and leptin
deficiency-induced hepatic steatosis, whereas a beneficial
effect is conferred by CREG overexpression [31]. Mecha-
nistically, CREG interacts directly with apoptosis signal-
regulating kinase 1 and inhibits its phosphorylation,
thereby blocking the downstream MAPK kinase 4/7-Jun
N-terminal kinase 1 signaling pathway and leading to
significantly alleviated hepatic steatosis [31], suggesting
that CREG might be a promising therapeutic target for
NAFLD and related metabolic diseases.

The role of CREG in skeletal muscle
energy metabolism

Skeletal muscle is the largest metabolic organ in the hu-
man body, consuming about 18% of the entire body daily
expenditure of energy [38]. It produces various secrete
factors and participates in the interplay among multiple
tissues and organs [39, 40]. Loss ofmusclemass or strength
due to aging or diseases may result in decreased physical
activity and elevated risks for cardiovascular diseases,
T2DM, and cancer [41]. Conversely, maintaining skeletal
muscle mass might be effective in the prevention and
treatment of T2DM, cardiovascular diseases and cancer/
cachexia [42]. Skeletal muscle oxidativemetabolism in vivo
may be lowered by hypoxia because of reduced perfusion
in obesity, which may precede loss in muscle mitochon-
drial density and promote glycolytic energy utilization [43].
Therefore, changes in control of skeletalmuscle circulation
and vascular dysfunction that occur with obesity may be
implicated in impairment of skeletal muscle energy
metabolism [44].

The recent research showed CREG was localized to the
mitochondria both in vivo and in vitro and played an
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important role in mitophagy. In skeletal muscle-specific
CREG knockout mouse model, the exercise time to exhaus-
tion and running distance were significantly reduced [45], a
phenotype explained by mitophagy impairment. In addi-
tion, the administration of recombinant CREG protein
improved the motor function. Mechanistically, CREG medi-
ated the effect of HSPD1, a mitochondrial chaperon protein,
the instability of which resulted in increasedmitophagy and
muscle dysfunction. CREG deficiency accelerated the in-
duction of mitophagy in the skeletal muscle. Furthermore,
HSPD1/HSP60 (heat shockprotein 1) (401–573 aa) interacted
with CREG (130–220 aa) to antagonize the degradation of
CREG and was involved in the regulation of mitophagy [45].

Summary

This review highlights the diverse biological actions of
CREG, as well as the therapeutic potential for metabolic
disorders. Future studies are required to fully understand
the signaling pathways and mechanisms involved in the
functions of CREG in obesity, insulin resistance, NAFLD, as
well as skeletal muscle energy metabolism. Nevertheless,
CREG possesses a promising therapeutic repertoire that
may result in the development of a safe, effective, long-
acting and cost-effective therapy for metabolic disorders.
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