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Abstract

Precise binding mode identification and subsequent affinity improvement without structure

determination remain a challenge in the development of therapeutic proteins. However, rele-

vant experimental techniques are generally quite costly, and purely computational methods

have been unreliable. Here, we show that integrated computational and experimental epi-

tope localization followed by full-atom energy minimization can yield an accurate complex

model structure which ultimately enables effective affinity improvement and redesign of

binding specificity. As proof-of-concept, we used a leucine-rich repeat (LRR) protein binder,

called a repebody (Rb), that specifically recognizes human IgG1 (hIgG1). We performed

computationally-guided identification of the Rb:hIgG1 binding mode and leveraged the

resulting model to reengineer the Rb so as to significantly increase its binding affinity for

hIgG1 as well as redesign its specificity toward multiple IgGs from other species. Experimen-

tal structure determination verified that our Rb:hIgG1 model closely matched the co-crystal

structure. Using a benchmark of other LRR protein complexes, we further demonstrated

that the present approach may be broadly applicable to proteins undergoing relatively small

conformational changes upon target binding.

Author summary

It is quite challenging for computational methods to determine how proteins interact and

to design mutations to alter their binding affinity and specificity. Despite recent advances

in computational methods, however, in silico evaluation of binding energies has proven to

be extremely difficult. We show that, in the case of protein-protein interactions where

only small structural changes occur upon target binding, an integrated computational and

experimental approach can identify a binding mode and drive reengineering efforts to
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improve binding affinity or specificity. Using as a model system a leucine-rich repeat

(LRR) protein binder that recognizes human IgG1, our approach yielded a model of the

protein complex that was very similar to the subsequently experimentally determined co-

crystal structure, and enabled design of variants with significantly improved IgG1 binding

affinity and with the ability to recognize IgG1 from other species.

Introduction

In the development of therapeutic proteins and vaccines, the efficacy and effectiveness are

largely determined by their binding modes and affinities [1–6]. Binding mode identification

and affinity improvement have generally relied on labor-intensive and time-consuming exper-

imental approaches [7], such as determination of complex structures by X-ray crystallography,

and generation and screening of large libraries. To overcome these bottlenecks, considerable

effort has been made to develop alternative computational methods [8, 9]. Despite some nota-

ble advances, however, computational determination of binding mode and in silico improve-

ment of binding affinity remain challenging in general, and purely computational approaches

have been insufficiently reliable for such purposes [10–13] and association energies [14–17].

Recent rounds of the Critical Assessment of Predicted Interactions (CAPRI) have also shown

that current computational methods are not successful in identifying the actual binding mode

[18]. Thus, the problem of predicting protein-protein interations is often regarded as a “Holy

Grail” in the computer-aided protein engineering [14].

Leucine-rich repeat (LRR) proteins have a rigid horseshoe-like structural feature and play

key roles in many biological processes [19], including the immune system [20–23] and cellu-

lar processes [24–26]. LRR proteins constitute one of the most common protein families

found in a wide range of species, and more than 2,000 LRR proteins have been identified [27,

28]. Typical examples include toll-like receptors (TLR) of the mammalian innate immune

system [21], and variable lymphocyte receptors (VLR) of the jawless vertebrate adaptive

immune system [23]. Considering the importance and abundance of LRR proteins in nature,

a broadly enabling strategy for modeling and controlling LRR binding can help in under-

standing of their functions as well as leveraging their recognition abilities for therapeutic

applications.

We previously developed a computationally-driven epitope localization method, EpiScope,

through which a target antibody’s binding is evaluated against a small, optimized panel of anti-

genic variants to test hypothesized epitope locations [11]. EpiScope was shown to successfully

predict a general epitope region, but not providing detailed information about binding mode.

Here, as the extension of EpiScope, we demonstrate an integrated computational and experi-

mental approach to identifying the binding mode that further enables affinity improvement

and redesign of binding specificity. As proof-of-concept, we employed an LRR protein binder

that specifically recognizes an immunoglobulin G (IgG), for which the binding mode was

completely unknown. This work represents a challenging model system for affinity improve-

ment and redesign of specificity due to high structural conservation combined with sequence

diversity across species. We show that our approach effectively narrowed down the location of

the binding interface, and the full-atom energy minimization identified a native-like complex

model closely matching a experimentally determined X-ray crystal structure. Further compu-

tational analyses of the identified model complex allowed the design of LRR protein binders

with significantly increased affinity and altered binding specificity.
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Results

Binding mode identification of an LRR protein binder

In an effort to exploit the structural and functional features of LRR proteins for biotechnologi-

cal and medical applications, we previously developed an LRR protein binder, called a “repe-

body (Rb)” [29]. Here, a human IgG1 (hIgG1)-binding repebody, named RbF4 [30], was

targeted for computationally-driven binding mode identification and subsequent affinity

improvement as well as redesign of binding specificity. There is indirect evidence that RbF4

recognizes the constant region of hIgG1 (hFc) [30, 31], but the actual epitope residues and the

binding mode were unknown. RbF4 has a typical LRR protein sequence motif, whose struc-

tural scaffold consists of three major parts: an N terminal cap (LRRNT), LRR modules

(LRRVs), and a C terminal cap (LRRCT) with an additional loop (S1 Fig). In contrast to the

complementarity determining regions of antibodies, the target-binding sites of a repebody

(the LRRVs) comprise parallel beta strands which are assumed to remain unchanged upon tar-

get binding. During the development of RbF4, three variable residues on each of modules

LRRV2, LRRV3, and LRRV5 were randomized and subjected to a phage display selection [30].

To identify the binding mode of RbF4-hFc, we first localized the RbF4 epitope on hFc using

EpiScope. This computational method first predicts mutations which appear to both disrupt a

target binding according to the models and maintain antigen stability; it then optimizes tar-

geted sets of antigenic variants that combine these mutations so as to efficiently confirm and

reject the various epitope hypotheses [11]. For antibody-antigen pairs, an average of three vari-

ants, each with three mutations designed to disrupt binding and maintain stability, were

shown to be sufficient to test all of the docking models over a benchmark set of targets, in each

case yielding at least one variant expected to include the true epitope region. It should be

noted that this form of epitope localization indicates the general region where the protein is

likely to bind, but does not provide a binding mode in detail.

In this study, the ClusPro webserver was employed to dock the RbF4-hFc pair as previously

[11]. We used a crystal structure of the unbound form of hFc (PDB code: 3AVE) and a homol-

ogy model of RbF4 for the docking (Table 1), assigning attractions at the residues of the bind-

ing site (LRRV modules from 2 to 5) in order to focus docking to this region. The affinity

improvement of repebodies is similar to that of antibodies, in that diversity is generated in the

binding region of the repebody/antibody followed by selection of variants with improved affin-

ity. This leads to an assymetric representation of amino acids, and thus we used the antibody

Table 1. Test sets. The numbers in parentheses indicate results from ClusPro without the antibody mode option. For C5a, the numbers with asterisks (�) are results using

the crystal structure for docking with the precise definition of paratopes.

Target Human IgG Fc Crystal Structure Complexes

Interleukin 6 (IL-6) Epidermal Growth Factor Receptor (EGFR) Complement Component 5a (C5a)

Complex (PDB) 6KA7 4J4L 4UIP 5B4P

Rb homology template 3RFS 5B4P 3RFS 4J4L

Unbound target 3AVE 1ALU 1NQL 1KJS

Cα RMSD (Å) Target 1.72 0.92 2.62 1.76

Repebody 1.39 0.63 1.62 1.17

Number of docking models 29 30 (106) 30 (88) 23 (65) | �28

Number of EpiScope Designs 3 4 2 2

Number of localized docking

models

7 5 (11) 12 (20) 6 (34) | �7

Best I-RMSD (Å) 2.32 1.45 (1.78) 2.23 (6.61) 3.61 (5.53) | �0.62

Best fnat 0.43 0.62 (0.49) 0.38 (0.09) 0.27 (0.14) | �0.76

https://doi.org/10.1371/journal.pcbi.1008150.t001
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docking mode and its associated assymetric scoring (Antibody Mode). As a result, a total of 29

target-bound complex models were generated (Table 1).

We note that each mutation is duplicated due to the dimeric nature of Fc. The selected vari-

ants include Var 1 (Q362E/N389E/N390K), Var 2 (H268K/E269K/R292L), and Var 3 (H310A/

N315K/H435K). The binding affinities of RbF4 against the variants were experimentally evalu-

ated by isothermal titration calorimetry (ITC), and binding of Var 3 was shown to be disrupted

approximately 3-fold compared to wild-type hFc, with a decrease in Kd from 128 nM to 427

nM (Fig 1B and S2 Fig). This result confirms that RbF4 indeed binds to hFc. Since, as previ-

ously observed [11], it is likely that not all positions mutated in a variant are equally important

for binding, we also measured the binding affinities of the single mutations comprising Var 3.

Two of the single mutations (H310A and N315K) led to meaningful two-fold reductions in

binding affinity (194 and 187 nM, respectively), whereas the binding affinity of H435K

Fig 1. Epitope localization and binding mode identification of human IgG1 Fc (hFc)-binding repebody (RbF4). (A) EpiScope designs triple mutants considering the

symmetry of the Fc structure. (B) The set of the three mutations of Var 3 (H310A, N315K, and H435K) clearly disrupts the binding, and the single mutations

comprising Var 3 were individually test. The ITC results indicate that H435K may not be involved in binding. Error bars represent variation over ITC triplicates. Details

are provided in S2 Fig. (C) There are seven docking models in contact with H310A and N315K; the one colored blue had the lowest molecular modeling energy. (D)

Closer inspection of the model suggests that the repebody loop (highlighed in red stick; see also S1 Fig) may be responsible for the binding specificity of RbF4 to hFc.

IgG from three species are considered (human; mouse, mFc; and rabbit, rFc). The residues that all three share in common are colored cyan; those common to two are

gray, and those unique to one species are black.

https://doi.org/10.1371/journal.pcbi.1008150.g001
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remained similar to (or even a little stronger than) that of wild-type hFc. From these results,

we conclude that RbF4 likely contacts H310 and N315, but not H435.

Seven RbF4-hFc docking models were consistent with the binding results; RbF4 makes con-

tacts with H310 and N315, but not H435 or the six other positions mutated in Vars 1 and 2

(Fig 1C). We hypothesized that the all-atom force field energy could largely capture the bind-

ing free energy landscape. The seven docking models were ranked by total energy according to

the AMBER99sb force field [32] after full-atom minimization using the Tinker molecular

dynamics package [33]. We determined the complex structure by X-ray crystallography

(deposited as PDB ID: 6KA7), and comparison of the crystal structure with the docking mod-

els confirms that the binding mode of the docking model with the lowest energy (Fig 1C and

1D, blue model) and that of the crystal structure are indeed extremely similar (fnat: 0.43 and

I-RMSD: 2.89 Å, see Fig 2 and S2 Table). The full atom structure minimization changed the

overall Fc structure, and consequently one complex model had a slightly better I-RMSD than

the lowest-energy model, but the lowest-energy model better maintained interactions across

the interface and thus had a much better fnat (S3A Fig). These results demonstrate the utility of

our integrated computational and experimental approach to identifying a native-like complex

model for an LRR protein: first a computational method designs sets of mutational variants to

probe docking models; then experimental binding assays effectively filter the docking model

candidates; finally full-atom minimization ranks the filtered docking models. It is noteworthy

that epitope localization is an essential step for precise binding mode identification, and rank-

ing docking models using the force field energy alone may be insufficient for finding a native-

like model (Fig 2B and 2C). Furthermore, testing the individual mutations comprising a

selected variant was important in this case; if all of the three positions in Var 3 were assumed

to be important, there would be only two possible docking models (S3B Fig), and while the

interface region of the lower energy model is largely correct, its binding orientation is

completely reversed.

Redesign of binding specificity based on the modeled complex

Based on the model complex structure, we redesigned RbF4 to alter its binding specificity.

RbF4 was previously determined to be highly specific for human IgG1, showing weak and neg-

ligible cross-reactivities against mouse IgG1 and rabbit IgG [30, 31]. The confirmed complex

model here reveals that the loop (S1 Fig) may be largely responsible for the binding specificity

of RbF4 toward hFc (Fig 1D). To obtain further insight into this possible source of specificity,

we investigated the Fc sequences of IgGs from three species: human (hFc), mouse (mFc), and

rabbit (rFc). The modeled RbF4:hFc complex shows that the RbF4 loop forms a tight contact

with the positions where amino acids differ among hFc, mFc, and rFc (Fig 1D), strongly sup-

porting a crucial role for this loop in the observed binding specificity of RbF4. We thus rea-

soned that engineering the loop could yield a variant of RbF4 showing cross-reactivities for Fc

from other species. To prove our hypothesis, we replaced the loop sequence of RbF4 starting at

position 239, RNSAGSVA, with the truncated but flexible amino acid pair GG. We measured

with ITC assays the binding affinities of the resulting loop-truncated RbF4 variant (RbF4-LT)

against the IgGs from the three species: hIgG1 (Trastuzumab), mouse IgG1 (mIgG1), and rabbit

IgG (rIgG).

As shown in our previous work [31], the original RbF4 binds strongly to hIgG1 with a bind-

ing affinity of 128.7 nM, whereas binding weakly to mIgG1 with an 8-fold lower affinity of

1 μM, and has a negligible binding affinity for rIgG (Fig 3 and S4 Fig). The loop-truncated var-

iant (RbF4-LT) displayed improved binding affinity for rIgG (1.2 μM), indicating that the loop

is indeed involved in the binding specificity of RbF4 for hIgG1. Its binding affinity for mIgG1
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Fig 2. Computationally-driven identification of the RbF4-hFc complex. (A) The lowest-energy model is in blue and the crystal structure (6KA7) is in gold.

H310A and N315K are highlighted in spheres (B,C) Comparison model energy vs. (B) I-RMSD and (C) fnat Docking models that are in contact with the

epitope residues (correctly localized docking models) are shown with solid circles. The crossed-circles are models in contact with all of the three residues in Var

3. The blue circle is the model with the lowest force field energy (AMBER99sb) score (illustrated in panel A).

https://doi.org/10.1371/journal.pcbi.1008150.g002
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was also improved (775 nM), whereas that for hIgG1 decreased to a level similar to that for

mIgG1 (598 nM). It bears noting that the variant was designed based only on the modeled

binding mode, prior to the determination of the X-ray co-crystal structure. The results thus

demonstrate that our integrated approach can provide sufficiently accurate complex models

for the redesign of binding specificity.

Improvement of binding affinity based on the modeled complex

Our final goal is to use computational design to improve the binding affinity of RbF4 against

different IgGs. As we saw in determining the best complex model, while the full-atom force

field energy alone did not identify the near-native complex, it did largely capture the binding

energy landscape. We thus again used the AMBER99sb total energy to select loop mutations

predicted to simultaneously improve binding affinities of RbF4 against multiple targets. To

reduce the search space, FoldX [34] was employed to fast-scan possible mutations in the loop

(S5 Fig), since we observed that FoldX is particularly accurate in predicting disruptive muta-

tions (PPV > 0.9 for antibody-antigen pairs) [35]. The predicted binding energy values at

Fig 3. Redesigning binding specificity and affinity based on modeled complex structure. The model suggests that the binding specificity of RbF4 comes from the

loop (Fig 1D). The loop truncated RbF4 (RbF4-LT) was testing for binding against the IgGs from the three species. Further computational design on the model

identified mutations (S241M and S244R: RbF4-MR) that could significantly improve the binding affinity for mIgG1 (1 μM to 168.1 nM) while maintaining that for

hIgG1 (S3 Table for details). ITC-based affinity measurements were performed in triplate.

https://doi.org/10.1371/journal.pcbi.1008150.g003
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G243 indicate that the inclusion of the loop may not enhance a binding affinity for rIgG. Thus

we aimed to design an RbF4 variant which can bind to both hIgG1 and mIgG1 with high bind-

ing affinities. The FoldX scan suggests that S241M may substantially enhance the binding

affinities for hIgG1 and mIgG1. The mutation was also observed during the phage display affin-

ity maturation for the mIgG1-specific repebody [31]. We then fixed S241M and introduced all

other amino acids in silico at S244. The AMBER99sb force field energy was used to minimize

the variants. The binding energy prediction indicated that S241M with S244R (RbF4-MR) may

significantly improve the binding affinities for both IgGs (S6 Fig). We tested this variant, and

the ITC binding assay indeed showed that RbF4-MR strongly binds to the two IgGs as pre-

dicted, and the binding affinity for mIgG1 was markedly increased (1 μM to 168.1 nM, Fig 3).

General applicability of the binding mode identification method

To assess the general applicability of our integrated approach to identifying a binding mode,

we investigated three known Rb targets whose co-crystal structures are available (Table 1):

Interleukin-6 (IL-6: 4J4L) [29], epidermal growth factor receptor (EGFR: 4UIP) [36] and com-

plement component 5a (C5a: 5B4P) [37]. We first investigated the importance of using Clu-

sPro’s “antibody mode” for Rb docking. Docking without the antibody mode option resulted

in a larger number of docking models, but the overall accuracy of the docking models proved

to be worse than that of those generated with the option enabled (Table 1). The antibody

mode puts a lower weight on the DARS [38] energy term than other docking modes [32]. In

order to improve binding affinities of antibodies and other protein binders, mutations are

extensively made on only one of the interacting partners (e.g., complementarity determining

regions in antibodies) [39]. Thus, the statistics of observed amino acid frequencies for the

binding interface regions are different. DARS assumes a symmetry interaction, which is bene-

ficial for general protein-protein docking, whereas it is worse for antibody-antigen pairs [39].

We likewise hypothesize that interaction assymetry, captured in ClusPro’s antibody mode,

leads to improved prediction accuracy for repebody binding and other affinity matured pro-

tein binders.

Consistent with the results above for RbF4-hFc, only a small number of variants were suffi-

cient to localize the epitopes (two for C5a and EGFR, and four for IL-6). The filtering process

resulted in a small set of docking models including native-like ones (5 to 12 models; solid cir-

cles in Fig 4). In order to identify the most native-like docking model, the ClusPro score was

initially considered to rank the filtered docking models, but it was observed to be unreliable

(S7 Fig). In constrast, but consistent with the RbF4-hFc results, Fig 4 shows that ranking

based on the AMBER99sb force field energy successfully discriminated high-quality docking

models for IL-6 and EGFR. It bears noting that the prior epitope localization was again critical;

ranking by the force field energy alone was not sufficient to find native-like docking models.

For example, in the case of IL-6, there are two incorrect docking models with lower energies

than the most native-like model, but both of them are not in contact with true epitope residues

and thus were filtered out.

The C5a case provides an additional insight into precise binding mode prediction (Fig 4,

bottom row). While the binding interfaces were mostly correct (15 out of 18 correct interface

residues: 83%), the predicted binding mode was completely inverted (N terminal to C, and

vice versa). During the affinity improvement of the C5a-specific Rb, it was observed that some

LRRV modules gave rise to a negligible increase in the binding affinity [37], suggesting that

only LRRV1 and 2 were responsible for interacting with C5a. We thus hypothesized that the

accuracy of structural modeling and an incorporation of the paratope information may also

enhance docking quality. The four possible combinations of hypotheses (incorporation of the
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phage display information versus no incorporation, and a homology-model target versus a

crystal structure target) revealed that the use of a high-quality structure (here the crystal struc-

ture) was not sufficient for accurate binding mode identification (Fig 5). No paratope informa-

tion with the crystal structure resulted in worse correlations than the model with precisely

annotated paratopes (Spearman ρ for fnat and I-RMSD of crystal structures: -0.1 and 0.1, and

those of models with precise paratope definition: -0.7 and 0.19, respectively). The ideal case

(crystal structures with precise paratopes) led to extremely accurate results (I-RMSD: 0.62Å
and fnat: 0.76) with high correlations to the crystal structure (Spearman ρ for fnat and I-RMSD:

-0.79 and 0.71).

This retrospective study demonstrated critical criteria for accurate binding mode identifica-

tion. The full-atom force field energy can effectively discriminate the most native-like docking

model when combined with an initial epitope localization using experimental data to filter the

Fig 4. Retrospective tests of binding mode identification for additional targets. (A, B, C) IL-6; (D, E, F) EGFR; (G, H, I) C5a. (A, D, G) I-RMSD vs. energy; (B, E, C)

fnat vs. energy; (C, F, I) Points represent docking models, with those that are in contact with epitope residues (correctly localized docking models) shown as solid circles.

The blue circle is the model with the minimum force field energy (AMBER99sb), and is native-like for IL-6 and EGFR. Wild-type (star) energy levels are depicted as

dotted lines. For IL-6, some models have lower energy values than the most native-like docking model, indicating that ranking only by the force-field energy is not

sufficient for binding mode prediction. (C, F, I) Crystal structures are in gold and the docking models with the lowest energies are in blue.

https://doi.org/10.1371/journal.pcbi.1008150.g004
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models; on its own it may not be sufficient. As also observed in the previous study with anti-

bodies [11], high-quality antigen structures are not required for epitope localization; homology

models generally suffice. However, they are necessary to generate and predict native-like bind-

ing modes. Finally, while, like antibodies, repebodies have well-defined target-binding sites,

not all of them are actually involved in target binding. The inclusion of paratope information

(e.g., residues contributing to phage display selection) was shown to improve the quality of

docking models and binding mode prediction.

Discussion

Precise binding mode identification of protein binders is crucial for the development of thera-

peutic proteins, but they have heavily relied on labor-intensive experimental approaches.

Computational methods that do not require structure determination offer a way to accelerate

Fig 5. Impacts of high-quality structure and paratope definition. The incorporation of phage display results and the use of high quality structures (here crystal

structures) lead to an extremely accurate identification of the binding mode. LRRV in blue is assigned for attraction, in red for repulsion and green for neutral (A and

H). Results in the right two columns (I-N) are from docking models with precisely assigned paratopes (Results with no paratope information are in the left (B-G)).

Docking models that are in contact with epitope residues (localized docking models) are in solid circle. Models with the minimum force field energy values are in blue

circles. Wild-type (star) energy levels are depicted as dotted lines. Crystal structures are in gold and the docking models with the lowest energies are in blue.

https://doi.org/10.1371/journal.pcbi.1008150.g005
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development processes and understanding of mechanisms of action, advancing the potential

utility of relevant proteins in translational and basic research. We chose LRR proteins as a

model system to evaluate the utility of an intergrated computational and experimental

approach to identifying binding modes and reengineering binding affinity and specificity,

since theses proteins not only represent a promising therapeutic scaffold, but they also have

the important advantage of undergoing small structural changes upon target binding. We

extensively studied one LRR protein binder targeting the constant domain of human IgG1

(hFc). Computaional and experimental epitope localization followed by full-atom energy mini-

mization with the AMBER99sb force field enabled the successful selection of a docking model

which was confirmed to be most native-like according to the independently solved X-ray crys-

tal structure. The further utility and potential of our computationally-guided binding mode

identification were demonstrated by successfully implementing the resulting model to design

variants with increased binding affinity and altered specificity.

Unlike epitope localization or binding site identification, which do not require extremely

native-like binding modes in the sampling step [11], the inclusion of native-like complex mod-

els is absolutely necessary for further affinity improvement from models. In general, the sam-

pling quality of antibody-antigen docking often depends on the targets; however, in our case,

native-like models were nearly always included among the samples, likely due to the rigid

nature of LRR domains. Therefore, we anticipate that this approach may in principle be appli-

cable not only to LRR domains, but also to any other proteins with rigid binding sites. As also

demonstrated by the success of interface-guided docking methods [40–42], the exact definition

of binding interfaces including paratope mutational data from phage display selection is also

important.

As repeatedly shown here, selection of a docking model based only on the molecular model-

ing energy may be misleading, perhaps due to the inaccuracy of the energy functions [43].

Mutagenesis-based verification and filtering of docking models generally focused on the cor-

rect epitope region, and they were shown to be necessary here in order to complement imper-

fect energy scores. The epitope localization method used in this study, EpiScope [11], provided

an optimal set of mutational variants; here requiring only six sets of in vitro experiments to

effectively localize the epitope. With the epitope thereby localized, full-atom minimization

enabled ranking of filtered docking models, resulting in identification of a native-like docking

model.

The successful modeling of binding mode directly enabled the design of binding specifici-

ties and affinities. From the model, we were able to identify key contributors to the binding

specificity of RbF4 for the IgGs and engineer a simple manipulation to entirely change its

binding specificity. Furthermore, since the force field energy is indicative of binding energy,

we were able to select mutations based on the energy and dramatically improve binding affini-

ties as predicted. However, as discussed above, this holds only with a good model of binding,

as otherwise design only based on the energy may result in wrong predictions. For example,

the force field energy prediction suggeests that RbF4-MR would also have a good binding

affinity to hIgG1 though the actual binding affinity was not improved (S7 Fig).

Methods

Computational methods

To design mutations for epitope localization, we used EpiScope with default settings [11].

three mutations per binding patch, and one pareto-optimal curve and two suboptimal ones.

The docking models were generated using the ClusPro webserver [44], initially using “Anti-

body mode” [39], and later a separate set was generated without that option. The non-CDR
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masking option was disabled, but the binding sites were masked for attraction and the convex

side for repulsion (S1A Fig). As with the models of the targets, the complex models were mini-

mized using the Tinker molecular dynamics package [33] with the AMBER99sb parameter set

[32] and the GB/SA implicit solvent model [45]. The total energy was used to rank complex

models, and FoldX (ver. 4) was employed to fast filter binding disruptive mutations [34]. A

complex structure is repaired and optimized using ‘RepairPDB’. Given a mutation or set of

mutations, the effect on binding is then calculated using the ‘BuildModel’ command.

There are currently three Rb-target complex structures in the PDB: binders to IL-6 (PDB

code 4J4L), EGFR (4UIP), and C5a (5B4P). Unbound forms of the target structures were used

for docking (Table 1). There is a missing loop in the structure of IL-6 (1ALU chain A: 52

SSKEALAEN). The loop was filled using MODELLER [46] and all the backbone atoms of the

loop were minimized using Tinker as described above. While repebodies have a very rigid pre-

defined structure, a single mutation at the 11th LRRV position (S1B Fig) to proline signifi-

cantly changes the conformation. Two of the Rbs (4J4L and 5B4P) have such proline residues

(at LRRV1 and LRRV2 respectively). These two Rbs were modeled using each other as tem-

plates. One LRRV unit of the EGFR Rb (4UIP) was omitted. The trimmed Rb structure was

reconstructed by splitting the free Rb at LRRV3 and superimposing the LRRV3 on LRRV2 of

the complete Rb using PyMol.

Preparation of Fc variants

The sequence of the human Fc binder repebody (RbF4) was obtained from a previously pub-

lished study [30]. The Rb structure was modeled using MODELLER with a free form (3RFS:A)

as a template structure. A free form of the hFc domain (3AVE) was used. Trastuzumab (trade

name, Herceptin) Fc sequence available from the literature (wild-type) and all subsequent vari-

ants were reverse translated, codon optimized for expression in mammalian cells, and synthe-

sized by Integrated DNA technologies (IDT), Inc. (Redwood City, CA). CMVR VRC01

expression vector (NIH AIDS reagent program, Germantown, MD) harboring the wild-type

Fc or the Fc variant sequences was transfected into suspension HEK 293 cells using polyethyle-

nimine (PEI) (Polysciences, Warrington, PA). Briefly, 500 μg of the wild-type Fc or Fc variant

DNA was combined with 1 ml of PEI and incubated at room temperature for 10 minutes. The

mixture was then added to HEK cells in the suspension and incubated in a humidified cham-

ber at 37˚C with 8% CO2 for at least 5 to 6 days. The secreted wild-type Fc or Fc variants were

clarified through centrifugation at 8000 rpm at 4˚C for 15 minutes on a Beckman Avanti-J25

centrifuge (Brea, CA). The resulting supernatant was filtered through a 0.45 μm filter to

remove any residual cell debris and other large particles before loading onto a FPLC column.

Affinity purification was conducted on a pre-packed 5 ml Protein A column (for wild-type Fc,

and Fc variants 1 and 2) or pre-packed 5 ml Protein G column (for Fc variant 3, and single muta-

tions of the variant) from GE Healthcare (Pittsburgh, PA) as suggested by the manufacturer. The

final sample was eluted with 100 mM Glycine at pH 3 in 2 ml Eppendorf tubes prefilled with 50 μl

of 1 M Tris and 5 mM EDTA. The purification process was automated on an AKTA FPLC system

(GE Healthcare, Pittsburgh, PA). The purified protein was subjected to a second buffer exchange

step using a hitrap desalting column (GE Healthcare, Pittsburgh, PA). The final product was

eluted in phosphate buffer saline and stored at -20˚C until further use. The purified proteins were

analyzed under reduced SDS-PAGE conditions and stained with coomassie blue.

Expression and purification of repebodies

The gene-encoding repebodies were inserted into NdeI and XhoI restriction sites of a pET21a

vector (Invitrogen, Carlsbad, CA). Plasmids were cloned into competent E.coli DH5α cells
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using a heat shock method (at 42˚C for 90 seconds). The recombinant plasmids were trans-

formed into E.coli Origami-B cells (Merck, Kenilworth, NJ). Single colonies were inoculated

into 5 mL of a Luria-Bertani (LB) medium containing 50 μg/mL carbenicillin and grown over-

night at 37˚C in a shaking incubator (200 rpm). A total of 250 mL of LB containing 50 μg/mL

carbenicillin was inoculated with an OD600 0.05 volume of the overnight-saturated culture and

grown at 37˚C with shaking at 200 rpm until the OD600 reached 0.5–0.8. The cells were

induced using 0.5 mM IPTG and incubated at 18˚C with shaking at 200 rpm for 16 hours. The

cells were harvested through centrifugation at 8000 rpm for 20 mins and suspended in a lysis

buffer (50 mM NaH2PO4, 300 mM NaCl, and 10 mM imidazole, at pH 8.0). After cell lysis by

sonication, the cell debris was removed through centrifugation at 16,000 rpm for 1 hour at

4˚C. Cell lysates were loaded into a Ni-NTA column (Qiagen, Hilden, Germany) and washed

using a wash buffer solution (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, at pH 8.0).

The repebodies were eluted using an elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250

mM imidazole, at pH 8.0), and further purified using gel permeation chromatography (Super-

dex 75, GE Healthcare). The buffer of the purified repebodies changed into PBS, and the con-

centrate was developed in an AmiconUltra centrifugal filter (10 kDa cutoff, Millipore).

Determination of crystal structure

The Fc domain of human IgG (hFc) was purified after digestion of the purchased human IgG

(Sigma, St. Louis, MO) with papain, as described elsewhere [47]. The RbF4-hFc complex was

purified through gel-filtration with a buffer containing 5 mM Tris�HCl and 0.1 M NaCl (pH

7.4) after reconstitution of the complex by incubating RbF4 and hFc at a 2:1 molar ratio on ice.

Crystals of the complex were grown using a hanging drop vapor diffusion method against a

crystallization buffer containing 0.1 M sodium acetate, 12% (w/v) polyethylene glycol 6000,

and 0.1 M magnesium chloride (pH 4.6) at 20˚C. The crystals formed in the space group

P212121 with a = 59.9 Å, b = 107.4 Å, and c = 171.4 Å, and contained one complex molecule in

an asymmetric unit. The diffraction data were collected at 100 K, with crystals flash-frozen in a

crystallization buffer containing 30% glycerol. A single-wavelength (1 Å) dataset was collected

using a native crystal on beam line 5C (Pohang Accelerator laboratory, Korea). Integration,

scaling, and merging of the diffraction data were conducted using the HKL2000 program suite

[48]. The initial phases were determined through molecular replacement using the Phenix

AutoMR program [49] and human Fc of IgG (PDB accession 1H3X) and repebody (PDB

accession 3RFJ) as models. Successive rounds of model building using Coot [50], refinement

using the Phenix program [51], and phase combination allowed the building of the complete

structure (S1 Table).

Isothermal Titration Calorimetry (ITC)

A binding affinity experiment was conducted using MicroCal-iTC200 (Malvern Instruments,

Malvern, UK). Fc variants, mouse IgG1, and rabbit IgG (Sigma) were diluted in a PBS buffer to

a final concentration of 0.02 mM. RbF4 or RbF4-LT (RbF4 with the loop truncation) was

diluted using the same buffer to a final concentration of 0.2 mM. The ITC experiments were

performed for a total 20 injections and stirred at 1000 rpm. The initial injection of 1 μL was

excluded for data analysis. Titration curves were fitted with a one-site binding model. The

value of Kd was determined using Origin (OriginLab).

Supporting information

S1 Fig. The repebody structure. (A) A repebody (Rb) largely consists of three parts: N-ter-

mianl cap (LRRNT), variable regions (LRRV) and C-terminal cap (LRRCT). Binding occurs at
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the concave region of LRRV (in darker blue). (B) Structure of a single LRRV motif, with side

chains of conserved residues rendered as stick figures. Each LRR is composed of six conserved

leucine residues, a central conserved asparagine residue, and conserved phenylalanine residue

on the C-terminal side.

(TIF)

S2 Fig. Detailed information about the mutations for hFc-F4 epitope localization and

titration curves. Based on the Kd values, H310 and N315 overlap epitopes.

(TIF)

S3 Fig. Docking models of RbF4. The crystal structure is in gold. (A) The full atom energy

minimization step may change the overall structure, but the binding interactions are likely to

be maintained. The I-RMSD value of the lowest energy model (Model 1, blue) is slightly higher

than the model with the second lowest energy (Model 2, pink). However, its fnat is twice higher.

(B) There are two docking models which are in contact with the three mutations in Var 3

(Model 9: cyan and Model 10: pink). While their binding interface regions are largely correct,

the binding orientation of the lower energy model (pink) is completely inverted.

(TIF)

S4 Fig. Details of Binding affinities of RbF4 variants (RbF4, RbF4-LT and RbF4-MR) for

hIgG1, mIgG1 and rIgG. RbF4 binds strongly to hIgG1 and weakly to mIgG1. However, no

binding affinity is measured for RbF4-rIgG. The truncation of the loop (RbF4-LT) enabled the

variant to bind to all IgGs with similar binding affinities. RbF4-MR gains strong binding affini-

ties for hIgG1 and mIgG1. See S2 and S3 Tables for details.

(TIF)

S5 Fig. FoldX scan of the RbF4 loop. The residue scan using FoldX suggests that the inclusion

of the loop may not enhance the binding affinity of RbF4 for rIgG.

(TIF)

S6 Fig. Predicted ΔΔG values of the RbF4 variants. The variant with S241M and S244R

mutations (RbF4-MR) is predicted to strongly bind to both hIgG1 and mIgG1. S244C and

S244P were not considered.

(TIF)

S7 Fig. Binding mode prediction with the ClusPro score. The ClusPro score was tested on

the retrospective test set (A-C: IL-6, D-F: EGFR, and G-I: C5a binders). Docking models that

are in contact with epitope overlapping residues (localized docking models) are in solid circle.

The blue circle is the model with the lowest ClusPro score. Crystal structures are in yellow and

the docking models with the lowest energies are in blue on the right hand side. Score assess-

ment using the ClusPro score is not predictive.

(TIF)

S1 Table. Data collection and refinement statistics.

(DOCX)

S2 Table. Quality measures and contact information of RbF4 docking models. Each black

block indicates that the Fc position is in contact with the docked repebody.

(DOCX)

S3 Table. In silico binding specificity control and affinity improvements. RbF4 strongly

binds to hIgG1 (weakly to mIgG1), but no binding to rIgG is observed. Removal of the loop

(RbF4-LT) causes a slight reduction in the binding affinity toward hIgG1, but yields a marginal
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affinity improvement for mIgG1. RbF4-LT produces a significant improvement in the affinity

for rIgG. RbF4 with two mutations at 241 and 244 (S241M with S244R, RbF4-MR) binds to

both hIgG1 and mIgG1 with high binding affinities.

(DOCX)
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