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Abstract
Brains of 42 COVID-19 decedents and 107 non-COVID-19 con-

trols were studied. RT-PCR screening of 16 regions from 20

COVID-19 autopsies found SARS-CoV-2 E gene viral sequences

in 7 regions (2.5% of 320 samples), concentrated in 4/20 subjects

(20%). Additional screening of olfactory bulb (OB), amygdala

(AMY) and entorhinal area for E, N1, N2, RNA-dependent RNA

polymerase, and S gene sequences detected one or more of these in

OB in 8/21 subjects (38%). It is uncertain whether these RNA

sequences represent viable virus. Significant histopathology was

limited to 2/42 cases (4.8%), one with a large acute cerebral infarct

and one with hemorrhagic encephalitis. Case-control RNAseq in

OB and AMY found more than 5000 and 700 differentially

expressed genes, respectively, unrelated to RT-PCR results; these

involved immune response, neuronal constituents, and olfactory/

taste receptor genes. Olfactory marker protein-1 reduction indi-

cated COVID-19-related loss of OB olfactory mucosa afferents.

Iba-1-immunoreactive microglia had reduced area fractions in cer-

ebellar cortex and AMY, and cytokine arrays showed generalized

downregulation in AMY and upregulation in blood serum in

COVID-19 cases. Although OB is a major brain portal for SARS-

CoV-2, COVID-19 brain changes are more likely due to blood-

borne immune mediators and trans-synaptic gene expression

changes arising from OB deafferentation.

Key Words: Amygdala, Cytokine, Deafferentation, Encephalitis,

Microglia, Olfactory bulb, SARS-Cov-2.
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INTRODUCTION
The coronavirus SARS-CoV-2 is primarily associated

with severe respiratory disease, termed COVID-19, but there
have been numerous reports of an accompanying broad range
of neurological signs, symptoms, and syndromes, affecting up
to 36% of patients (1–10). The causes are unclear, as multiple
published studies and reviews (11–40) generally agree, with a
few exceptions, that substantial SARS-CoV-2 brain invasion
occurs in only a minority of fatal COVID-19 cases.

Although isolated case reports of meningitis and/or en-
cephalitis exist (27, 33, 34, 41–45), and despite variation in
findings, there is also general agreement that specific histo-
pathological features are most often lacking in postmortem
COVID-19 brains (12–16, 18, 19, 25, 26, 28, 29, 32–34, 36,
40, 46–50). This lack includes features typical of CNS viral in-
fection (51, 52) or its markers, such as microglial nodules,
perivascular lymphocytic cuffing, focal demyelination, and in-
tracellular viral inclusions. Microvascular, acute and subacute
ischemic, and/or hemorrhagic lesions have frequently been
reported in COVID-19 (4, 11, 13, 20, 26, 30, 33, 35, 36, 38,
39, 45–50, 53–62), but these are common in unselected au-
topsy series. With a lack, in most studies, of appropriate non-
COVID-19 control cases, it has been difficult to know what
brain lesions are specifically due to, or are more common in,
COVID-19.

Of possible CNS entry points, both clinical and autopsy
evidence has converged on the olfactory bulb (OB), with its
immediate neural connection to the olfactory sensory epithe-
lium in the nasopharynx (11, 36, 40, 63, 64). Whole or partial
loss of the sense of smell is present in 60% of COVID-19
patients (64–66). The olfactory mucosa strongly expresses an-
giotensin-converting enzyme-2 (ACE2) and neuropilin-1,
which are probable cellular access cofactors for SARS-CoV-2
(67–72). Of the reports using RT-PCR to localize SARS-CoV-
2 RNA in postmortem COVID-19 brain tissue, only a few of
these have assayed more than a very few brain regions. One
study that assayed multiple brain regions found positive OB
viral gene amplification in 8/15 (53%) while all other brain
regions except midbrain were negative (40).

The intersection of COVID-19 with neurodegenerative
disease is important to consider. For both bacterial pneumonia
and other pandemic lower respiratory viral infections, aside
from general risk factors including wintertime occurrence,
older age, male sex, obesity, pre-existing cardiopulmonary
conditions, and diabetes (73–93), people with age-related neu-
rodegenerative diseases are at increased risk (94–112).
COVID-19 has caused disproportionate mortality in those
with dementia, and the apolipoprotein E-e4 allele, a genetic
risk factor for Alzheimer disease (AD), may be more common
in subjects with severe COVID-19 disease (113–119). Possi-
ble viral etiologies for AD and Parkinson disease have been
frequently debated (120–125). Post-encephalitic parkinson-
ism, which surged subsequent to the 1918–1919 global H1N1
influenza pandemic, is associated with substantia nigra pig-
mented neuron loss and neurofibrillary tangle formation but a
causative linkage with the virus is still debated (126).

With direct viral brain damage seemingly uncommon in
COVID-19, it appears more likely that the neurological mani-

festations are mostly due to systemic reactions that are com-
mon to critical illnesses and may therefore be reflected by
mainly functional changes. Gene expression is a functional
change that is sensitive to both local and systemic influences
and may occur without accompanying alterations in cellular
structure. Changes in CNS gene expression could account for
much of the neurological spectrum of COVID-19.

We assessed SARS-CoV-2 genomic presence and its pos-
sible effects on histopathology, gene expression, and immune
response in 42 brains from patients who died of COVID-19 in
comparison with 107 subjects without COVID-19.

MATERIALS AND METHODS

Overview of Study Design and Human Subjects
The research protocols for this case-control study were

approved by Institutional Review Boards for Banner Sun
Health Research Institute (BSHRI) and the Mayo Clinic Flor-
ida. Written informed consent or verbal telephone consent was
obtained from all participants or their legal representatives.

The majority of subjects were autopsied by the Arizona
Study of Aging and Neurodegenerative Disorders (127) and
Brain and Body Donation Program (AZSAND/BBDP) at
BSHRI, a longitudinal clinicopathological study and biospeci-
men resource for normal aging and brain pathology; a subset
of these were co-enrolled in the National Institute on Aging-
funded Arizona Alzheimer’s Disease Core Center. Ten
COVID-19 subjects were recruited from Banner Health hospi-
tals in metropolitan Phoenix and Tucson, Arizona, and autop-
sied at BSHRI through a separate, dedicated COVID-19 IRB
protocol. Ten additional COVID-19 subjects were autopsied
by the Mayo Clinic Brain Bank in Jacksonville, Florida. Inclu-
sion criteria for all cases included presence (cases) or absence
(controls) of a clinical diagnosis of COVID-19 proximal to
death and/or RT-PCR detection of SARS-CoV-2 on a post-
mortem nasopharyngeal swab. All COVID-19 cases had died
within the acute or subacute stage of their illness, not more
than 6 weeks after the onset of symptoms, but comprehensive
clinical records were not available for all cases. A mixture of
AZSAND non-COVID-19 control subjects dying pre-
pandemic or during the COVID-19 pandemic, with or without
non-COVID-19 pneumonia and with or without a major neu-
rodegenerative condition were included, allowing an explora-
tion of the influence of these on outcomes measured in the
brain. There were no exclusions for the COVID-19 cases
recruited through the dedicated COVID-19 protocol at
BSHRI. COVID-19 subjects died between March 1, 2020 and
March 30, 2021 while control subjects died throughout 2019,
2020, and 2021.

A series of tissue investigations (Fig. 1) incorporated
sets of COVID-19 and control subjects and were dependent in
part on the most suitable cases that were available as the pan-
demic progressed. The highest priority objective and therefore
the first to be undertaken was to determine the brain regional
presence of SARS-CoV-2 genomic sequences. Sixteen brain
regions as well as postmortem cerebrospinal fluid (CSF) and
intracardiac blood serum were initially assessed with RT-
qPCR. The brain regions were chosen to include potential viral
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entry portals through cranial nerves (OB with closely con-
nected regions amygdala (AMY), entorhinal area (ENT) and
hippocampal CA1; pontine tegmentum in the region of the tri-
geminal nuclei; medulla in the region of the dorsal motor nu-
cleus of the vagus nerve) or hematogenously (leptomeninges,
choroid plexus and blood-brain-barrier-deficient median emi-
nence of hypothalamus and area postrema of rostral dorsal me-
dulla). Subsequent analyses, including case-control
comparisons of gene expression, circulating and local cyto-
kine concentrations, microglial reaction and neuronal markers,
utilized the most appropriate additional subsets of cases and
controls, and focused on the OB and the closely connected
AMY.

General histopathological and viral-typical brain
changes were investigated with hematoxylin and eosin (H&E)
staining across all 42 cases and 107 controls by standard neu-
ropathological examination of 25–30 brain regions.

Clinical data for AZSAND subjects were obtained from
their annual standardized research assessments, including neu-
ropsychological batteries and behavioral and movement disor-
ders neurological assessments (127), and from abstraction of
their private medical records. For the 10 COVID-19 subjects
separately enrolled from hospitals in Tucson and Phoenix, as
well as the 10 COVID-19 subjects enrolled by the Mayo Clinic
Florida, clinical data were collected from private medical
records, including from hospitals and/or medical providers’
office records.

Neuropathological and Histological Analyses
For BSHRI subjects, most had whole-body autopsies

while autopsies on all 10 subjects from the Mayo Clinic were
restricted to the brain. The left side of each brain was fixed in
neutral-buffered commercial formalin while the right side was
sliced into 1-cm coronal slabs and frozen on dry ice, then
stored at�80�C.

Board-certified anatomical pathologists (Pathology Spe-
cialists of Arizona, LLC and Stanford University Department
of Pathology) noted the presence or absence of acute lung in-
jury or acute pneumonia in subjects that had whole-body au-
topsies, and neuropathologists (T.G.B. for BSHRI and D.W.D.
for Mayo Clinic Florida) performed standard neuropathologi-
cal examinations, noting the presence or absence of the classi-
cal neuropathology associated with viral CNS infections or
potential sequelae such as acute disseminated encephalomy-
elitis (ADEM), including lymphocytic leptomeningitis and en-
cephalitis, microglial nodules, perivascular lymphocytic
cuffing, focal demyelination, and viral intracellular inclusions.
Also noted were any acute or subacute microscopic changes.
Otherwise, the neuropathological diagnostic approach has
been previously described (127). For both BSHRI and Mayo
Clinic, published clinicopathological consensus criteria for
neurodegenerative and cerebrovascular disease (128–140)
were used when applicable, with reference to research clinical
assessment results as well as pertinent private medical history.
The histological sampling and staining incorporated the proto-
cols recommended by the National Institute on Aging and Alz-
heimer’s Association (NIA-AA) (138–140).

RT-PCR for E Gene 
Ini�al 20 COVID-19 + 4 Control Autopsies 

16 Brain Regions, CSF & Blood Serum  

RT-PCR for E, N1, N2, RdRp and S Genes 
Ini�al 20 COVID-19 + 1 Addi�onal Case 

 +  10 Control Autopsies 

RNAseq Gene Expression 
Ini�al 20 COVID-19 + 20 Control Autopsies 

Olfactory Bulb and Amygdala 

Histopathology H & E 
42 COVID-19 & 107 Control Autopsies 

Complete Neuropathological Examina�on

Histopathology APP IHC 
20 COVID-19 + 20 Control Autopsies 

White Ma�er Cingulate & Precentral Gyri

Microglia Iba-1 & LN3 IHC 
30 COVID-19 & 30 Control Autopsies 

Olfactory Bulb, Amygdala & Cerebellar Cortex 

OMP-1, TH & SNAP-25  IHC 
18 COVID-19 & 28 Control Autopsies 

Olfactory Bulb

Cyokine/Protein Array 
24 COVID-19 & 26 Control Autopsies 

Amygdala & Blood Serum

FIGURE 1. Tissue analysis flowchart. A series of tissue investigations
incorporated the most suitable COVID-19 and control subjects as
appropriate and was dependent in part on those cases that were
available as the pandemic progressed. The highest priority objective
and therefore the first to be undertaken was to determine the brain
regional presence of SARS-CoV-2 genomic sequences. Subsequent
analyses, including case-control comparisons of gene expression,
circulating and local cytokine response, microglial reaction and
neuronal markers, utilized the most appropriate additional subsets
of cases and controls as they became available, and focused on the
OB and the closely connected amygdala (AMY). General
histopathological and viral-typical brain changes were documented
with H&E staining across all 42 cases and 107 controls by standard
neuropathological examination with additional
immunohistochemical staining for b-amyloid precursor protein
(APP) to augment sensitivity for hypoxic-ischemic changes in a
subset of subjects and brain regions. IHC, immunohistochemistry;
OMP-1, olfactory marker protein-1; TH, tyrosine hydroxylase;
SNAP-25, synaptosomal-associated protein, 25kDa.
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Immunohistochemical stains were performed using pri-
mary antibodies listed in Table 1. Staining for b-amyloid precur-
sor protein (APP) was done on sections of anterior cingulate
gyrus with corpus callosum as well as precentral gyrus, to assist
with the detection of localized white matter axonal swellings in-
dicative of subacute and acute axonal damage, a reported finding
in the brains of COVID-19 subjects (54, 55). Staining for micro-
glia used antibodies for Iba1, a pan-microglial marker, and LN3,
a marker of HLA-DR and hence “activated” microglia. OB neu-
ronal constituents were stained (141) with antibodies to olfactory
marker protein-1 (OMP-1), synaptosomal-associated protein,
25 kDa (SNAP-25), and tyrosine hydroxylase (TH). Signal de-
velopment was performed as previously published with 3,30-dia-
minobenzidine as chromogen (141, 142).

Staining for APP was assessed as present or absent in
each section, and semi-quantitatively on a 0–3 scale. For the
other immunostains, the area occupied by stained tissue ele-
ments was determined with digital image analysis (Image J
software with image processing and analysis in Java: https://
imagej.nih.gov/ij/). The means of the areas occupied by stain-
ing in 4 images of each brain region were used for statistical
analyses, including with Mann-Whitney U-tests for ordinal
variables and unpaired, 2-tailed t-tests for continuous variables
as well as one-way analysis of variance with post-hoc Bonfer-
roni-corrected pairwise significance testing or Kruskal-Wallis
analysis of variance with Dunn’s multiple comparisons pair-
wise testing. Fisher exact tests were used to test for propor-
tional differences and Pearson or Spearman correlations for
relationships between continuous or ordinal variables. The
probability level for all tests was set at p< 0.05.

RT-qPCR Detection of SARS-CoV-2 RNA
Sequences

To assess for diagnostic SARS-CoV-2 viral presence,
postmortem nasopharyngeal swabs from all BSHRI cases

autopsied after March 2020 were assayed using FDA EUA
protocols: https://www.fda.gov/media/136818/download at
Clinical Laboratory Improvement Amendments (CLIA)-ap-
proved laboratories, either operated by Sonora Quest, a divi-
sion of Quest Diagnostics, or by the Stanford University
Health Care Blood Center in Stanford, California.

Frozen brain samples were dissected from 16 brain
regions, including OB, ENT, CA1 region of the hippocampus,
AMY, temporal, frontal and primary visual neocortex, dorsal
medulla in the region of the motor nucleus of the vagus nerve
and area postrema, pontine tegmentum in the region of the tri-
geminal nuclei, substantia nigra, hypothalamus in the region
of the median eminence, midportion of the thalamus, putamen
at the lentiform nucleus, cerebellar cortex, choroid plexus, and
leptomeninges. Cases with whole-body autopsy were sampled
for frozen tissue bilaterally from the upper and lower lung
lobes. Aliquots of postmortem intracardiac blood serum and
postmortem intraventricular CSF were also assayed.

RNA was extracted from 20 mg of frozen brain and lung
tissue or 200–250mL of blood serum and CSF using Qiagen
RNeasy Plus Mini Kits (Cat # 74134 for tissue and 217204 for
blood serum and CSF) following the manufacturer’s instruc-
tions and eluted in 50 lL of RNAse-free water. SARS-CoV-2
RNA was detected using previously described primer and
probe sequences (Table 2) targeting the envelope (E) (143),
RNA-dependent RNA polymerase (RdRp) (143), and spike
protein (S) (144) genes. N1, N2, and RNase P sequences were
obtained from CDC and FDA websites: https://www.fda.gov/
media/134922/download; https://www.cdc.gov/coronavirus/
2019-ncov/lab/rt-pcr-panel-primer-probes.html.

RNase P and actin primers and probes were used as
housekeeping gene amplification controls. RT-qPCR was per-
formed in duplicate in separate wells with a 20-mL volume
containing 4 lL of RNA (80–160 ng) and 5 lL of 4� Taqpath
One-Step RT-qPCR Master Mix (Cat # A15299 Life Technol-
ogies, Carlsbad, CA) on Bio-Rad CFX Connect. For blood se-

TABLE 1. Primary Antibodies, Dilutions and Pretreatments Used for Histology Studies

Antibody Target Abbreviation Clone Supplier/Cat. # Dilutions/Pretreatment

CD3, T-lymphocytes CD3 F7.2.38 Dako/Agilent 1:100; steam in Tris/EDTA, pH9

M725401-2

CD20, B-lymphocytes CD20 L26 Dako/Agilent 1:1000; steam in citrate pH 6

M075501-2

CD 68, macrophages CD68 KP1 Dako/Agilent 1:1000: steam in dH20

M081401-2

b-amyloid precursor protein APP 22C11 Millipore 1:3000; steam in dH20

MAB348

Ionized calcium binding adaptor molecule 1 Iba1 polyclonal Wako 1:5000; boiling EDTA

016-20001

HLA-DR LN3 LN3 Abcam 1:10 000; boiling EDTA

166777

Olfactory marker protein-1 OMP-1 polyclonal Novus 1:2000; boiling citrate

NB110-74751

Synaptosomal-associated protein, 25kDa SNAP-25 polyclonal Sigma S9684 1:5000; Formic Acid

Tyrosine hydroxylase TH TH-16 Sigma 1:3000; boiling citrate

T2928
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rum and CSF, due to low sample RNA concentrations, 4 lL of
undiluted RNA was used, with a maximum of 160 ng per ali-
quot. Positive gene sequence presence was defined alterna-
tively as a Ct value equal to or less than 40, or equal to or less
than 35, for E, RdRp, and S genes. Both N1 and N2 genes
were required to be at or below the same thresholds in order
for the sample to be classified as positive. Inconsistent results,
e.g. when one of the duplicates amplified but not the other,
were repeated in new duplicate samples and results were only
accepted as positive with at least one duplicate.

Positive controls were included in each RT-PCR run;
these included a mixture of synthetic SARS-CoV-2 RNA
sequences (RNA transcripts for 5 gene targets, E, N, ORF1ab,
RdRp, and S genes; Cat # COV019 Bio-Rad Labs, Hercules,
CA), as well as a frozen lung RNA sample from a COVID-19
decedent previously shown to be reliably positive. The number
of E gene copies per brain or lung sample were estimated by
interpolation on a standard curve created with serial dilutions
of 1:1 synthetic SARS-CoV-2 RNA (successive dilutions
were each 2-fold more dilute).

To evaluate assay validity, RNA aliquots from each of 5
study subjects, with a total of 30 samples, including positive
and negative samples of OB, dorsal medulla and lung, were
analyzed blinded to diagnosis and previous RT-PCR results
using similar RT-PCR methods for detection of the E gene at
the Stanford University Health Care Blood Center, with com-
plete agreement on positive versus negative results for all ana-
tomical sites and subjects.

Gene Expression Analysis
RNA was extracted as detailed above; mean RNA integ-

rity number (RIN) was greater than 9.0. Sequencing libraries
were prepared with 100 ng of total RNA using Illumina’s Tru-
Seq Stranded Total RNA library prep approach (Illumina,
Inc., San Diego, CA) following the manufacturer’s protocol.
The final library was sequenced by 2 � 100 bp paired-end se-
quencing on an Illumina NovaSeq6000.

After sequencing, FASTQs files were aligned to the Hu-
man Reference Genome HG38 using STAR (145), and sum-
marized at the gene level with HTSeq. Quality controls were
conducted using MultiQC software (146) and principal com-
ponent analysis. Samples with RIN <4, total number of reads
<20M, and uniquely mapped reads <70% were excluded
from the downstream analysis. Genes with a total count of
<10 were excluded and normalization was performed using
DEseq2. Differential gene expression was calculated between
the COVID-19 samples and the controls using DEseq2, adjust-
ing for age at death, sex, brain tissue source (BSHRI or Mayo
Clinic), and neuropathologically determined presence or ab-
sence of a diagnostic level of a major neurodegenerative dis-
ease. Genes with a false discovery rate (FDR) p value smaller
than 0.05 were considered differentially expressed genes
(DEGs). Pathway analysis was conducted on the DEGs using
a hypergeometric statistic referencing the REACTOME data-
base as implemented in the clusterProfiler R package.

Lists of cell-specific genes were generated from a brain
single-nucleus RNA sequencing dataset from the dorsolateral

TABLE 2. Gene Sequences for Primers and Probes Used for RT-qPCR

Name Sequence (50-30) Conc. (nM) Vendor Cat. #

E_Sarbeco_F ACAGGTACGTTAATAGTTAATAGCGT 800 Life Tech. A15612

E_Sarbeco_R ATATTGCAGCAGTACGCACACA 800 Life Tech. A15612

E_Sarbeco_P1 FAM-ACA CTA GCC ATC CTT ACT GCG CTT CG-QSY 400 Life Tech. 4482777

RdRp_SARSr-F GTGARATGGTCATGTGTGGCGG 600 Life Tech. A15612

RdRp_SARSr-R CARATGTTAAASACACTATTAGCATA 800 Life Tech. A15612

RdRp_SARSr-P2 FAM-CAGGTGGAACCTCATCAGGAGATGC-BBQ 100 Life Tech. 4482777

2019-nCoV_N1-F GAC CCC AAA ATC AGC GAA AT 500 Int. DNA Tech. 10006830

2019-nCoV_N1-R TCT GGT TAC TGC CAG TTG AAT CTG 500 Int. DNA Tech. 10006831

2019-nCoV_N1-P FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1 125 Int. DNA Tech. 10006832

2019-nCoV_N2-F TTA CAA ACA TTG GCC GCA AA 500 Int. DNA Tech. 10006833

2019-nCoV_N2-R GCG CGA CAT TCC GAA GAA 500 Int. DNA Tech. 10006834

2019-nCoV_N2-P FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1 125 Int. DNA Tech. 10006835

S Gene-Fwd TCAACTCAGGACTTGTTCTTAC 360 Life Tech. A15612

S Gene-Rev TGGTAGGACAGGGTTATCAAAC 360 Life Tech. A15612

S Gene-Probe TGGTCCCAGAGACATGTATAGCAT-BHQ1 80 Life Tech. 4482777

ACTB_F GACGTGGACATCCGCAAAGAC 800 Life Tech. A15612

ACTB_R CAGGTCAGCTCAGGCAGGAA 800 Life Tech. A15612

ACTB_P1 FAM-TGCTGTCTGGCGGCACCACCATGTACC-QSY 400 Life Tech. 4482777

Rnase P_F AGA TTT GGA CCT GCG AGC G 500 Int. DNA Tech. 10006836

Rnase P_R GAG CGG CTG TCT CCA CAA GT 500 Int. DNA Tech. 10006837

Rnase P_P FAM-TTC TGA CCT GAA GGC TCT GCG CG-BHQ-1 125 Int. DNA Tech. 10006838

E, envelope (E) gene; ACTB, actin beta; RNase P, ribonucleus P; F, forward; R, reverse; Conc, concentration of primer used; Life Tech., Life Technologies; Int. DNA Tech., In-
tegrated DNA Technologies.
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prefrontal cortex (147) that included AD cases and non-
demented controls (total: n¼ 48). Data were downloaded
from the Accelerated Medicine Partnership-AD portal (AMP-
AD; accession number syn18485175). The filtered dataset
consisted of a total of 70 634 droplet-based single-nuclei and
17 352 genes from: astrocytes (Ast), endothelial cells (End),
excitatory neurons (Ex), inhibitory neurons (In), microglia
(Mic), oligodendrocytes (Oli), oligodendrocyte precursor cells
(Opc), and pericytes (Per). After excluding the AD samples,
the data matrix was imported into Seurat (148) and normalized
using the function “NormalizeData” with the option
“LogNormalize,” using a scale factor of 10 000. Then, each
gene was assigned to a cell class modeling a linear regression
where the expression levels were the dependent variable and
the cell type the predictors, adjusting for sex, age, and post-
mortem interval. A transcript was assigned to a cell type
when: (1) the adjusted p values (FDR) were p< 0.05, and (2)
the regression coefficient of the enriched cell type had a ratio
>1.81 with the second enriched cell type. The cutoff was
established after testing all coefficient ratios from 1 to 5 until
the variation of the number of unclassified genes stabilized to
under 0.5%. We obtained a list of 5641 cell-type-specific
genes, which were used as gene sets to run enrichment analy-
sis on the DEGs. The analysis was conducted using the R func-
tion enrichment (R package bc3net) adjusting the results for
multiple testing with the FDR method.

WGCNA analysis was done to detect relevant co-
expression networks associated with COVID-19 status (149).
The count table was normalized with the voom method (150),
and adjusted for confounding factors as in the differential ex-
pression analysis using the function removeBatchEffect as
implemented in limma (151). Genes with <5 total counts per
minute were removed from the dataset. Finally, 50% of the
most variable genes were retained after computing the median
absolute deviation with the goal of excluding genes with low
variability, minimizing the noise in the co-expression net-
works. Soft-thresholding power (b) was computed using the
pickSoftThreshold function. Then, the values were plotted
against the scale-free fit index and selected for the lowest
power for which the scale-free topology fit index curve flat-
tens out upon reaching a r2 ¼ 0.900 (152). A signed co-
expression network was generated and identified the resulting
clusters using the function blockwiseModules with the follow-
ing parameters: TOMtype: “signed,” minimum module
size¼ 30, mergeCutHeight¼ 0.30, deepSplit¼ 2; reassign
threshold¼ 1.0�06, and pamRespectsDendro ¼ “TRUE.” We
computed the eigengene values for each individual and mod-
ule by singular value decomposition (153). The eigengenes
were compared by module between COVID-19-positive and
controls using a linear model as implemented in limma, adjust-
ing the p values for multiple testing by accounting for the
number of modules using the FDR method. Covariates were
not included in the model since we adjusted the expression
values matrix. Gene ontology (GO) enrichment analysis was
performed on the differentially expressed modules associated
with COVID-19 status by the means of the R-package enRich-
ment, using as background the intersection of given genes and
genes present in GO. P values of the GO enrichment analysis
were adjusted using the Bonferroni method. The enrichment

for genes specifically expressed in certain cell types was con-
ducted using the above-described cell specific markers by
means of a hypergeometric test as implemented in the R func-
tion enrichment. Finally, the top hub genes in the co-
expression modules were identified using the function choose-
TopHubInEachModule as implemented in the WGCNA
package.

Cytokine and Protein Arrays
Frozen brain samples, approximately 30 mg, were dis-

sected from the estimated region of the cortical nucleus/peri-
amygdalar region of the AMY. Tissue was homogenized for
protein extraction in RIPA buffer plus Protein Inhibitor Cock-
tail using an OmniTH tissue grinder and centrifuged for
30 minutes at 4 C at 18 000 rpm (40 000�g). Micro BCA pro-
tein assays were used to calculate the protein concentrations
and the homogenates were stored at �80�C until testing.
Blood was taken postmortem by intracardiac puncture and
placed in VACUETTE Serum Clot Activator Tubes (Greiner
Bio-One; VWR CAT# 95057-393). CSF was taken postmor-
tem from the lateral cerebral ventricles. Both types of biofluids
were centrifuged at 2000g for 10 minutes at 24�C. Aliquots of
each (0.5 mL) were frozen at�70 to�80�C until used.

Commercial Quantibody Human Cytokine Array kits
(QAH-CYT-1; RayBiotech, Inc., Norcross, GA) were used to
detect 20 human cytokines/proteins (CCL2, CCL3, CCL4,
CCL5, CSF2, CXCL1, CXCL2, CXCL3, CXCL8, IFNG,
IL10, IL12A, IL13, IL1A, IL1B, IL2, IL4, IL5, IL6, MMP9,
TNF, and VEGFA). AMY protein homogenates were assayed
at a 2000mg/mL concentration and at 1:1 dilution while serum
and CSF samples were assayed undiluted. Samples and stand-
ards were diluted in the sample diluent provided with each kit.
Biotinylated antibodies were detected with Cy3-coated strep-
tavidin and analyzed with an Axon Gene Pix 4200 A laser
scanner (Molecular Devices, Silicon Valley, CA) at a wave-
length of 555 nm and settings of 450, 550 and 650 pmt. Stan-
dard curves were analyzed by regression based on linear and
logarithmic transformations of the data. The results of any one
assay were based on the same PMT readings and data transfor-
mation for all cytokines if the correlation coefficient was
�0.90 for the standard curve. Data not meeting this latter cri-
terion were excluded.

RESULTS

Demographic, Pneumonia, and
Neuropathological Characteristics of Subjects

A total of 149 autopsied subjects were included (Ta-
ble 3). The mean age of the COVID-19 cases was significantly
lower than that of the controls (p¼ 0.02), although both
groups were of advanced age with medians over 80. Subjects
were 100% Caucasian; 5 were of Hispanic ethnicity. Of 28
COVID-19 cases with whole-body autopsy including lungs,
25 had microscopic changes consistent with acute lung injury
and/or acute bronchopneumonia. Of the 3 without pneumonia,
1 died of acute myocardial infarction, 1 died of likely conges-
tive heart failure causing pulmonary edema, and 1 died of
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complications of an aggressive meningioma with extensive
dural, brain and bone invasion.

COVID-19 cases all occurred before April 2021, prior
to the introduction of the Delta variant to North America. Var-
iant status was not determined by sequencing. Of chosen pre-
pandemic and pandemic-era control subjects (the latter de-
fined as being negative to postmortem nasopharyngeal swab
RT-PCR) with a whole-body autopsy and postmortem lung
examination, 63% had acute pneumonia; the proportion of
control subjects with acute pneumonia was deliberately en-
hanced for comparative purposes. The proportions with the
apolipoprotein E-e4 allele did not differ between COVID-19
and control groups. There were proportionately more males
and more major neuropathological diagnoses in the COVID-
19 group but the differences were not significant (Fisher exact
test, p¼ 0.48 and 0.30, respectively). Braak neurofibrillary
stage and Thal amyloid phase did not differ between groups.

As pre-pandemic AZSAND autopsy control subjects
listed in Table 3 were not chosen randomly, and the subjects
derived from the Mayo Clinic IRB protocol and the dedicated
COVID-19 Banner Health IRB protocol had differing origins,
a comparison was also made of consecutive AZSAND autop-
sies throughout the pandemic period from June 2020 through
March 30, 2021 (Table 4). Of 74 consecutive autopsies, 22
(30%) had SARS-CoV-2 detected on their postmortem naso-
pharyngeal swabs. The age difference seen with the full sub-
ject set (Table 3) was no longer present. The male
predominance among AZSAND COVID-19 cases was more

pronounced (61.5%) than in the full subject set but still did not
reach significance (p¼ 0.44). The COVID-19 group had a sig-
nificantly higher proportion with acute lung injury or acute
pneumonia (p¼ 0.004). The groups had similar percentages
with a major neuropathological diagnosis and equal median
scores for Braak stage and Thal amyloid phase. See Supple-
mentary Data Table S1 for more detailed data on all
participants.

Brain Regional Presence of SARS-CoV-2 Gene
Sequences

We published in preprint form (154) our initial results
derived from screening with RT-qPCR for the E gene in 16
brain regions, as well as postmortem serum and CSF, of the
first 20 COVID-19 autopsies as well as 4 control cases (Sup-
plementary Data Table S2). Four COVID-19 cases (20%)
were considered positive with a Ct threshold less than or equal
to 40, with 2 positive cases in the OB and 1 positive case each
in AMY, ENT, middle temporal gyrus, middle frontal gyrus,
dorsal medulla, and leptomeninges, for a total positivity rate
of 7/320 (2.5%) tested brain regions. The brain region with the
highest estimated viral load by cycle number, for both the
BSHRI and Mayo Clinic cases, was the OB. All 9 of the
assayed BSHRI COVID-19 disease cases with whole-body au-
topsy showed above-threshold amplification of the SARS-
CoV-2 E gene sequence in their lung samples. Interpolating
from a synthetic SARS-CoV-2 standard concentration curve

TABLE 3. Demographic, Pneumonia, and Neuropathological Characteristics of All Subjects

Group Age Median

(Range)

Female Acute Lung

Injury or Acute

Pneumonia

ApoE-e4 Major Neuropath Dx Braak Neurofibrillary

Stage Median (Range)

Thal Amyloid

Phase Median

(Range)

N (%) N (%) N (%) N (%)

COVID-19

n¼ 42

81.5 (38–97)* 21 (50%) 23/26 (88%) 8/24 (33%) 24 (57%) 4 (0–6) 3 (0–5)

Control

n¼ 107

87 (52–104) 83 (57%) 64/101 (63%) 31/101 (31%) 69 (47%) 4 (1–6) 3 (0–5)

*Significantly different p¼ 0.02.
A major neuropathological diagnosis is defined as the presence of Alzheimer disease dementia, vascular dementia, hippocampal sclerosis, progressive supranuclear palsy, Parkin-

son’s disease, multiple system atrophy, dementia with Lewy bodies, diffuse Lewy body disease, or frontotemporal lobar degeneration with TDP-43 proteinopathy. Missing data for
lungs are due to not having lungs included in the autopsy. Missing data for ApoE are for determinations not done. ApoE-e4¼ heterozygous or homozygous.

TABLE 4. Demographic, Pneumonia, and Neuropathological Characteristics of Consecutive AZSAND Subjects Autopsied in the
Arizona Pandemic Period From June 2020 Through March 30, 2021

Group Age Median (Range) Female Acute Lung

Injury or Acute

Pneumonia

ApoE-e4 Major Neuropath

Dx N (%)

Braak Neurofibrillary

Stage Median (Range)

Thal Amyloid

Phase Median

(Range)

N (%) N (%) N (%)

COVID-19

N¼ 22

85.5 (66–96) 11/22 (50%) 13/16* (81%) 6/22 (27%) 13/22 (59%) 4 (0–6) 3 (0–5)

Control

N¼ 52

85.9 (52–104) 20/52 (38.5%) 29/41 (71%) 16/52 (31%) 32/52 (61.5%) 4 (1–6) 3 (0–5)

*Significantly different p¼ 0.004.
See Table 3 for explanation of columns.
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(Fig. 2), the highest brain region viral load estimate was ap-
proximately 189 copies of the E gene sequence, in the OB of
case B9 (BSHRI case 20-67), while the lowest load was 0.7
copies, in the ENT of Mayo case 10. Brain loads were gener-
ally much lower than those in the lungs, where the highest vi-
ral load was estimated at 300 000 copies. None of the
postmortem cardiac blood serum and CSF samples, assayed in
8 and 9 BSHRI cases, respectively, had E gene amplification
meeting the Ct 40 threshold. Housekeeping gene (RNAse P
and actin) amplification was adequate for all samples and se-
rial amplified dilutions for RNAse P are plotted in Figure 2.
Threshold E gene amplification was not achieved in any of the
lung, brain, or biofluid samples from the 4 AZSAND non-
COVID-19 control cases.

Since our preprint report, additional RT-qPCR assays on
frozen samples of OB, AMY and ENT were performed, re-
peating the E gene assays and adding assays for the N1, N2,
RdRp, and S genes (Table 2; Supplementary Data Table S3),
and adding one additional COVID-19 case for a total of 21
evaluated. Positivity was again defined as Ct less than or equal
to 40. These assays replicated the 2 positive results in OB and
the 1 positive result for AMY, and detected SARS-CoV-2
RNA in OB from additional cases, giving a new total of 8/21
SARS-CoV-2-positive cases in OB (Table 5) and 8/21 cases
positive in at least one brain region overall. There were no

new positive results for AMY or ENT. All of the 9 BSHRI
COVID-19 cases assayed tested positive for all genes in their
lung samples (Supplementary Data Table S3). None of 4 con-
trol cases (3 with and 1 without non-COVID-19 pneumonia)
tested positive for the E gene in any of the 16 brain regions,
CSF or serum and none of 10 controls (all with non-COVID-
19 pneumonia) tested positive for E, N1/N2, RdRp, or S genes
in samples of lung, OB, AMY, or ENT.

With an alternate Ct cutoff of 35, the results of the addi-
tional SARS-CoV-2 gene sequence screening gave 5 (25%)
positive COVID-19 cases. For all Ct values, see Supplemen-
tary Data Table S3.

Case-Control Gene Expression Differences
Cases and Controls Used for Gene Expression Analysis

COVID-19 cases used for gene expression analysis were
the same original 20 cases as those used to map the gene re-
gional presence of SARS-CoV-2 viral sequences; control
cases were non-COVID-19 AZSAND subjects autopsied in
2018 and 2019, prior to the COVID-19 pandemic (Table 6;
Supplementary Data Table S1). The mean age of the COVID-
19 cases was significantly lower than that of the controls
(p¼ 0.009) but both groups were elderly (medians of 77 and
84, respectively). Of the 9 COVID-19 cases with whole-body
autopsy including lungs, all 9 had microscopic changes consis-
tent with acute lung injury and/or acute bronchopneumonia.
Of control subjects with a postmortem lung examination, 9/20
(45%) had acute pneumonia. The proportions of male sex,
with the apolipoprotein E-e4 allele, or with a major neuropath-
ological diagnosis did not significantly differ between
COVID-19 and control groups; median Braak neurofibrillary
stage and Thal amyloid phase did not differ between groups.

FIGURE 2. Standard curve for obtaining estimated SARS-CoV-
2 RNA copy numbers in samples, constructed with serial
dilutions of commercially obtained synthetic SARS-CoV-2
RNA. Black circles are from synthetic E gene RNA dilutions;
black squares are from synthetic RNAse P gene RNA dilutions.
Also plotted are Ct values for subject samples that were
positive for threshold amplification (�Ct 35) for E gene RNA
(colored symbols, larger symbols are for brain samples,
symbols for lung samples are smaller; some symbols are
superimposed on others). The highest copy numbers were
obtained from lung samples (downward-pointing arrows
show lung samples with higher Ct values), olfactory bulb
samples ([OB], arrows pointing to diamond symbols), and a
temporal cortex sample ([TC], arrow pointing to triangle
symbol). Ent, entorhinal area; Leptos, leptomeninges; AMYG,
amygdala; FC, frontal cortex; B2-B7, B9, B10 are consecutive
BSHRI cases that included lungs in the autopsy. M10 and M11
are Mayo Clinic cases. See Supplementary Data Table S1 for
case details.

TABLE 5. RT-PCR-Positive Brain Regions by Subject and SARS-
CoV-2 Gene Target

Subject Region E Ct N1 Ct N2 Ct RdRp Ct S Ct

20–67 OB 28.21 28.26 28.53 27.89 28.58

20–72 OB 40.74 36.37 37.33 Neg 37.35

20–74 OB 32.37 35.07 35.69 ND 35.99

Mayo 4 OB Neg 37.91 39.12 Neg Neg

Mayo 6 OB Neg 36.75 39.58 Neg 39.07

Mayo 8 OB 37.32 38.15 37.24 Neg 36.94

Mayo 10 OB Neg 33.39 34.62 ND 33.76

Mayo 11* OB 29.46 Neg Neg Neg ND

20–72 AMY 34.23 32.56 34.17 Neg 34.27

Mayo 10 ENT 36.23 Neg Neg ND Neg

*For M11 OB, a second RNA isolation was required but with limited remaining tis-
sue. As a result, less RNA was available for the N1, N2, RdRp, and S assays than was
used for the other cases in the table.

An initial survey targeted the E gene in 16 brain regions as well as blood serum and
CSF in 20 COVID-19 cases. Subsequently, the N1, N2, RdRp, and S genes were tar-
geted in the olfactory bulb (OB), amygdala (AMY), and entorhinal area (ENT). Sam-
ples with Ct of 40 or lower were considered positive; N1 and N2 genes were both
required to be positive in order for the sample to be considered positive. Control cases
were not positive in any brain region. Neg, no amplification; ND, not done. See Supple-
mentary Data Tables S2 and S3 for complete results.
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The OB and AMY were chosen for comprehensive
RNAseq gene expression analyses because of the high preva-
lence of SARS-CoV-2 genomic sequences in OB in COVID-
19 cases, and because of the strong, monosynaptic neuroana-
tomical connections of the OB with AMY.

Differential Gene Expression in Olfactory Bulb and
Amygdala

Results have previously been partially presented in pre-
print form (155). After removing low-quality RNA samples,
the final AMY sample size was 36, of which 18 were from
COVID-19 cases and 18 were from controls. For OB, all 40
samples had adequate RNA quality (20 COVID-19 cases and
20 controls). The samples had a total of 40.2 M reads (range:
20.1–235.6 M), with an average percentage of uniquely
mapped reads of 84.3% (range: 72.8%-90.3%). After analysis,
including adjustment for sex, age, RIN, presence or absence of
a major neurodegenerative disease, and origin of subjects
(Mayo vs BSHRI), we obtained 728 DEGs in AMY (794 upre-

gulated and 934 downregulated) and 5405 DEGs (2546 upre-
gulated and 2859 downregulated) in OB (Fig. 3;
Supplementary Data Tables S4 and S5). The most highly sig-
nificant expression alterations in AMY were IFI6, PPP1R13L,
and PFDN4, whereas UBQLN2, CLCNA, and MAPK1 were
the most significant genes in OBT. The 9 genes with the great-
est expression differences in AMY and OB in terms of normal-
ized count differences, are shown in Figure 4.

Surprisingly, when comparing gene expression in
COVID-19 OB samples that were positive (n¼ 8) or negative
(n¼ 12) for SARS-CoV-2 viral genomic sequences, there
were only 5 DEGs, B2M, SEC16A, OASL, EPN3, and RPL27
(Figs. 5 and 6). Also, comparison of control subjects with and
without autopsy-proven acute pneumonia found only 1 and 2
DEGs in OB and AMY, respectively (results not shown).

Pathway analysis revealed differential processes associ-
ated with AMY and OBT. Notable changes in AMY were en-
richment of immune pathways, including interferon signaling
and the toll like receptor cascade, as well as synaptic pathways
(Fig. 7). In OB, the most upregulated pathways were related to

TABLE 6. Demographic, Pneumonia, and Neuropathological Characteristics of COVID-19 and Control Cases Used for Initial RT-
PCR Brain Regional E Gene Detection (COVID-19 Cases Only) and Gene Expression Analyses

Group Age Median (Range) Female Acute Lung Injury

or Acute Pneumonitis

ApoE-e4 Major Neuropath Dx Braak Neurofibrillary

Stage Median (Range)

Thal Amyloid

Phase Median

(Range)N (%) N (%) N (%) N (%)

COVID-19

N¼ 20

77 (38–93)* 9/20 (45%) 9/9 (100%) 3/10 (30%) 12/20 (60%) 4 (0–6) 3 (0–5)

Control

N¼ 20

84 (71–100) 10/20 (50%) 9/20 (45%) 5/19 (26%) 11/20 (55%) 4 (2–6) 3 (0–5)

*Two-tailed, unpaired t-test p¼ 0.009.
See Table 3 for explanation of column titles.

FIGURE 3. Volcano plot showing the differential expression analysis results comparing COVID-19 cases versus controls in
amygdala (A) and olfactory bulb (B). Upper points represent genes that had significantly different expression in COVID-19 as
compared to controls. Genes on left and right were downregulated and upregulated, respectively, in COVID-19 cases (FDR
p<0.05).
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olfactory signaling, collagen/extracellular matrix modifica-
tion, and integrin and immunomodulatory cellular interac-
tions, while in both regions, synaptic and neuronal pathways
were downregulated (Supplementary Data Tables S6 and S7).

Cell-specific gene enrichment across DEGs revealed
overrepresentation of astrocyte (Ast) and endothelial (End)
associated genes in AMY (Fig. 8); on separate analyses for
upregulated and downregulated DEGs, there was overrepre-
sentation of Ast, End and pericyte (Per) in upregulated genes
and enrichment of excitatory (Ex) and inhibitory (In) neurons
in the downregulated gene set. In OB, there was a significant
cell-specific enrichment of End and Per among upregulated
genes, and enrichment of Ex in the downregulated genes.

WGCNA Analysis

Six co-expression modules were obtained in AMY with
the number of genes in each module ranging from 281 (red
module) to 2947 (turquoise). After eigengene extraction and
differential analysis, no modules were differentially expressed
between COVID-19 and controls in AMY (results not shown).
In OB, 15 co-expression modules were obtained (Fig. 9A)
with the number of genes in each module ranging from 39
(midnight blue) to 1904 (turquoise). Eleven modules were dif-
ferentially expressed between COVID-19 and control
(Fig. 9B), with the top modules being black (downregulated in
COVID-19) and red (upregulated), both with FDR¼ 1.68�11.
Gene ontology (GO) and cell enrichment analysis was per-
formed on these 11 modules, finding GO enriched classes in
8 of the modules (Supplementary Data Table S8). The top 2
modules (black and red) were enriched for ribosome/RNA me-
tabolism and cilium/taste, respectively. Other modules were
enriched for development/angiogenesis (green, upregulated,
and enriched for End and Per), immune system (tan, upregu-
lated), and synaptic signaling (green-yellow and turquoise,
both downregulated and enriched for neuronal cell genes).
The 2 synaptic modules were not related to each other despite
a similar functional enrichment. The summary of the WGCNA

A B

FIGURE 4. The 9 genes with the greatest expression differences in amygdala (A) and olfactory bulb (B).

FIGURE 5. Volcano plot showing the differential expression
analysis results comparing OB in COVID-19 cases that were
RT-PCR-positive (right side) or negative (left side) for SARS-
CoV-2 RNA sequences. Uppermost 5 points represent genes
that had significantly different expression in COVID-19 as
compared to controls. All other genes were not differentially
expressed.
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analysis, including modules, GO and cell-specific gene enrich-
ment, and a list of the hub genes are shown in Table 7.

Case-Control Histopathology Comparison
Attributable Histopathology and Typical Viral
Histopathology

As mentioned above, there was not a significant differ-
ence between COVID-19 cases and controls in the proportions
with a major neurodegenerative disease diagnosis or in their
AD-related neuropathology.

Only 2 subjects had clinical and postmortem findings that
were probably attributable, by temporal association, to their ter-
minal COVID-19 illness (154). One Mayo Clinic case (Mayo
10) had acute encephalitis, with transtentorial herniation, acute
hemorrhages of the temporal lobe, thalamus and pons, and neu-
ropil infiltration by B- and T-lymphocytes and macrophages
(Fig. 10A–F); the ENT was RT-PCR-positive for SARS-CoV-2.
One BSHRI subject (20–40) had a large acute middle cerebral
artery territory ischemic and hemorrhagic infarction (Fig. 10G–
I) that was clinically documented to have occurred several days
after the clinical onset of his COVID-19 disease, and was ac-
companied by bilateral lower extremity arterial thromboses; no
brain region from this case was RT-PCR-positive.

Overall, acute or subacute infarctions and/or acute
hypoxic-ischemic microscopic changes were seen in 4/42
(9.5%) of the COVID-19 cases compared to 11/107 (10.3%) of
control cases (ns). Acute hemorrhages or microhemorrhages
were present in 4/42 COVID-19 cases (9.5%) and 3/107
(2.8%) of the control cases (not significantly different).

No intracytoplasmic or intranuclear viral inclusions
were seen in any of the cases, including the COVID-19 case
with acute encephalitis. Two COVID-19 cases had 1 and 2
microglial nodules, both in the caudal dorsolateral medulla,
but one of these (20–45) was not RT-PCR-positive for any
SARS-CoV-2 gene in any brain region and the other (Brod-
mann 21-04) was only positive for the S gene, only for one
replicate and only in the OB. No control case had microglial
nodules. Significant perivascular cuffing with mononuclear
cells was only seen in the Mayo Clinic case 10 with acute en-
cephalitis. Definite perivascular cuffing was not seen in any of
the paraffin-embedded, H&E-stained sections from other
cases but in thick (80mm) large-format sections encompassing
entire cerebral lobes, occasional blood vessels in the centrum
ovale had sparse to moderate cuffing (154). However, on fur-
ther examination of additional cases this was seen in almost
all cases and controls. These thick, large-format sections were
only available for the BSHRI autopsies. Perivascular demye-
lination suggestive of ADEM was not seen in any case or
control.

FIGURE 6. The 5 genes that were differentially expressed in the OB on the basis of being RT-PCR-positive or negative for SARS-
CoV-2 genomic sequences. Cþ/Pþ, COVID-19 PCR-positive; Cþ/P�, COVID-19 PCR-negative.
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b-Amyloid Precursor Protein White Matter Staining in
COVID-19 and Control Cases

As immunohistochemical stains for APP have been sug-
gested to be a “signature” change of hypoxic leukoencephal-
opathy and COVID-19 brain disease (54, 55), we compared
the prevalence and intensity of white matter APP staining in
subsets of COVID-19 and control cases (156) (see Supplemen-
tary Data Table S1 for subject details). COVID-19 cases were
younger (77.5; SD 2.9) than non-COVID-19 cases (84.0; SD
2.0); the difference was borderline significant (p¼ 0.07).
Males made up 11/20 and 10/20 of the COVID-19 and non-
COVID-19 cases, respectively (ns). Both COVID-19 and non-
COVID-19 cases had a wide range of neuropathological diag-
noses. Ten non-COVID-19 control cases had autopsy-
validated acute pneumonia while 10 did not.

Figure 11 shows photomicrographs of APP staining in
COVID-19 and non-COVID-19 control cases. Positive APP
white matter staining was seen in at least 1 of the 2 brain
regions in 14/20 COVID-19 cases and in 12/20 of the non-
COVID-19 control cases (ns). Cases were positive in the pre-

central gyrus in 11/20 COVID-19 and 5/20 control cases (ns)
while in the cingulate gyrus the ratios were 12/20 and 10/20,
respectively (ns).

Comparing density scores from both brain regions com-
bined, the mean scores for COVID-19 cases were higher than
those for controls of both types together (0.91 vs 0.44, Mann-
Whitney p¼ 0.026) but not significantly different (0.91 vs
0.60, p¼ 0.35) when restricting to controls with pneumonia.
Region-specific pairwise scores were not significantly differ-
ent between COVID-19 and controls of both types (Kruskal-
Wallis analysis of variance with Dunn’s multiple comparisons
pair-wise testing). In both brain regions, scores were not sig-
nificantly different between BSHRI and Mayo Clinic COVID-
19 cases. Among control cases, when considering both brain
regions together, cases with pneumonia had significantly
higher scores (0.60 vs 0.27, Mann-Whitney p¼ 0.044).

When cases were divided by the presence or absence of
a major neuropathologically defined neurodegenerative disor-
der, there were no significant differences in APP scores be-
tween the 2 groups, either when restricting to one brain region
or when scores from both brain regions were grouped. When

FIGURE 7. The top 10 pathways enriched in amygdala and olfactory bulb. All: all DEGs are shown regardless of up- or
downregulation. Up: DEGs upregulated in COVID-19 subjects. Down: DEGs downregulated in COVID-19 subjects.
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APP scores from cases and controls in both areas were com-
bined, males had significantly greater scores than females
(0.89 vs 0.43, Mann-Whitney p¼ 0.032). There was no signif-
icant correlation between age and APP scores for either brain
region.

Assessment of Olfactory Bulb Primary Sensory
Afferents and Other Neuronal Constituents

As results from the gene expression comparison indi-
cated several-fold greater numbers of DEGs in the OB as com-
pared to AMY, this suggested a greater impact of COVID-19
on the OB. Unexpectedly, this was apparently not due to a
higher rate, in the OB, of detected SARS-CoV-2 viral RNA
sequences, as there were only 5 DEGs when comparing RT-
PCR-positive and negative OB samples. The neuronal compo-
sition of the OB was therefore assessed with immunohisto-
chemical stains for SNAP-25, a general marker of neuronal
synapses, TH, a marker of a specific OB neuronal type, and
OMP-1, a specific marker of afferent fibers originating from
the nasopharyngeal olfactory sensory mucosa, as previously
published in preprint form (141). Table 8 shows basic data for
the cases and controls studied. COVID-19 cases did not signif-
icantly differ in any category from the non-COVID-19 cases.

Supplementary Data Table S1 indicates the cases and controls
that were used for each stain.

Figure 12 shows photomicrographs of OMP-1, TH and
SNAP-25 immunoreactivity in COVID-19 and non-COVID-
19 control cases. Positive OMP-1 staining was restricted to the
peripheral nerve fiber and glomerular layers while TH and es-
pecially SNAP-25 were more diffusely distributed throughout
the bulb. Qualitative examination of the OMP-1-stained sec-
tions indicated lighter staining of synaptic glomeruli in OB of
COVID-19 cases as compared with controls (arrows in
Fig. 12A, G).

Figure 13 shows comparisons of the area occupied by
OMP-1, TH and SNAP-25 staining in OB of COVID-19 and
control cases. The immunoreactive area occupied by OMP-1
staining was significantly reduced in COVID-19 cases, to
about 60% of that in control cases (p¼ 0.006). Analysis of var-
iance showed an overall difference in OMP-1 immunoreactiv-
ity between the groups when controls were subdivided by the
presence or absence of non-COVID-19 pneumonia
(p¼ 0.022); pairwise post hoc significance testing showed sig-
nificant differences between the COVID-19 group and the
controls without pneumonia (p¼ 0.048) but no differences be-
tween the COVID-19 group and the controls with pneumonia.
There was no statistical difference between controls with and
without pneumonia.

FIGURE 8. Cell-specific gene enrichment among DEGs in amygdala and olfactory bulb. Gene classes significantly enriched are
indicated with an asterisk (FDR < 0.05). Ast, astrocytes; END, endothelial cells; Ex, excitatory neuron; In, inhibitory neuron; Mic,
microglia; Oli, oligodendroglia; Opc, oligodendroglial precursor cells; Per, pericytes.
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Analysis of variance showed no significant group differ-
ences for TH while for SNAP-25 the group difference was sig-
nificant (p¼ 0.029), with significantly less SNAP-25 staining
in controls with pneumonia as compared to controls without
pneumonia (p¼ 0.025) but no significant differences between
COVID-19 cases and all controls, or between COVID-19
cases and controls subdivided by presence or absence of
pneumonia.

As COVID-19 cases differed with respect to the pres-
ence or absence of OB SARS-CoV-2 RNA sequences, we also
compared immunoreactivity for the 3 proteins in the PCR-
positive and PCR-negative COVID-19 cases versus all con-
trols. For OMP-1, analysis of variance showed a significant
difference between groups (p¼ 0.02); post hoc testing showed
a significant difference between OBT-PCR-negative COVID-
19 cases and controls (p¼ 0.027) but no significant difference

between OBT-PCR-positive cases and controls (p¼ 0.344).
Analysis of variance of the same groups for TH or SNAP-25
staining showed no significant group differences (p¼ 0.239
and 0.714, respectively).

Microglial Assessment in Olfactory Bulb, Amygdala and
Cerebellar Cortex

As results from the gene expression comparison indi-
cated enrichment of immune pathways, including interferon
signaling and the toll like receptor cascade, and as microglia
are the primary immune effector cells in the brain, the area
fraction of brain regions occupied by Iba1, a pan-microglial
marker, and by LN3, a marker of HLA-DR and hence micro-
glial activation, were immunohistochemically assessed. Ta-

FIGURE 9. Dendrogram representing the relationship between WGCNA modules from OB.
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ble 9 shows basic data for the cases and controls studied. Due
to less remaining OB tissue for Mayo Clinic cases, these were
not included. Other than for age in the AMY and cerebellum
(CBL) subsets, COVID-19 cases did not significantly differ in
any category from the non-COVID-19 cases.

Figure 14 shows representative photomicrographs of
staining for Iba1 in COVID-19 and control cases in AMY,
CBL, and OB, and Figure 15 shows results of the quantifica-
tion of the area occupied by the staining. The area occupied by
Iba1-immunoreactive microglia was significantly reduced in
AMY and CBL of COVID-19 subjects. The control group did
not differ with presence or absence of pneumonia and so these
were combined into a single control category for the graphs.
The area of OB occupied by Iba1-stained microglia did not
differ between COVID-19 and control cases.

The area occupied by LN3-immunoreactive microglia
did not differ between cases and controls, in AMY, CBL, and
OB, whether or not controls were subdivided by presence or
absence of non-COVID-19 pneumonia (results not shown).

Cytokine and Protein Arrays in Amygdala, Blood
Serum, and CSF

The results for gene expression in OB and AMY were
suggestive of alterations in inflammation or immune-related
proteins, and prior reports have generally agreed that there are
elevated levels of circulating cytokines in subjects with
COVID-19. Therefore, we wished to directly assess the con-
centrations of a set of cytokines in AMY, as well as in post-
mortem blood serum, in a subset of subjects using a
commercial multiplex antibody array (RayBiotech, Inc.; see
Materials and Methods). Table 10 shows basic data for the
cases and controls studied. COVID-19 cases from which

AMY samples were analyzed were significantly younger than
the comparison control group, but otherwise, cases and con-
trols did not significantly differ in any category.

Results for the AMY samples showed significant differ-
ences between groups in 7 of the 20 measured cytokines, all
with decreased concentrations in the COVID-19 samples
(Fig. 16). AMY cytokine concentrations in control cases with
or without pneumonia did not differ significantly (results not
shown). Only one cytokine comparison (MMP-9) was signifi-
cant in serum samples (Fig. 17); however, all 5 comparisons
with the lowest p values showed increased concentrations in
the COVID-19 serum samples.

DISCUSSION
The causes of COVID-19 neurological effects (1–10)

are unclear, as most studies (11–40) agree that SARS-CoV-2
brain invasion occurs in only a relatively small fraction of fatal
COVID-19 cases, and when present, viral copy numbers are
generally very low, perhaps representing only broken-down
genomic fragments. The detection of subgenomic SARS-
CoV-2 sequences has been suggested to prove that in situ viral
replication has taken place, but even in COVID-19 lung or
throat, only a subset of cases have had these (21, 157).

In our comprehensive survey (154) of 16 brain regions
of 20 COVID-19 cases, SARS-CoV-2 RNA was detected in
only 2.5% (7/320) of sampled brain regions, and in only 4 of
20 cases (20%). However, differing PCR protocols have dif-
fering sensitivity and specificity (16, 19, 40, 158–161) and
therefore the true prevalence of viral brain entry may be diffi-
cult to establish. When we repeated our RT-PCR screening on
OB, AMY and ENT with additional primers and probes for
the E, N1, N2, RdRp, and S genes, we found more cases with

TABLE 7. Summary of the WGCNA Analysis in OB, Including the Number of Genes, Differential Analysis Between COVID-19
Cases and Controls, Enrichment of Pathways and Cell-Specific Genes, and Hub Genes for Each Co-Expression Network

Module Genes (n) Direction COVID-

19 vs CTL

Adj-p Cell Pathways Hub Gene

Black 459 DOWN 1.7E�11 – Ribosome/RNA

metabolism

CLSTN1

Red 587 UP 1.7E�11 – Cilium/Taste DMTF1

Purple 223 DOWN 3.5E�06 – Mitochondrion PJA2

Blue 1248 UP 3.4E�05 – – ZNF767P

Green 726 UP 6.5E�04 End, Per Development,

Angiogenesis

COL1A2

Mid. blue 39 DOWN 6.5E�04 Ast – ENHO

Cyan 59 UP 2.0E�03 – – BTBD19

Yellow 848 DOWN 3.1E�03 Ast, Oli Vesicles NEBL

Grn/yell 105 DOWN 1.0E�02 Ex, In Synaptic signaling CNR1

Turquoise 1904 DOWN 1.2E�02 Ex, In Synaptic signaling CAMK2B

Tan 103 UP 1.5E�02 – Interferon/Immune PARP9

Magenta 244 – 0.134 – – LOC100996573

Salmon 87 – 0.153 – Protein folding DNAJB1

Brown 1043 – 0.210 Oli, Ast, Per Development,

Cytoskeleton

SORBS1

Pink 314 – 0.210 Mic Immune NCKAP1L
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Ct 40 or lower in OB, for a total of 8/21 (38%), but no addi-
tional new positive regions.

We found only 2/42 cases (4.8%) that had major post-
mortem findings that were likely to have been attributable to
their terminal COVID-19 illness (154). Only one of these was
histopathologically typical of viral infection, with acute en-
cephalitis and neuropil infiltration by lymphocytes and macro-
phages, as well as being RT-PCR-positive for SARS-CoV-2 in
an affected area. Herpes encephalitis was considered but
thought less likely due to the lack of the characteristic intranu-
clear inclusions. As histological findings consistent with viral
encephalitis are rare in routine autopsies, and as viral RNA
was present, we think that this may be one of the very few
cases of encephalitis due to SARS-CoV-2.

The other case had a large acute middle cerebral artery
territory ischemic and hemorrhagic infarction several days
after the clinical onset of his COVID-19 disease, accompa-
nied by bilateral lower extremity arterial thromboses; no
brain region from this case had SARS-CoV-2 RNA
detected. Although it is difficult to attribute observed pa-
thology, in any single autopsy, to COVID-19 as opposed to
non-specific agonal processes, such widespread thromboses
were reportedly common autopsy findings early in the pan-
demic (15, 20, 30, 90). The quick standardized adoption of
prophylactic subcutaneous low-dose heparin may have been
effective in minimizing these, but in this subject in our
study, it is possible that it was administered too late in his
illness.

FIGURE 10. (A-F) Mayo Clinic COVID-19 case 10, a 38-year-old man. Neuropathological gross examination was consistent with
brain swelling causing transtentorial uncal herniation and acute hemorrhages (arrows A and A inset, B and C). Microscopic
hemorrhage was present in temporal lobe (D), with fibrinoid vascular necrosis in the pons (E) and neuropil infiltration with CD-
68-immunoreactive macrophages (F). (G-I) Banner Sun Health Research Institute (BSHRI) COVID-19 case, a 74-year-old man.
Clinical findings indicated a massive acute left middle cerebral artery territory ischemic infarct, as shown in the MRI image (G,
white arrows). Gross examination of the brain at autopsy showed hemorrhage within the cerebral cortex (H). Widespread areas
within the left middle cerebral artery distribution showed acute ischemic infarction and/or acute hypoxic-ischemic changes, with
perikaryal cytoplasmic eosinophilia and nuclear pyknosis of cortical pyramidal neurons (I).

J Neuropathol Exp Neurol • Volume 81, Number 9, September 2022 SARS-CoV-2 in Olfactory Bulb and Brain Regions

681



Acute or subacute infarctions and/or acute hypoxic-
ischemic microscopic changes were not significantly more
common in 42 COVID-19 cases than in 107 controls (9.5% vs
10.3% for controls), nor were acute hemorrhages or microhe-
morrhages (9.5% vs 2.8%). Staining for APP, a presumptive
marker of agonal hypoxia-ischemia and reported in COVID-
19 cases (54, 55), was not more common in COVID-19 cases
than in controls (156) but had significantly higher density
scores when compared with controls, although not in compari-
son to controls with non-COVID-19 pneumonia.

Microvascular, acute and subacute ischemic, and/or hem-
orrhagic lesions (4, 11, 13, 20, 26, 30, 33, 35, 36, 38, 39, 45–50,

53–62) have frequently been reported in COVID-19 but these
are also common in unselected autopsy series. We found that
acute and subacute ischemia, infarction, and hemorrhage were
present in the brains of up to 14% of 691 consecutive pre-
COVID-19 autopsies with or without concurrent autopsy-
proven pneumonia (162). In comparison, in reviews of COVID-
19 publications, reported clinically determined rates of acute
brain infarction or hemorrhage range from 0.5% to 20% (1, 4, 5,
13, 25, 26, 28, 29, 32, 34–36, 38, 39, 45–48, 53–55, 156, 163–
175). Variability between COVID-19 reports may be at least
partially due to the delayed introduction of anti-coagulant
agents as standard COVID-19 therapy (176, 177).

No intracytoplasmic or intranuclear viral inclusions
were seen in any of the cases, including the COVID-19 case
with acute encephalitis. Microglial nodules were rare, limited
to 2 COVID-19 cases without local SARS-CoV-2 detected.
Significant perivascular cuffing with mononuclear cells was
only seen in the Mayo Clinic encephalitis case. Perivascular
demyelination suggestive of ADEM was not seen in any case
or control. The lack of specific viral histopathology in
COVID-19 brains has had generally wide agreement in the lit-
erature (12–16, 18, 19, 25, 26, 28, 29, 32–34, 36, 40, 46–55,
113, 163, 178).

Overall, we detected numerous gene expression changes
in both OB and AMY from COVID-19 cases, but with approx-
imately 7-fold greater numbers of DEGs in OB. No co-
expression network differences were detected in AMY
whereas we detected 11 modules with significant changes in
OB; these may suggest possible critical pathogenic processes
and therapeutic targets. At the pathway level, we detected
some commonalities between regions, including the downre-
gulation of synaptic genes and upregulation of some immune
system genes, but also some differences found only in OB, in-
cluding enrichment of olfactory/taste receptor genes. The hub
gene in the co-expression network enriched for taste receptors
and signaling was DMTF1 (cyclin D binding Myb-like tran-
scription factor 1), encoding for a transcription factor induced
by the oncogenic Ras signaling pathways and functioning as a
tumor suppressor.

Neuroinflammation has been widely reported in
COVID-19 disease (62, 179, 180) but relatively few reports
characterize this in detail and broad confirmation is lacking.
The hub gene detected in the immune module was PARP9
(poly(ADP-ribose) polymerase family member 9) which is in-
volved in interferon-mediated antiviral defense (181, 182). It
has been recently demonstrated that the ectopically expressed
SARS-CoV-2 Nsp3 macrodomain hydrolyzes PARP9/
DTX3L-dependent ADP-ribosylation induced by IFN signal-
ing, suggesting a role for this modification as a putative effec-
tor of the IFN response (183). Also, previous reports
demonstrated an induction of interferon signaling genes and
IFNc-induced STAT1 phosphorylation (181, 182).

We detected a dysregulation of synaptic and neuronal
genes in both OB and AMY, as demonstrated by pathways
and WGCNA analysis. Some of the relevant genes were the
hubs of the 2 distinct WGCNA co-expression networks in-
volved in OB, enriched for synaptic and neuronal processes as
well as for both excitatory and inhibitory neuronal genes.
CNR1 (cannabinoid receptor 1 [CB1]) is the hub of the green-

FIGURE 11. Photomicrographs of cingulate gyrus and precentral
white matter APP staining in COVID-19 cases (A-D) and controls
(E-H). (A) Low-magnification, cingulate gyrus, COVID-19 case.
(B) Low-magnification, precentral gyrus, COVID-19 case. (C)
Medium-magnification, precentral gyrus, COVID-19 case. (D)
High-magnification, cingulate gyrus, COVID-19 case. (E) Low-
magnification, cingulate gyrus, control case, with non-COVID-19
pneumonia. (F) Low-magnification, precentral gyrus, control
case, with non-COVID-19 pneumonia. (G) Medium-
magnification, precentral gyrus, control case, with non-COVID-
19 pneumonia. (H) High-magnification, cingulate gyrus, control
case, with non-COVID-19 pneumonia. Bar in E also serves for
A¼200 mm. Bar in F also serves for B¼100 mm. Bar in G also
serves for C¼50 mm. Bar in H also serves for D¼50 mm.
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TABLE 8. Demographic, Pneumonia, and Neuropathological Characteristics of COVID-19 and Control Cases Used for Olfactory
Bulb Neuronal Assessment

Group Age Median (Range) Female Acute Lung Injury or

Acute Pneumonia

ApoE-e4 Major

Neuropath Dx

Braak Neurofibrillary

Stage Median (Range)

Thal Amyloid

Phase Median

(Range)N (%) N (%) n (%) n (%)

COVID-19

n¼ 18

81 (67–93) 7/18 (39%) 14/15 (93%) 5/18 (28%) 10/18 (56%) 4 (1–6) 3.5 (0–5)

Control

n¼ 28*

87 (71–103) 10/28 (36%) 15/28 (54%) 7/27 (26%) 15/27 (55%) 4 (2–6) 3 (0–5)

*For control group N, OMP-1¼ 27, TH¼ 22; SNAP-25¼ 23.
See Table 3 for explanation of column titles and Table 1 for listing of cases used for each OB neuronal marker.

FIGURE 12. Photomicrographs of representative OMP-1, TH, and SNAP-25 immunoreactivity in (A-F) non-COVID-19 control
cases and (G-L) COVID-19 cases at low (A-C, G-I) and higher (D-F, J-L) magnifications. The higher magnifications were used
for image analysis. Columns of images are, from left to right, portraying OMP-1, TH, and SNAP-25 staining of olfactory bulb.
Note the loss and/or decreased staining of synaptic glomeruli (arrows) in COVID-19 olfactory bulb.
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yellow module and mediates the biological activity of both en-
dogenous and exogenous cannabinoids centered on psychoac-
tive functions (184). There are multiple lines of evidence
regarding the effects of cannabinoid receptors on viral infec-
tion. Activation of CB1 inhibits the production of pro-
inflammatory mediators, such as NO or TNFa, and inhibits
Ca2þ channels. On one hand, the activation of CB1 increases
the progression of viral diseases through an immunosuppres-
sive effect, but on the other hand it might inhibit the immune
effects derived from the viral infection by eliciting an immu-
noprotective profile (184). In our study we see a dysregulation

of the network regulated by CB1, and we hypothesize this
might be a feedback effect aimed at reducing the neuroinflam-
matory state induced by the viral infection.

The hub gene of the turquoise module (n¼ 1904 genes)
is CAMK2B (calcium/calmodulin dependent protein kinase II
beta) and is involved in dendritic spine and synapse formation,
and neuronal plasticity and development (185). CAMK2B
mutations and mRNA alterations have been associated with
neurodevelopmental diseases, epilepsy, intellectual disability,
and schizophrenia (186–188). Cognitive and attention deficits,
new-onset anxiety, depression, psychosis, and seizures have

FIGURE 13. Quantification results for OMP-1, TH, and SNAP-25 immunoreactivity for each group. Shown are controls grouped
together or separated by presence or absence of pneumonia. Means and standard deviations are shown. OMP-1 is significantly
depleted in COVID-19 cases relative to all controls and relative to controls without pneumonia. SNAP-25 staining is significantly
depleted in control subjects with pneumonia as compared to control subjects without pneumonia. *p<0.05.

TABLE 9. Demographic, Pneumonia, and Neuropathological Characteristics of COVID-19 and Control Cases Used for Microglial
Assessment

Group Age Median

(Range)

Female Acute Lung Injury

or Acute

Pneumonia

ApoE-e4 Major Neuropath

Dx

Braak Neurofibril-

lary

Stage Median

(Range)

Thal Amyloid

Phase Median

(Range)

N (%) n (%) N (%) n (%)

Amygdala

COVID-19

n¼ 29

78* (38–93) 15/29 (52%) 14/15 (93%) 5/20 (25%) 19/29 (65%) 4 (0–6) 3 (0–5)

Control

n¼ 27

86 (71–103) 12/27 (44%) 15/27 (55.5%) 5/27 (18.5%) 17/27 (63% 4 (0–5) 3 (0–5)

Cerebellum

COVID-19

n¼ 28

78.5* (38–93) 14/28 (50%) 14/15 (93%) 5/19 (26%) 18/28 (64%) 4 (0–5) 3 (0–5)

Control

n¼ 30

86 (71–103) 13/30 (43%) 16/30 (53% 6/30 (20%) 17/30 (57%) 4 (2–6) 3 (0–5)

Olf. Bulb

COVID-19

n¼ 18

81 (67–93) 7/18 (39%) 14/15 (93%) 5/18 (28%) 9/18 (50%) 4 (1–6) 3.5 (0–5)

Control

n¼ 29

87 (71–103) 12/29 (41.3) 16/29 (55%) 6/29 (21%) 17/29 (59%) 4 (2–6 3 (0–5)

*Unpaired, 2-tailed t-test p< 0.005.
See Table 3 for explanation of column titles.
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been observed in some patients with COVID-19, unrelated to
respiratory insufficiency (189). These symptoms, as well as
the dysregulation of the CAMK2B network synaptic genes,

may be a consequence of circulating cytokine alterations in-
duced by COVID-19 infection (190–192). CAMK2B might
therefore be a promising target.

FIGURE 14. Photomicrographs of immunohistochemical Iba1 staining of microglia in control subjects (A-C) and COVID-19 cases
(D-F), in amygdala (A, D), cerebellar cortex (B, E), and olfactory bulb (C, F). Scale bar in B serves for all frames.

FIGURE 15. Quantification results for Iba1 staining of microglia in COVID-19 and control subjects. The control group did not
differ with presence or absence of pneumonia and so these were combined for the graphs. The area occupied by Iba1-
immunoreactive microglia is significantly reduced in AMY and CBL of COVID-19 subjects. Means and standard deviations are
shown.
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One of the OB-specific processes we identified was an-
giogenesis/blood vessel development (WGCNA—green mod-
ule, Fig. 9) with upregulation of these processes in COVID-19
patients. Also, there was enrichment of endothelial cell and
pericyte specific genes in OB. The hub gene in the green mod-
ule is COL1A2 (collagen type I alpha 2 chain), encoding for
the a2 polypeptide of Type I collagen, a powerful angiogene-
sis inducer (193). SARS-CoV-2 has been hypothesized to en-
ter brain endothelial cells activating neutrophils,
macrophages, and thrombin production, promoting micro-
thrombi deposition, capillary congestion and ischemic lesions
and disturbing neurotransmitter synthesis (31, 194). Angio-
genesis is a response against tissue damage and hypoxia, and
in COVID-19 has been observed in different tissues, including
the brain (195). COL1A2 might potentially be a candidate ther-
apeutic target to reverse/minimize the microvascular damages
induced by COVID-19 neuroinflammation.

While both OB, and to a lesser extent, AMY, showed
pronounced gene expression changes in COVID-19, the
changes in OB were several-fold more numerous (5405 DEGs
in OBT vs 728 in AMY). This difference, as well as our find-
ing that OB is the most likely brain region to harbor SARS-
CoV-2, strongly supports the OB as the most probable CNS
entry site, in agreement with suggestions by prior studies (11,
36, 40, 63, 64, 196–200). Surprisingly, however, there were
only 5 OB DEGs between COVID-19 cases with and without
detected SARS-CoV-2 RNA sequences in OB. This remark-
able finding, along with the widely documented hyposmia in
many COVID-19 patients (64–66), led us to examine the
olfactory mucosal afferents to OB. Immunohistochemical as-
sessment of OMP-1, a specific marker of these afferents (201–
203) that is severely depleted in animal model lesions of olfac-
tory epithelium (204–208), revealed a 60% reduction in
COVID-19 OB across both SARS-COV-2 RT-PCR-positive
and -negative OBs. As spontaneous discharge of olfactory epi-
thelial afferents dictates intra-OB neurophysiological activity
and connectivity (208–210), it appears possible that deafferen-

tation during COVID-19 is responsible for the majority of our
observed OB transcriptional changes.

Resultant transsynaptic effects might be mediating
many of the AMY gene expression changes. The AMY and
other brain regions have monosynaptic connections with the
OB. Olfactory stimulation activates neurons of the AMY
(211), while olfactory bulbectomy in mice has been reported
to cause piriform cortex reactions including activation of inter-
neurons, apoptosis of pyramidal neurons and downregulation
of regulatory pathways (212–216). Recent imaging studies
(217–219) are consistent with COVID-19-related transsynap-
tic selective atrophy and/or gray matter changes of olfactory
system brain structures, including OB, primary olfactory cor-
tex, AMY, parahippocampal gyrus, and orbitofrontal cortex.
Metabolic imaging with 18F-FDG PET in patients with “long
COVID” found hypometabolism in the AMY, hippocampus,
and bilateral rectal and orbital gyri (220), similarly to the de-
creased cerebral glucose utilization reported after olfactory
bulbectomy in an animal model (221).

Transsynaptic changes following olfactory deafferenta-
tion may have diverse behavioral effects. Olfactory bulbec-
tomy is the basis of a rat model of depression (222–227)
associated with inflammatory and intermediate early gene ex-
pression in the AMY, and olfactory bulbectomy has been asso-
ciated with memory and cognitive deficits thought to be
related to basal forebrain cholinergic and/or glutamatergic
effects (228–232). As OB deafferentation in animal models,
like hyposmia in COVID-19 subjects, is most often reversed
within months of the initial lesion or infection, it seems doubt-
ful, however, that transsynaptic effects and any associated
neurological symptoms would persist over a longer term al-
though this deserves investigation.

A surprising finding of our studies was the areal de-
crease in Iba1-labeled microglia in both AMY and CBL, with
no change in LN3-labeled (“activated”) microglia. Together
with the reduction of several AMY cytokines, this suggests a
significant COVID-19-associated immunosuppression of

TABLE 10. Demographic, Pneumonia, and Neuropathological Characteristics of COVID-19 and Control Cases Used for Cytokine
Array Analyses

Group Age Median

(Range)

Female Acute Lung In-

jury or Acute

Pneumonia

ApoE-e4 Major Neuropath Dx Braak Neurofi-

brillary Stage

Median (Range)

Thal Amyloid

Phase Median

(Range)

n (%) N (%) n (%) n (%)

Serum

COVID-19

n¼ 15

84 (73–96) 8/15 (53%) 9/12 (75%) 4/15 (27%) 10/15 (67%) 4 (2–6) 4 (0–5)

Control

n¼ 7

83 (60–103) 2/7 (29%) 1/5 (20%) 3/7 (43%) 4/7 (57%) 5 (4–6) 3 (0–5)

Amygdala

COVID-19

n¼ 26

78* (38–93) 12/26 (48%) 12/13 (92%) 5/17 (28%) 17/26 (63%) 4 (0–6) 4 (0–5)

Control

n¼ 24

87.5 (71–100) 10/24 (42%) 15/24 (62.5%) 5/23 (22%) 14/24 (58%) 4 (2–6) 3 (0–5)

*Two-tailed, unpaired t-test p¼ 0.005.
See Table 3 for explanation of column titles.
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brain immune effector cells. Although immunosuppression as
a result of acute COVID-19 disease might seem unlikely, there
have been reported indications of this, including reduced num-

bers, gene expression and morphological abnormalities of
monocytes (233–236) as well as disrupted germinal centers
and dendritic cell networks of lymph nodes (237–239); these

FIGURE 16. Scatter plots showing results for cytokines that showed significant group differences in amygdala samples. All 7
comparisons demonstrated decreased concentrations in COVID-19 cases relative to controls. The control group did not differ
with presence or absence of pneumonia and so these were combined for the graphs. Means and standard deviations are shown.
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cell types are homologues of microglia. An “exhaustion-like”
NK-cell phenotype has been described in COVID-19 (240)
that may be related to persistent exposure to inflammatory sig-
nals such as IL-15, and may be analogous to the “dystrophic”
microglia seen in a variety of CNS pathologies (241–245). We
did not find a significant change in Iba1 staining in OB, per-
haps due to the additional, deafferentation-induced, microglial
stimulus that was not present in CBL or AMY.

There are considerable interindividual differences in the
COVID-19 circulating immune profile, as well as changes
during the clinical course, with some evidence of an early im-
munosuppressive or maladapted immune response (233–236,
240, 246). Early lymphopenia, including decreases in circulat-
ing CD4 and CD8 cells, is relatively common. While the atten-
tion has been on “cytokine storm” in acute COVID-19, this
may be an oversimplification. For example, elevations in IL-6
have been identified not only in acute COVID-19 but also in

other critical illnesses such as sepsis and acute respiratory dis-
tress syndrome, and while the pro-inflammatory effects of IL-
6 are well known, it may also play an anti-inflammatory role.
Complicating such scenarios is the likelihood that the circulat-
ing cytokine profile evolves differently between subjects and
day-to-day in the initial days and weeks of the acute illness
(246, 247). Generally, however, the immune response trig-
gered by COVID-19 infection results in an increase of serum
cytokines including IL-1, IL-6, IL-10, and TNF-a (248, 249)
and this is paralleled to some extent in our finding of eleva-
tions of 4 cytokines, IL12p80, GRO, VEGF, MIP-1a, and
MMP-9, in postmortem COVID-19 blood serum.

An important issue is whether or not COVID-19 lower
respiratory disease elicits more intense systemic repercussions
than typical acute pneumonia. Our investigations (112, 156,
162) indicate that acute or subacute ischemic changes, infarc-
tions or hemorrhages are probably not more common in

FIGURE 17. Scatter plots showing results for cytokines that showed group differences in postmortem serum samples. All 5
comparisons demonstrated increased concentrations in COVID-19 cases relative to controls, but only 1 of 5 comparisons reached
the significance level. The control group did not differ with presence or absence of pneumonia and so these were combined for
the graphs. Means and standard deviations are shown.
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COVID-19 than they are in subjects dying without COVID-19
or with or without non-COVID-19 acute pneumonia. Early
adoption of low molecular weight heparin therapy may have
reduced thromboembolism in our study subjects, in compari-
son with COVID-19 decedents in the first few months of the
pandemic. Pronounced differential gene expression in both
AMY and OB was present when comparing COVID-19 and
controls but there were only 2 and 1 DEGs in these regions
when comparing controls with and without pneumonia. Stain-
ing for APP, a marker of acute or subacute white matter axonal
damage, was significantly more intense in COVID-19 subjects
when compared with all controls but not when compared with
controls with non-COVID-19 pneumonia. In the OB, the sig-
nificant difference in OMP-1 staining seen when comparing
COVID-19 cases with all controls was no longer significant
when the comparison group was limited to controls with pneu-
monia; there was no statistical difference between controls
with and without pneumonia. Staining for TH was not signifi-
cantly different between groups but SNAP-25 staining, while
not differing between COVID-19 cases and controls, was sig-
nificantly less in controls with pneumonia as compared to con-
trols without pneumonia. Altogether, these mixed results
suggest that COVID-19 has greater but similar effects on the
brain as compared with common end-of-life acute pneumonia.
A shortcoming of this aspect of our study is the lack of identi-
fication of the responsible pathogens in our non-COVID-19
pneumonia subjects. This is a common limitation to pneumo-
nia studies (250). When pathogens are identified, they are viral
more often than bacterial, with the top 3 in US hospitalized
patients being human rhinovirus, influenza A and B, and
Streptococcus pneumoniae (251). We did not attempt to deter-
mine, from clinical records or postmortem culture, the pres-
ence of associated pathogens, but the confluent intra-alveolar
accumulation of neutrophils is generally regarded as indicative
of a bacterial cause (252) and therefore our non-COVID-19
pneumonia group is likely to have been biased toward the in-
clusion of bacterial pneumonia and against the inclusion of
purely viral pneumonia, although mixed bacterial and viral
causes were very likely to have been common.

Although COVID-19 has reportedly caused dispropor-
tionate mortality in those with dementia (114), and the apoli-
poprotein E-e4 allele, a genetic risk factor for Alzheimer AD,
may be more common in subjects with severe COVID-19 dis-
ease (113, 115–119), in the set of subjects that we examined in
these studies, there was no apparent predilection of COVID-
19 for AD or other major aging-associated neuropathological
diagnoses, or an association with the apolipoprotein E-e4 al-
lele. This may be due to insufficient subject numbers and sta-
tistical power, as in a much larger set of AZSAND subjects,
we have reported that autopsy-confirmed acute pneumonia is
significantly more common in those with concurrent neuropa-
thologically diagnosed major neurodegenerative conditions
(112). It is acknowledged, however, that all of these studies
have not considered whether it is specific neurodegenerative
processes or just being institutionalized, critically ill and bed-
bound that is linked to the increased COVID-19 and pneumo-
nia risk.

There are definite limitations to our study. We did not
have detailed clinical records for many subjects, due to their

dying outside of a hospital. Also, as most subjects were in re-
spiratory failure, it was difficult for clinicians to test olfaction
or cognition. Very few subjects were Hispanic and none were
non-Caucasian/white. More critically, in any study of
COVID-19 in the brains of elderly subjects, the diversity of
co-existing pathology will make it difficult to separate out the
findings that may be definitely due to the infection as opposed
to brain aging, AD, other neurodegenerative and cerebrovas-
cular lesions, non-COVID-19 pneumonia or common agonal
changes. However, these complications will cloud any study
of COVID-19 neurological effects, and autopsy with full neu-
ropathological examination, and preferably whole-body au-
topsy, offers the only chance to sort these out and discern what
may be specifically due to SARS-CoV-2. While we here re-
port on more COVID-19 and control autopsies than has been
done in any previous study to date, our findings constitute
only an initial, preliminary and tentative sketch of the possible
brain effects of the COVID-19 pandemic. We have here en-
deavored, through comparison of subject subsets matched for
likely confounders, to isolate SARS-CoV-2-related findings.
To guard against misleading conclusions due to these selective
group comparisons, we have included a comparison of unse-
lected autopsies from a single center. Many more autopsies
will be needed, however, to definitively separate SARS-CoV-
2 effects from the complexity of concurrent chronic and ago-
nal changes, especially in the elderly.

The possibility that COVID-19 might somehow increase
risk for developing AD or other neurodegenerative diseases,
years or even decades after the acute infection, must be con-
sidered. A surge of post-encephalitic parkinsonism in the first
half of the last century is still potentially linked to the 1918-
1919 global H1N1 influenza pandemic (126, 253), and Herpes
virus (254) and other infectious agents (125) are still being
considered as potential pathogenic factors for AD. Coronavi-
ruses have proven neurotropic potential, based on extensive
animal model and human data (255). Two human coronavi-
ruses, strains 229E and OC43, have been detected by RT-
PCR, Northern hybridization and in situ hybridization in 44%
and 23%, respectively, of 90 human brains obtained from mul-
tiple brain banks throughout Europe, the UK and USA (256).
Only prolonged follow-up studies of COVID-19 survivors
will determine whether there is viral brain persistence and/or
long-term neurological consequences.

Summary Points
• Results confirm that OB is the most probable site of viral CNS

entry.
• OB deafferentation during acute/subacute infection is likely to

be responsible for the majority of observed OB transcriptional
changes.

• Typical histological changes of CNS viral infection, including
microglial nodules and perivascular lymphocytes, are rare.

• Reduction of microglial area fraction in cerebellar cortex and
AMY, coupled with cytokine array results, suggest net immu-
nosuppressive effects on brain tissues.

• Acute and subacute ischemic changes, infarctions, or hemor-
rhages are not more common in COVID-19 patients than con-
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trols, although this may be due to the widespread introduction
of prophylactic heparin early in the pandemic.

• Staining for APP as a marker of acute/subacute white matter
axonal damage was more intense in COVID-19 brains overall
but not when compared with controls with non-COVID-19
pneumonia.
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