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Abstract

The balanced-diet hypothesis states that a diverse prey community is beneficial to consum-
ers due to resource complementarity among the prey species. Nonselective consumer spe-
cies cannot differentiate between prey items and are therefore not able to actively regulate
their diet intake. We thus wanted to test whether the balanced-diet hypothesis is applicable
to nonselective consumers. We conducted a laboratory experiment in which a nonselective
model grazer, the freshwater gastropod Lymnaea stagnalis, was fed benthic green algae as
single species or as a multi-species mixture and quantified the snails’ somatic growth rates
and shell lengths over a seven-week period. Gastropods fed the mixed diet were found to
exhibit a higher somatic growth rate than the average of the snails fed single prey species.
However, growth on the multi-species mixture did not exceed the growth rate obtained on
the best single prey species. Similar results were obtained regarding the animals’ shell
height increase over time. The mixed diet did not provide the highest growth rate, which
confirms our hypothesis. We thus suggest that the balanced-diet hypothesis is less relevant
for non-selective generalist consumers, which needs to be considered in estimates of sec-
ondary production.

Introduction

Dietary mixing has been to focus of many studies until today [1-3]. There are two often tested
hypotheses which try to explain the advantage of a mixed diet—the balanced-diet hypothesis
[4] and the toxin dilution hypothesis [5]. We here focus on the balanced-diet hypothesis,
which is the more relevant one for common, non-toxic prey. This hypothesis states that a
diverse food resource will result in enhanced consumer fitness. This is due to increased comple-
mentarity of the prey species’ nutritional composition. An increase in fitness due to a mixed
diet has been observed in a variety of animal groups ranging from ciliates [6], gastropods [7, 8],
and insects [9-11], to fish [12], reptiles [13], and mammals [14]. However, in most experi-
ments that investigated the balanced-diet hypothesis, the consumer species were able to freely
select what to prey upon. This is often not the case in nature due to costs involved in food
search/handling time [15-17], predation risk [18], competition [1], low diversity within the
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prey communities [19] or defence mechanisms among the prey species [20-22]. These exam-
ples demonstrate the many exceptions to the balanced-diet hypothesis. We believe, however,
that a very important, but so far overlooked factor is missing on the list. That is the diet selec-
tivity of the consumers. A nonselective consumer cannot choose its prey items and thereby reg-
ulate its nutritional intake. It is forced to feed upon the prey in the ratios available, whereas a
selective consumer can hand-pick the food items to fit its requirements [23-25]. Moreover,
food resources do not have an absolute quality rank. The value of a resource depends on what
the consumer has previously been feeding on [26]. Nutrients obtained when feeding upon
abundant resources should not be limiting, the preference should therefore always be higher
with the rare food items [3]. Nonselective consumers, however, are more likely to consume the
more common food resources. If the food recourse of highest availability is of low nutritional
value (e.g. cyanobacterial blooms commonly encountered in eutrophied water bodies) this will
result in a decreased fitness for the nonselective grazer compared to the selective grazers. How-
ever, previous studies were able to demonstrate that selectivity is an advantage if food availabil-
ity is high [27, 28]. In environments were food availability is low the selective consumer species
cannot utilize diet-mixing, it is instead favourable to be a nonselective grazer. Whether the bal-
anced-diet hypothesis is applicable for a nonselective grazer therefore depends on the food
quality and availability. Nonselective consumers often have low mobility (Daphnia, Bivalvia
and Chironomidae). They are therefore unable to locate food recourses of higher nutritional
value. Nonselective consumers are an essential and often dominant component of food webs
and they are an important food resource for various animals [29-31]. We thus hypothesize
that for nonselective consumers, a mixed diet is not of higher quality than any suitable single
diet.

To test this specific hypothesis, we chose to work with the great pond snail Lymnaea stagna-
lis (L.) as a model for a nonselective consumer species. L. stagnalis has a wide geographic range
in the holarctic and it can represent up to 20-60% of the total biomass of macroinvertebrates
in many freshwater ecosystems [32]. L. stagnalis is a scraper feeder which has been shown to be
able to detect the quality of biofilms from distance though infochemicals [33, 34]. However, the
snails’ feeding apparatus (radula), a minutely toothed chitinous ribbon, is not able to actively
select prey organisms from a mixed prey (i.e. biofilm or periphyton) community [35]. How-
ever, post-ingestive assimilation may affect the feeding selectivity of L. stagnalis, but we did not
test for this. L. stagnalis is a suitable model organism since it is not particularly sensitive to die-
tary changes in nutrient availability [36]. The prey species used in our experimental setup con-
sisted of six pure cultures of benthic green algae L. stagnalis may encounter in nature. We
conducted a laboratory experiment in which we fed juvenile L. stagnalis ad libitum with either
a single algal species or a mixture of the six algal species and determined shell growth over 45
days. We also measured the dry mass of the snails at the beginning and at the end of the experi-
ment to obtain somatic growth rates, as previous studies had demonstrated that juvenile
growth rate is a good proxy for fitness in freshwater invertebrates [37]. Overall, our experiment
aimed to test the hypothesis that nonselective consumers do not necessarily benefit from diet
mixing.

Material and Methods

Six ten litre bottles each with eight litres of an algal growth medium [38] were inoculated with
similar biovolumes of six green algal species (all from the Culture Collection of Algae at the
University of Cologne, CCAC, http://www.ccac.uni-koeln.de/, Table 1). All cultures were
grown in an environmental chamber at 20°C with a 150 umol photons s m™ light (PAR)
intensity under continuous aeration. After 1 month, the batch cultures were harvested by
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Table 1. Biovolume and cell shapes (d = cell diameter, h = cell height) of the six benthic green algae used in the experiment.

Species Shape Measurements (um) | Standard deviation Volume (um3) | Origin/Strain

Aphanochaete repens Sphere dis d3.7 1760 CCAC/ M2227
Klebsormidium flaccidum Cylinder d5,h22 d0.3,h4.9 455 CCAC/2007 B
Microthamnion kuetzingianum | 90% cylinder with two half spheres, 10% cylinder | d5,h 17 d1.2,h4A1 290 CCAC/0087 B
Oedogonium stellatum Cylinder d12,h 40 d1.6,h6.2 4655 CCAC/2231B
Roya obtusa Cylinder with two half spheres d8,h48 d1.1,h15.9 2730 CCAC/0219B
Stigeoclonium amoenum Cylinder d7,h19 d1.0,h5.0 655 CCAC/3255 B

doi:10.1371/journal.pone.0158924.t001

centrifugation and the resulting pellets were freeze-dried. The animals were originally collected
in a pond in Appeldorn, NRW Germany, with permission of the owner of the land. The experi-
ment did not involve endangered or protected species. All conditions for animal maintenance
and experiments were carefully optimized to meet the animals’ requirements based on exten-
sive prior experience [36]. A specific ethical approval by the university’s IACUC is not required
for work with gastropods according to German law. Nevertheless, we undertook all necessary
measures to minimize any animal suffering and adhered to the guidelines for the use of animal
behaviour for research and teaching (Animal Behaviour 83:301-309). Eggs from adult individ-
uals of the freshwater gastropod L. stagnalis, were hatched and reared in aquaria filled with aer
ated tap water. The snails were fed ad libitum with (Tetra PlecoMin™) fish food pellets (Tetra,
Melle, Germany). The shell height (from the apex to the lower edge of the aperture) was deter-
mined to the nearest 0.02 mm using a calliper. A cohort of 64 two-week old L. stagnalis with a
shell height of 2.2 + 0.3 mm were selected for the experiment. Of these, eight had their shells
removed under a dissecting microscope and their soft bodies were dried at 60°C for three days
and then weighed with a microbalance (Mettler UTM2, Giessen, Germany) to the nearest
microgram to determine the initial dry mass. The remaining 56 snails were subdivided into
seven treatments each containing eight replicates. The experiment was conducted in a clima-
tized chamber at 20 + 0.5°C. The snails were individually placed into square polyethylene con-
tainers (length = 11 cm) with 100 ml aged and aerated tap water each. The seven treatments
consisted of snails fed with a mixture of all six algae species or one of the six single algal species
in saturating and equal quantities.

The snails were transferred into new containers every other day and water and food were
renewed on a daily basis. The shell height of the snails was measured in three days intervals.
During the course of the experiment, the amount of food provided was gradually increased
from 1.5 to 26 mg per individual and day to avoid growth limitation by food quantitybased
upon previously estimated ingestion rates (unpublished data). The algae were mixed and then
transferred to the snails’ containers through hollow glass cylinders (d = 2.3 cm, h = 2.5 cm).
The glass cylinders were placed in the centre of the containers covered half in water. The algae
were then added through the cylinder. After 30 min when the algae had sunk to the bottom of
the container the cylinder was carefully removed. This was done in order to avoid the algae
from dispersing inside the containers and thereby enabling the snails to selectively feed. After
45 days, the experiment was terminated and the dry mass of the snails was determined as
described above.

Juvenile growth increment in L. stagnalis is assumed to be exponential [39]. Hence, to deter-
mine the somatic growth rate [d'] of L. stagnalis, the following equation was used:

. ln(mend) B ln(mstart)
£= days [d]

where the myg,, is the mean dry mass of the eight snails desiccated at the beginning of the
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experiment and m,,4 is the dry mass of the snail individual from the respective experimental
unit at the end of the experiment (day 45). The relationship between shell length and dry mass
of the snails was tested in SigmaPlot (v.11, SysStat) via a nonlinear regression for exponential
growth (single, 2 parameter). A one-way ANOVA followed by Tukey’s HSD was conducted in
Statistica version 10 to test for significant differences between the somatic growth rates of the
snails under the various food regimes. The different food treatments were set as independent
variable and the somatic growth rates of the snails were set as dependent variable. Prior to the
statistical tests, all data were checked for homoscedasticity using Levene’s test in Statistica. A
Mann-Whitney U test was conducted in Statistica to test for a significant difference between
the mean somatic growth rates of all single algae treatments and the mixed algal treatment, as
the data were not homoscedastic. In order to test for differences in shell heights over time, the
data was log transformed and a repeated-measures ANOVA was conducted, followed by post-
hoc comparisons with Tukey’s HSD in Statistica. Some of the snails did not survive the experi-
ment which is why the number of replicates varied between 6-8 among the treatments.

Results

The result from the regression analysis showed that the snails dry mass increased exponentially
with the shell height (y = 1.19'*, R* = 0.95, P < 0.0001, Fig 1). The shell heights of the snails
varied greatly from 4-30 mm with an average of 14 mm. The dry mass of the snails showed a
large variation from 0.5-107.5 mg and an average of 17 mg, suggesting that the different diets
did vary considerably in their quality.

We found a significant effect of the algae species mixtures consumed on the somatic growth
rate of L. stagnalis (one-way ANOVA, Fq 5, = 40.48, P < 0.001, Fig 2). The post-hoc compari-
sons revealed three groups among treatments: One consisting of high growth snails fed the
mixed-diet, A. repens and O. stellatum, an intermediate growth set of snails fed K. flaccidum,
M. kuetzingianum, R. obtusa and the significantly lowest growth was observed in snails fed a
diet of S. amoenum (Fig 2). Juvenile L. stagnalis fed on the mixed algae exhibited an average (+

120 -
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Fig 1. The relationship between shell height and dry mass of L. stagnalis (exponential regression).
Each dot represents one of the 50 snails remaining at the end of the experiment on day 45.

doi:10.1371/journal.pone.0158924.g001
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Fig 2. The somatic growth rate of L. stagnalis. L. stagnalis fed single algal species or a mixture of all six
algal species ad libitum where after the somatic growth rates were measured (mean + SE of N = 6-8).The
dashed line indicates the average of all single algal treatments; means which were found to be significantly
different after Tukey post-hoc comparisons are labelled with different letters.

doi:10.1371/journal.pone.0158924.9002

SE) growth rate of 0.13 + 0.002 d', i.e. three times higher than the treatment with the lowest
somatic growth rate (Fig 2). In the treatment where snails were fed O. stellatum, the average

(+ SE) growth rate was 0.15 + 0.004 d”' compared to 0.13 + 0.002 d' in the mixed treatment.
The lowest growth rates were obtained when the snails were fed S. amoenum. Here, the average
(+ SE) growth rate was 0.04 + 0.005 d"'. Further, when the snails were fed the mixed algae, the
somatic growth rates were significantly higher or equally high as the somatic growth rates of
the six single algal species treatments (Mann-Whitney U test, U; 55 = 80, P > 0.02).

We found significant effects over time between the shell height of the juvenile L. stagnalis
fed with either a single algal species or a mixture of six algal species (repeated measures
ANOVA, F4 51 =30.85, P < 0.0001, Fig 3). Snails fed O. stellatum had significantly higher shell
height increase over time in comparison to all other food treatments (Fig 3). The snails fed
with mixed algae exhibited the second largest increases in shell height over time (Fig 3). The
shell heights of the juvenile L. stagnalis were varied greatly between the treatments, at the end
of the experiment the snails which fed on O. stellatum had an average shell height of 24 mm
compared to 5 mm when the snails had been fed S. amoenum.

We further investigated the effect of algae species cell size on snail fitness (shell height). We
found that the final shell height increased linearly with the algal biovolume (Table 1) (y = 4.770 +
(0.00357x), R = 0.71, P = 0.035).
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Fig 3. Shell growth of L. stagnalis. L. stagnalis fed single algal species or a mixture of all six algal species
ad libitum during a period of 45 days. Every three days, the shell heights of the experimental snails were
measured (mean + SE of N = 6-8); means which were found to be significantly different after Tukey post-hoc
comparisons are labelled with different letters.

doi:10.1371/journal.pone.0158924.9003

Discussion

We investigated the benefits of a mixed diet compared to a single diet for the growth of a non-
selective grazer. The somatic growth rate of L. stagnalis fed on a mixed diet exceeded the aver-
age growth rate for single algal diets. However, the growth of L. stagnalis fed upon two single
species O. stellatum and A. repens were not significantly different from growth with the mixed
diet. Similar results were obtained regarding the animals’ shell height increase over time. Snails
that had consumed O. stellatum had a higher shell height increase in comparison to all other
treatments. The mixed diet thus did not provide the highest growth rate, which confirms our
hypothesis that a mixed diet is not more beneficial for nonselective consumers compared to
any suitable single diet.

In many studies investigating the effect of diet mixing on consumer species, the prey items
were collected from various sites in nature [7, 40] or consisted of artificial food mixtures [14].
This means that the macronutrient ratios within those prey items most probably varied. How-
ever, by growing algae in a high nutrient growth medium and harvesting in the exponential
growth phase probably led to similar macronutrient contents of the algae in our experiment
[41]. Moreover, the fatty acid contents are probably similar among freshwater green algae. The
macronutrient content and the fatty acid concentration of the algae therefore probably do not
explain the observed differences in growth of the consumer species between the treatments. It
is more likely that the algae varied in their ingestibility or digestibility due to morphological
defences such as spines, mucilaginous coating and rigid cell walls [21, 22, 42]. We found that
the shell height of the snails increased significantly with algae species biovolume. We believe
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that this can partially explain the observed differences in shell height/growth rates between the
treatments. Previous studies were able to demonstrate prey size selection with snails [43, 44]. It
has been suggested that a radula can more easily handle larger algal cells.

Consumer species may use various strategies to increase their somatic growth rates when
food items are scarce or of low quality. One such strategy is called ‘compensatory feeding’:
When consumers feed upon a nutritionally low quality food items they should increase the
consumption rate in order to compensate for nutrients which are in low supply [45-47]. An
alternative strategy is called ‘toxin dilution’ [5]: Diet mixing reduces (dilutes) the amount of
toxins produced by individual prey species that are ingested by the consumer. The toxic dilu-
tion hypothesis is not likely to apply since no toxins have been described within the algae spe-
cies used in the experiment [48, 49]. Further investigations need to be carried out in order to
elucidate which explanation, or combination thereof, is correct. We suspect that differences in
cell size and compensatory feeding are the major drivers for the results in our experiment.

Lefcheck et al. [50] conducted a meta-analysis in which they investigated the impact of
mixed diets on the fitness of animals. They found that in more than 50% of the cases, a single
species diet was superior to a mixed diet. However, the impact of the consumer species’ feeding
selectivity was not included in the analysis. We argue that this should have strong implications
to the result. The grazer used in our experiment could not select their food items in order to
optimize their growth. A selective grazer may, which increases the probability of finding sup-
port for the balanced-diet hypothesis. We therefore argue that the generality of the balanced-
diet hypothesis might be overestimated considering nonselective grazers. Very few studies
investigate the impact of the balanced-diet hypothesis on nonselective grazers [51], even less
were able to find support for it [52]. However, a few studies worked with species able to con-
duct both selective and nonselective feeding and examined which feeding strategy a consumer
species decides for under various conditions. Senior et al. [53] and Khait et al. [54] found that
nonselective grazers should be favoured under low food availability and quality. Valiela [55]
found however, that when low quality food is of high abundance this is favourable for a con-
sumer species which display feeding selectivity.

Our results demonstrate that gastropods that feed on a mixed algal diet does not exhibit
higher growth rates compared to a single algal diet. Raubenheimer and Simpson [56] suggested
that the advantage of a mixed diet is only possible if no single diet species approaches the con-
sumer species’ optimal nutrient requirements [56] and when complementary food resources are
available. Franzke [57] fed grasshoppers with natural mixtures of prey items and measured the
fitness of the consumer species. They found that a mixed diet was optimal at some but not all
sites, thus supporting the findings of Raubenheimer and Simpson [56]. We observed similar pat-
terns. Snail fed a the best single algae species diet obtained the higest growth rate and shell length.
Whether or not a mixed diet is beneficial is likely determined by the identity of the prey species.

Conclusions

Our results demonstrate that a mixed-diet can support a higher growth rate of a consumer spe-
cies than the average of single prey species diets. This might be explained by the discrepancy in
algae cell size or compensatory feeding. The generalist herbivore did not obtain a higher growth
rate when consuming a mixed-diet compared to the best single species diet. Moreover, it is not
able to selectively feed and thereby obtain optimal growth by actively regulating their diet and
consuming complementary prey. This is however possible for a selective grazer. This means
that there is a higher probability of finding support for the balanced-diet hypothesis concerning
selective grazers. Therefore, we would like to emphasize the importance of differentiating
between selective and non-selective grazers when conducting diet mixing experiments.
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