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Abstract

Translational fidelity, essential for protein and cell function, requires accurate tRNA 

aminoacylation. Purified aminoacyl-tRNA synthetases exhibit a fidelity of 1 error per 10,000 to 

100,000 couplings 1, 2. The accuracy of tRNA aminoacylation in vivo is uncertain, however, and 

might be considerably lower 3–6. Here, we show that in mammalian cells, approximately 1% of 

methionine (Met) residues used in protein synthesis are aminoacylated to non-methionyl-tRNAs. 

Remarkably, Met-misacylation increases up to 10-fold upon exposing cells to live or non-

infectious viruses, toll-like receptor ligands, or chemically induced oxidative stress. Met is 

misacylated to specific non-methionyl-tRNA families, and these Met-misacylated tRNAs are used 

in translation. Met-misacylation is blocked by an inhibitor of cellular oxidases, implicating 

reactive oxygen species (ROS) as the misacylation trigger. Among six amino acids tested, tRNA 

misacylation occurs exclusively with Met. As Met residues are known to protect proteins against 

ROS-mediated damage 7, we propose that Met-misacylation functions adaptively to increase Met 

incorporation into proteins to protect cells against oxidative stress. In demonstrating an 

unexpected conditional aspect of decoding mRNA, our findings illustrate the importance of 

considering alternative iterations of the genetic code.

Due to the central importance of tRNA aminoacylation and translational accuracy in 

understanding the biology of mammalian cells under normal and pathological conditions, we 

devised a method to measure tRNA misacylation in cells. Our method combines pulse 
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radiolabeling of cells with [35S]-Met with microarrays developed for measuring tRNA 

abundance 8 (Figs. 1A, S1, S2). We hybridized total tRNA to arrays that detect the 274 

distinct chromosomal human tRNA species as closely related members of 42 families and all 

22 mitochondrial tRNAs, and phosphorimaged to visualize and quantitate 35S-Met-tRNAs 

hybridized to the array.

For HeLa cells, we detected intense radioactive spots representing five different methionyl-

tRNA (tRNAMet) probes, as expected. Unexpectedly, we easily detected less intense 

radioactive spots representing several non-tRNAMet probes. Further, when we infected HeLa 

cells with influenza A virus (“Flu”) or adenovirus 5 (“Adeno”) prior to pulse radiolabeling, 

the level of radioactive signals from non-tRNAMet probes greatly increased (Fig. 1A), and 

could be exclusively detected by adding excess Met-oligo probes to block hybridization of 

tRNAMet (Figs. 1B, S3). We employed multiple approaches to conclusively establish that 

radioactivity emanating from non-cognate tRNA probes derives from aminoacylated [35S]-

Met and not other [35S]-containing material (detailed in Methods and Supplemental 

Information). We ruled out radiolabeling of tRNAs with thio-modifications via catabolism 

of [35S]-Met (Figs. 1C, S4). We validated [35S]-Met-misacylation using two non-array 

based methods for several tRNA species (Figs. 1D,E, S5). To distinguish aminoacyl- from 

peptidyl-tRNAs, we treated total RNA with aminopeptidase M prior to array hybridization 

to remove N-terminal 35S-Met residues from peptidyl-tRNAs (Figs. 1F, S6). We also ruled 

out misacylation resulting from contaminants in the 35S-Met preparation (Fig. S7).

In uninfected cells, the 8 cytosolic misacylated tRNA families totaled ~1.5% of the 

cumulative radioactivity of all five tRNAMet families. Upon Flu infection, misacylation 

increased in 3 of the 8 species and appeared in 18 new tRNA families. Remarkably, the 

cumulative radioactivity on non-tRNAMet species totaled ~13% of that of all tRNAMet 

families (Figs. 1G, S8). Cells infected with Adeno or vaccinia virus (Vac) demonstrated a 

similar pattern and degree of misacylation. Increased Met-misacylation in virus-infected 

cells is not an artifact of increased tRNA expression, as increased misacylation does not 

correlate with the minor changes in tRNA abundance induced by viral infection (Fig. S9). 

Under all conditions tested, we failed to detect misacylation of any mitochondrial tRNA, 

demonstrating the selectivity of misacylation for cytosolic tRNAs (Fig. 1).

We next demonstrated tRNA-Met-misacylation in vitro (Figs. S10, S11). HeLa cell derived-

methionyl-tRNA synthetase (MetRS) migrates in two major sucrose gradient fractions; one 

containing the 11-protein multisynthetase complex, the other containing the multi-synthetase 

complex associated with polysomes 9. Each sedimenting form of the multisynthetase 

complex demonstrated similar acylation activity with [35S]-Met. The polysome-associated 

form clearly mediated misacylation among a subset of the misacylated tRNA families 

identified in vivo. The free form of the multisynthetase complex exhibited less misacylation 

activity, demonstrating that the fidelity of tRNA synthetases can depend on the higher order 

structure of the AARS. Further, we showed that while the multisynthetase complex 

misacylated tRNALys isoacceptors, free LysRS did not (Fig. S11). This is consistent with 

misacylation being performed by MetRS within the multi-RS complex.
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Since aminoacylated tRNAs can be used for non-translation functions 10, 11, it was critical 

to establish whether Met-misacylated tRNAs are used in translation. A pulse-chase 

experiment revealed that cognate and non-cognate tRNAs demonstrate a similar off-rate for 

[35S]-Met after a 3 min chase period with excess unlabelled Met (Fig. 2A). Blocking 

translation by incubating cells with cycloheximide during the cold Met chase prevented the 

loss of [35S]-Met from cognate and non-cognate tRNAs in parallel (Figs. 2A, S12A,B). 

These findings strongly support global use of misacylated tRNAs in protein synthesis. Next, 

we quantitated the incorporation of [35S]-Met into HA-epitope tagged ubiquitin (Ub-HA), 

selected as a reporter because it possesses a single Met residue. Infecting cells with Vac 

increased the specific activity of Ub (dpm/μg protein) by ~1.8 fold, consistent with Vac 

induced increase in tRNA misacylation (Fig. 2B). 2D gel electrophoresis demonstrated Vac 

induced alterations consistent with translational utilization of misacylated tRNAs (Fig. 2C). 

Mass spectrometry detected Ub peptides containing Lys-to-Met substitutions, confirming 

the translation of misacylated tRNALys(CTT) as predicted from the array data (Fig. 2D,E).

We detected virus-induced increases in misacylation (Fig. S13) and global utilization of 

Met-misacylated tRNAs in protein synthesis (Fig. S14) even when viral infectivity was 

inactivated by UV irradiation. Exposing HeLa cells, which express all human TLRs 12, to 

the TLR3 ligand poly-inosine-cytosine (poly-IC, which mimics double stranded viral RNA), 

or the TLR4 ligand lipopolysaccharide (LPS, derived from bacterial cell walls) also 

increased tRNA misacylation (Figs. 3A, S15A). LPS- and poly-IC-induced misacylation 

patterns overlapped significantly with each other and with virus-induced misacylation. We 

obtained similar results with CpG oligonucleotides, a TLR9 ligand (data not shown). Not all 

immune signaling events increase [35S]-Met-misacylation in HeLa cells, however. Exposing 

cells to interferon-β or interferon-γ did not increase misacylation, although each cytokine 

altered the expression of cytoplasmic and mitochondrial tRNAs within 24h of initial 

exposure (data not shown).

We extended these findings to mouse bone marrow-derived dendritic cells (DCs, Figs. 3B-

D, S15B), and liver cells in a living mouse by injecting [35S]-Met into the portal vein (Fig. 

3E). Both cell types demonstrated a level and pattern of tRNA misacylation similar to HeLa 

cells, firmly establishing the in vivo relevance of misacylation. We failed to detect 

misacylation after labeling cells with either [35S]-Cys or 3H-labeled Ile, Phe, Val, or Tyr 

(Fig. S16, note that specific activities of other commercially available amino acids are too 

low to detect misacylation at greater than 0.5%). Thus, misacylation could well be limited to 

Met.

As viral and bacterial infections activate myriad stress response pathways in cells, we 

examined the ability of chemical or physical stressors to modulate misacylation. We 

incubated HeLa cells at 42°C, or exposed them to the Asn-linked glycosylation inhibitor 

tunicamycin or the proteasome inhibitor MG132, treatments that induce an unfolded protein 

response via distinct pathways 13. While tunicamycin and MG132 increased tRNA 

misacylation by ~2-fold, heat shock decreased tRNA misacylation by ~2-fold (Fig. S17). 

The pattern of misacylation induced by tunicamycin and MG132 was limited to subset of 

RNA families seen in response to viruses and TLR ligands. Allowing HeLa cells to grow 
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past confluence, a condition known to induce stress related genes 14, also induced 

misacylation (Fig. S16B).

Heightened generation of reactive oxygen species (ROS) by activation of NADPH oxidases 

is a common downstream effect of many cellular stressors 13. It is well established that 

genetically encoded Met residues can act in cis to protect enzyme active sites against ROS-

mediated damage 15, and Met protects E. coli against oxidative damage-induced death 7. 

ROS oxidize the highly reactive sulfur in Met which is restored to its reduced state by Met-

sulfoxide reductases through NADPH oxidation 16. We hypothesized that tRNA Met-

misacylation protects cells against oxidative stress by replacing the amino acids we identify 

in the arrays with Met. Because tRNA misacylation is induced rapidly, this mechanism 

allows immediate extra-genetic incorporation of Met residues in newly synthesized proteins 

that provide protection against increased ROS levels.

As predicted by this hypothesis, exposing HeLa cells to ROS-inducing agents (arsenite, 

telluride, or H2O2) induces Met-misacylation at high levels (Figs. 4A,B, S18A,B). Arsenite-

induced misacylation did not require protein synthesis, as it was unaffected by the addition 

of CHX at the time of arsenite exposure (Fig. S12C). Oxidizing agents act at least in part by 

increasing cellular NADPH oxidase activity 17, and in each case, misacylation was 

significantly reduced by diphenyleneiodonium (DPI), a broad inhibitor of these oxidases. 

TLR activation is known to induce ROS in neutrophils and DCs 18. Remarkably, treating 

HeLa cells with DPI inhibited poly-IC induced misacylation, implicating ROS as the trigger 

for TLR-induced misacylation (Figs. 4B,C, S18C). DPI also inhibited LPS and poly-IC 

induced misacylation in DCs (Fig. 4D,E).

We propose that Met-misacylation is a protective response to cellular stressors that increase 

levels of ROS. This is consistent with the recent proposal that the ROS scavenging capacity 

of Met selects for mitochondrial genetic recoding of AUA from Ile to Met 19. Alternative 

explanations for Met-misacylation include the possibilities that Met-misacylation is a non-

productive byproduct of oxidative stress that exacerbates stress by decreasing translational 

fidelity (particularly since replacement of charged surface residues with Met would be 

predicted to increase protein aggregation), and that misacylated Met tRNAs function in 

cellular methylation or amino acid transport pathways 20.

It has been demonstrated that upon mutating aminoacyl-tRNA synthetases or introducing 

exogenous misacylating tRNAs, E. coli, yeast, and mice tolerate and adapt to increased 

errors in tRNA aminoacylation 3, 21, 22. Theoretical considerations 23 support higher error 

thresholds for translational fidelity than those observed for tRNA aminoacylation in vitro. 

We demonstrate that mammalian cells have an intrinsic ability to modify tRNA misacylation 

and translational fidelity. The extent to which this ability, currently limited to Met, extends 

to any of the 14 amino acids yet to be examined, is an open question.

In summary, we have shown that tRNA misacylation with Met is a common and regulated 

event in mammalian cells. Although the full implications of this phenomenon remain to be 

explored, there is a practical bottom line: decoding mRNA into protein in living cells is not 

as simple as generally believed. tRNA misacylation-based protein sequence diversity, like 

Netzer et al. Page 4

Nature. Author manuscript; available in PMC 2010 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RNA splicing and post-translational modifications, may represent an evolutionary strategy 

for expanding and manipulating the information encoded by nucleic acids 24.

Methods summary

Detailed methods section includes cell growth, cell treatment and stress conditions, 

misacylation in vivo, immune-precipitation of Ub-HA, 2D PAGE and mass spectrometry; 

detection of tRNA misacylation by TLC and native acid gels, pH 9 deacylation, nuclease 

treatment of arrays, in vitro aminoacylation and acylated tRNA extraction for microarrays.

Microarray

The basic features of the tRNA microarray have been described previously to determine 

tissue-specific differences in human tRNA expression 8. Both array versions contain ~50 

probes (42 unique) for chromosomal human and mouse tRNAs, 22 probes for human 

mitochondrial tRNAs, and 18 probes for mouse mitochondrial tRNAs. The first array 

version contains 20 repeats for each probe, and over 50 hybridization control probes for 

tRNAs from bacteria, yeast, Drosophila and C. elegans. The second array version contains 8 

repeats for each probe and 6 hybridization controls for tRNAs from bacteria and yeast. The 

second version contains fewer repeats per probe but has higher sensitivity due to improved 

array printing techniques. Both versions contain 4 probes for chromosomal initiator and 

elongator tRNAMet and one for mitochondrial tRNAMet.

Array hybridization was performed on a Genomic Solutions Hyb4 station with 10μg total 

RNA in 2xSSC, pH4.8 at 60°C for 50min. This short hybridization time was the same as the 

half-life of [35S]-Met labeled aminoacylated tRNAs (Fig. S19) and was necessary to 

minimize the amount of hydrolysis of aminoacylated tRNA during hybridization. After 

hybridization, arrays were washed twice each, first in 2xSSC, pH4.8, 0.1%SDS, then in 

0.1xSSC, pH4.8, spun dry, and exposed to phosphorimaging plates (Fuji Medicals) for up to 

14 (35S-labels) or 34 days (3H-labels using 3H-plates). Spot intensity was quantified using 

the Fuji Imager software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Induction of tRNA misacylation by viruses
(a) Microarrays showing total tRNAs isolated from uninfected, flu and Adeno virus infected 

HeLa cells. (b) Large excess of oligonucleotides complementary to tRNAMets was included 

in array hybridization. (c) The Adeno-infected sample was deacylated before array 

hybridization. (d) Thin-layer chromatography of the Flu-infected sample using biotinylated 

oligonucleotide probes (longer exposure in inset). (e) Non-denaturing acid gel detection of 

misacylated tRNAs in the Flu-infected sample. (f) Flu-infected sample plus/minus 

aminopeptidase. (g) Quantitative comparison of uninfected and virus-infected samples. 

tRNAs are grouped according to amino acid properties. The detection limit of misacylation 

was ~0.1% for each probe.
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Fig. 2. Misacylated tRNAs are used in translation
(a) Correctly acylated and misacylated tRNAs have the same kinetic properties plus/minus 

cycloheximide (CHX). Error bars represent s.d. (n=4). (b) 1D SDS-PAGE showing an 

increase in specific activity of [35S]-Met incorporation upon Vac infection. (c) 2D SDS-

PAGE of uninfected and Vac-infected samples. Spot 3 (55–62% of all radioactivity) 

matches the expected pI of wild-type Ub-HA. Spots 1 and 5 correspond to Lys/Arg-to-Met 

and Glu/Asp-to-Met substitution, respectively. (d) MALDI-TOF of tryptic digested Ub-HA. 

Peaks are labeled with their m/z values from the Ub-HA sequence. (e) MS-MS sequencing 

of 763.87 (m/2z) mass peak by LC-FTMS of tryptic digested Ub-HA.
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Fig. 3. tRNA misacylation induced by TLR ligands
(a) Comparison of untreated and LPS, poly-IC-treated HeLa samples. (b) Comparison of 

immature and poly-IC-matured Bone Marrow Dentritic Cells (DC) including 

complementary Met-oligos in array hybridization. (c) Thin-layer chromatography of the 

poly-IC matured sample using biotinylated probes. (d) Quantitative comparison of untreated, 

LPS and poly-IC-matured DC samples, all AP-treated. The detection limit of tRNA 

misacylation for these samples was ~0.05% for each probe. (e) Misacylation occurs in vivo. 

Misacylation for total charged tRNA isolated from mouse liver after 1 min pulse with 35S-

Met. Array key shows probe locations for Met-tRNAs (black) and Cys-tRNAs (blue).

Netzer et al. Page 9

Nature. Author manuscript; available in PMC 2010 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Oxidative stress induces NADPH oxidase (NOX)-dependent RNA misacylation
(a) tRNA misacylation in HeLa cells induced by oxidizing agents H2O2 (1h) or arsenite 

(4h). DPI inhibits aresenite-induced misacylation. (b) Quantitative comparison of tRNA 

misacylation under oxidative stresses (Arsenite and H2O2) and TLR ligand (poly-IC) plus/

minus DPI. (c) Percent of all misacylated tRNAs plus/minus DPI when cells were treated 

under four conditions (100% = all Met-tRNAs). Error bars represent s.d. (n=2). (d) poly-IC 

induces NOX-dependent RNA misacylation in DC cells. (e) Quantitative comparison of 

tRNA misacylation in DC cells plus/minus DPI.
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