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Abstract

Populations often contain discrete classes or morphs (e.g., sexual dimorphisms,

wing dimorphisms, trophic dimorphisms) characterized by distinct patterns of

trait expression. In quantitative genetic analyses, the different morphs can be

considered as different environments within which traits are expressed. Genetic

variances and covariances can then be estimated independently for each morph

or in a combined analysis. In the latter case, morphs can be considered as sepa-

rate environments in a bivariate analysis or entered as fixed effects in a univari-

ate analysis. Although a common approach, we demonstrate that the latter

produces downwardly biased estimates of additive genetic variance and herita-

bility unless the quantitative genetic architecture of the traits concerned is per-

fectly correlated between the morphs. This result is derived for four widely

used quantitative genetic variance partitioning methods. Given that theory pre-

dicts the evolution of genotype-by-environment (morph) interactions as a con-

sequence of selection favoring different trait combinations in each morph, we

argue that perfect correlations between the genetic architectures of the different

morphs are unlikely. A sampling of the recent literature indicates that the

majority of researchers studying traits expressed in different morphs recognize

this and do estimate morph-specific quantitative genetic architecture. However,

ca. 16% of the studies in our sample utilized only univariate, fixed-effects mod-

els. We caution against this approach and recommend that it be used only if

supported by evidence that the genetic architectures of the different morphs do

not differ.

Introduction

The fundamentals of quantitative genetics (Fisher 1918)

provide the theoretical foundation for most of evolution-

ary ecology (Kruuk et al. 2008) and the adoption of

quantitative genetic methods in evolutionary ecology

research enables us to make quantitative predictions

about the rate and direction of phenotypic evolution

(Wilson et al. 2010). The central paradigm in evolution-

ary quantitative genetics is to partition phenotypic varia-

tion into contributions from additive genetic as well as

nonadditive genetic and environmental variances (Roff

2006). Although recent work has highlighted other contri-

butions to phenotypic variance, such as common environ-

ment, maternal genetic, and spatial autocorrelation

among relatives (Kruuk et al. 2001; MacColl and Hatch-

well 2003; Charmantier et al. 2004; Wilson et al. 2005;

Kruuk and Hadfield 2007; Stopher et al. 2012), estimates

of additive genetic variance are of paramount importance

for predicting population responses to natural selection

(Kruuk et al. 2008) using the breeder’s equation (Falconer

1989; Lynch and Walsh 1998) or the Secondary Theorem

of Natural Selection (Robertson 1966; Price 1970). How-

ever, several recent critiques have argued that researchers

in evolutionary ecology often improperly implement and

interpret quantitative genetic techniques (Wilson 2008;

Hadfield et al. 2010). These critiques stress the need for a

deeper understanding of the basic theory underlying

quantitative genetic techniques for partitioning pheno-

typic variance and suggest that such an understanding is

a prerequisite for progress in our study of evolutionary

processes (Postma 2006; Wilson 2008; Hadfield et al.

2010). In this study, we address a common problem asso-

ciated with estimating additive genetic variances and co-

variances for polygenic traits that are expressed as discrete

morphs.
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Additive genetic variances are defined within the con-

text of a specific population and environment. However,

traits are often expressed in two different environments

or phenotypic classes within a single population. This is

true of dimorphic traits such as disease incidence, wing

dimorphisms, protective dimorphisms, trophic dimor-

phisms, mating dimorphisms, and life cycle dimorphisms

(reviewed in Roff 1996) and also of traits differing

between the sexes, for example, sexual dimorphisms in

behavior, morphology, physiology, and life history

(reviewed in Fairbairn et al. 2007; Fairbairn 2013). Morph

can be considered as an environment which interacts with

genes to alter the average genetic effects. An individual’s

average genetic effect for a polygenic trait in a population

is known as its breeding value. Because breeding values

are expressed as an individual’s average deviation from

the population mean, the mean breeding value equals

zero and the variance in breeding values is the additive

genetic variance (Falconer 1989). Polygenic traits occur-

ring in both phenotypic classes (morphs) are often

exposed to different selective environments within each

morph, leading to selection for different average allelic

effects in each morph and ultimately to the evolution of

morph-specific genetic effects that can be modeled as

genotype-by-environment interactions (Roff 1997). If

there are only two morphs (environments), the genotype-

by-morph interaction can be expressed as a genetic corre-

lation between morphs (Falconer 1952). Similarly, the set

of genetic correlations can be described for instances

when there are more than two morphs (environments).

The latter may occur when, for example, traits are

expressed across life-history stages. Overall, the genetic

correlation between morphs summarizes the relationship

between the ranks of breeding values expressed in one

morph relative to the rank in the other.

Evolutionary ecologists making statistical inferences on

breeding values commonly treat dimorphic variation by

including the morph as a fixed effect in statistical models

to remove the average difference between the morphs

(e.g., Table S2.1 in Appendix S2; Wilson et al. 2010; Roff

and Fairbairn 2011; see also WAMWiki at http://

www.wildanimalmodels.org/tiki-index.php). Although this

is necessary to control for fixed differences in phenotypic

means between the morphs, it does not affect the correla-

tion between morphs in breeding values (i.e., between-

morph additive genetic correlation). By itself, using a

fixed effect of morph invokes the biological assumption

of a perfect additive genetic correlation between the two

morphs. Although the statistical implications of this

assumption are generally understood, neither in the quan-

titative genetic literature nor the evolutionary ecology lit-

erature have the effects of this assumption on quantitative

genetic parameter estimates been formally quantified and

thoroughly explained. Consequently, key quantitative

genetic parameters in evolutionary ecology are not being

estimated (e.g., additive genetic correlation) or are poten-

tially being miscalculated (e.g., additive genetic variance).

In this study, we describe the bias in estimates of additive

genetic variance that arises when the additive genetic

effects of a trait are assumed to be perfectly correlated

between two morphs. As expected (Roff and Fairbairn

2011), we find that whenever the between-morph additive

genetic correlation is less than one, the additive genetic

variance for the morphs combined will be underestimated

when only a fixed effect of morph is specified. We show

how to estimate the magnitude of this bias for a variety

of quantitative genetic variance partitioning methods

employed by evolutionary ecologists (e.g., offspring-par-

ent regression, half-sib ANOVA, and mixed effect models

of pedigreed populations).

Predicted Bias in Estimates of
Quantitative Genetic Parameters for
Dimorphic Traits

In practice, breeding values are estimated using a combi-

nation of phenotypic information and the relatedness

among individuals within a population. Although an indi-

vidual can never be simultaneously measured for both

phenotypes in a dimorphism, each individual carries

genes that will contribute to both phenotypes. Therefore,

breeding values for phenotypes that are never expressed

can still be measured. A common example of this is milk

production in dairy cattle, where bulls cannot be mea-

sured for milk yield (e.g., Mrode 2005). However, bull

breeding values for milk yield can be estimated for the

purposes of determining which bulls will produce daugh-

ters with the highest milk yield. Information for the bull’s

breeding value is gathered from female relatives that share

some proportion of genes that the bull carries for the

milk yield trait.

In a hypothetical population, if every individual mates

with every other individual and offspring are produced

from each mating, then breeding values can be estimated

as two times the deviation of an individual’s average off-

spring phenotype from the population mean phenotype

(Lynch and Walsh 1998, p. 73). This concept of breeding

value is useful for examining the effect of genotype-by-

morph interactions on the distribution of breeding values

for each morph within a population. If the average

genetic effect of an allele differs between morphs, the

breeding values of the two morphs will also differ. For

example, consider height in an imaginary population of

dimorphic organisms. A genotype’s breeding value for

height in morph M1 is defined as the average genetic

effect of its genes on height when expressed in morph
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M1. The breeding value for the same genotype in morph

M2 is defined as the average genetic effect of its genes on

height when expressed in morph M2. For this one geno-

type, breeding values are estimated as two times the devi-

ation of the average phenotype of morph M1 offspring

from the morph M1 population mean and similarly for

morph M2.

The distribution of breeding values (a1, a2) for the

trait in the two morphs of a population can be described

by a bivariate normal distribution, where each has a

mean of zero, a variance according to the morph-specific

variance in trait breeding values [Var(a1) and Var(a2)],

and some correlation between breeding values in the two

morphs (i.e., ra-1,2; Fig. 1). When the effect of morph on

average genetic effects is ignored, the breeding values for

a trait are defined as the average genetic effects when a

genotype is expressed in both morph M1 and morph

M2 (i.e., the average of morph M1 and M2 breeding

values). The distribution of these average breeding val-

ues (au) can be described by a univariate normal distri-

bution with a mean of zero and variance equal to the

variance in average breeding values, Var(au) (Fig. 1). The

variance in au can be predicted from the general formula

for the variance of two random variables averaged

together:

VarðauÞ ¼ Var
1

2
a1 þ 1

2
a2

� �
¼ 1

2

� �2

Varða1Þ

þ 1

2

� �2

Varða2Þ þ 1

2
Covða1; a2Þ:

(1)

Illustrations of the morph M1, morph M2, and average

breeding value distributions, using one set of random

draws from each respective distribution, are shown in Fig-

ure 1. When the morphs have the same additive genetic

variance [Var(a1)=Var(a2)], an algebraic rearrangement of

equation 1 shows that the variance in average breeding

values, Var(au), will be less than both Var(a1) and Var

(a2) whenever the between-morph additive genetic corre-

lation is less than unity. This is seen in Figure 1, where

the spread of points is greater for the breeding values of

morphs M1 and M2 than it is for the spread in average

breeding values (Fig. 1C), and the probability distribu-

tions for breeding values of morphs M1 and M2 are

wider than the probability distribution of the average

breeding values (Fig. 1B).

Assuming that Var(a1)≥Var(a2), a rearrangement of the

right hand side of equation 1 shows that the variance in

average breeding values, Var(au), will be less than either

of the two morphs’ additive variances whenever

ra�1;2\
½3Varða2Þ � Varða1Þ�
½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðVarða1ÞVarða2ÞÞ
p � : (2)

This downward bias is illustrated in Figure 2, for the

range of possible between-morph genetic correlations

when Var(a2) is 10% less than Var(a1). See Appendix 1

for the analogous equation predicting the between-morph

genetic correlation at which the heritability of the morphs

combined will be less than either of the morph-specific

heritabilities.
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Figure 1. A single, simulated distribution of

breeding values when the variances for morphs

M1 and M2 equal 50 and the between-morph

correlation equals zero. (A) the probability

distribution of breeding values for morph M1,

(B) the probability distributions of the average

breeding values (black dashed line) and those

for morph M1 and M2 (black solid lines), (C) a

scatter plot of the average breeding values

(black filled squares) and the breeding values

for morphs M1 (open triangles) and M2 (open

circles), and (D) the probability distribution of

breeding values for morph M2.

592 ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Are We Underestimating Genetic Variances? M. E. Wolak et al.



In practice, true breeding values are unknown, and

thus, the additive genetic variance must be estimated

using known contributions of additive variance to the

phenotypic resemblance between relatives. For many

breeding designs, the additive genetic variance is esti-

mated as a fraction of the covariance between offspring

and parent phenotypes or as a fraction of the sire or dam

variance components (Falconer 1989). Alternatively, addi-

tive genetic variance estimates can be obtained from

mixed effect statistical models which simultaneously con-

sider all pairwise relationships. This latter approach

enables estimation of additive genetic variance in non-

standard breeding designs and wild populations for which

a population pedigree is available. Below, we consider

each approach separately.

Offspring-parent and half-sib models

Methods of estimating the additive genetic variance (i.e.,

the variance in breeding values) from the covariance

between offspring and parents, or the variance among

half-sib families also depend on there being no genotype-

by-morph interaction for breeding values expressed in

two different morphs (in addition to other assumptions

regarding random mating, nonadditive genetic effects,

and inbreeding; Falconer 1989; Lynch and Walsh 1998). If

these assumptions hold, the additive genetic variance

equals two times the covariance between offspring and

parent phenotypes and four times the variance among sire

or dam family (nested within sire) phenotypes in a nested

half-sib breeding design (Falconer 1989; Lynch and Walsh

1998). When equation 1 is multiplied by ½ or ¼, it also
predicts the offspring-parent covariance or the sire/dam

variance, respectively. Figure 2 can be interpreted as

depicting the line that predicts either the joint offspring-

parent covariance or joint sire/dam variances over a range

of between-morph additive genetic correlations when the

(co)variance in one morph is 10% less than the other.

For example, when the two morphs are two sexes, equa-

tion 2 predicts that the mid-offspring on mid-parent

covariance will be less than the sire on male offspring

covariance of 90 when the female offspring on dam

covariance is 100 and the between-sex additive genetic

correlation is approximately 0.89 (Fig. 2, grey vertical

line).

Morph-specific offspring-parent regressions or nested

linear models are therefore necessary when the between-

morph additive genetic correlation is less than one or the

additive genetic variances differ between the morphs.

Bivariate statistical models, where the phenotypes in the

two morphs are treated as separate traits, can also be uti-

lized to obtain morph-specific observed (co)variance

components. The additive genetic (co)variances can then

be estimated from sire, dam, and within-family (co)vari-

ances (e.g., Cowley et al. 1986).

Animal models

The range of organisms and populations for which

researchers can obtain predictions of breeding values and

make inferences about the additive genetic variance in pop-

ulations has broadened with the adoption of the mixed

effects linear model commonly known as the “animal

model” (Henderson 1973; Lynch and Walsh 1998; Kruuk

2004). Animal models have become popular tools in evolu-

tionary ecology because of their potential to disentangle

confounding sources of similarity between relatives, simul-

taneously consider relationships beyond offspring-parent

or half- and full-siblings in the estimation of variance com-

ponents and obtain unbiased estimates of model parame-

ters when selection has occurred during a given study

(Lynch and Walsh 1998; Kruuk 2004).

Here, we consider the effect of the between-morph

additive genetic correlation on joint estimates of variance

components in animal models. Estimating one additive

variance for both morphs in an animal model assumes

no genotype-by-morph interactions and, therefore, a

between-morph additive genetic correlation of one. A uni-

variate analysis incorporating these assumptions models

the phenotypic observations y, as a function of breeding

values, a (details in Appendix S1, Univariate model). The

breeding values in a are assumed normally distributed

Between−morph additive genetic correlation
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Figure 2. The predicted average variance (solid-black, diagonal line)

when morph M1 variance equals 100 (dotted-black, horizontal line)

and morph M2 variance equals 90 (dashed-black, horizontal line) using

equation 1 from the text. The average variance will be less than either

of the two variances whenever the between-morph additive genetic

correlation is less than approximately 0.89 (vertical-grey line; see

equation 2 in text). The variance on the y-axis can either be the additive

genetic variance, offspring-parent covariance, sire variance, or dam

variance.
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with mean of zero and variance of Var(a) = Ga⊗A, where

A is the additive genetic relationship matrix (⊗ symbol-

izes the direct product between two matrices). In this

model, Ga = r2a where r2a is the additive genetic variance

in the base population. Thus, the assumption regarding

the relationship between morph M1 and M2 breeding val-

ues for the univariate model (see equation S1.1 in Appen-

dix S1) is that all breeding values are modeled from a

univariate distribution of random effects.

Alternatively, the phenotype of interest can be modeled

as a different trait for each morph (e.g., Mrode 2005, p.

106) by estimating morph-specific variances. This

approach is analogous to estimating additive genetic vari-

ance in two environments (Roff 1997; Roff and Fairbairn

2011). In practice, this is carried out by specifying a

bivariate model where the two traits modeled represent

the phenotype as expressed in morph M1 and morph M2

(details in Appendix S1, Bivariate model). In such a

model, only morph M1 traits are expressed in morph M1

and only morph M2 traits are expressed in morph M2.

Accordingly, all morph M1 individuals will have missing

phenotypes for the morph M2 trait and vice versa for

morph M2 individuals. The intercept, or overall mean, of

the model accounts for a difference in the means of

unstandardized phenotypes for morphs M1 and M2. This

approach makes a residual covariance between the two

morphs impossible to define as no individual can express

the trait in both morphs (i.e., morph M1 phenotypes can-

not be expressed in morph M2; e.g., Mrode 2005). When

the data permit, the bivariate description is preferred over

separate univariate models for each morph, because it

allows for estimation of the between-morph genetic corre-

lation and increases the precision with which BLUPs for

the breeding values are obtained. The latter point arises

from the additional information used to determine the

breeding values for one morph derived from the expres-

sion of the phenotype in opposite morph relatives (analo-

gous to the above example where one can estimate a

bull’s milk yield breeding value; Mrode 2005).

In the bivariate model (see equation S1.2 in Appendix

S1), the breeding values in a (the bivariate distribution of

a1 and a2) are multivariate normally distributed. Conse-

quently, Var(a) = Ga⊗A, but here Ga is the 2 9 2

matrix:

Ga ¼ r2a�1 ra�1;2

ra�2;1 r2a�2

� �
: (3)

When a univariate animal model only includes morph

as a fixed effect, the separate distributions of breeding val-

ues for the two morphs are assumed perfectly correlated

(i.e., ra-1,2 = 1). Thus, Ga in equation 3 is forced to satisfy

r2a-1=r
2
a-2=ra-1,2 (ra-1,2=1 when this occurs), and the

bivariate model (equation S1.2) is equivalent to the uni-

variate model (equation S1.1). When these assumptions

are valid (i.e., r2a–1 = r2a–2 = ra-1,2), mixed effect models

treating any differences between the morphs as a fixed

difference (i.e., morph as a fixed effect and jointly model-

ing the morphs) will produce unbiased estimates of the

additive genetic variance in the population. However, if

the between-morph additive genetic correlation is less

than unity (ra–1,2 6¼ 1) as illustrated in Figure 1, the uni-

variate model (equation S1.1 in Appendix S1) will pro-

duce a biased estimate of additive genetic variance as

predicted by equation 2 (Fig. 2).

Examples from the Literature

Results from many empirical papers can be interpreted in

the context of the dynamics described by equations 1 and

2. For example, in a study of the genetic basis of life-his-

tory trade-offs Roff and Fairbairn (2011) analyzed five

traits in two wing morphs of the cricket, Gryllus firmus.

They initially estimated heritability when the sexes or

wing morphs were combined followed by analyses where

sex and wing-morph-specific heritabilities were estimated.

For a number of traits, the combined estimates of herita-

bility were lower than the sex-specific or wing-morph-

specific estimates. They postulated that these traits had

between-sex or between-morph genetic correlations less

than one. In agreement with their predictions, and our

predictive equations, Roff and Fairbairn (2011) confirmed

the presence of genetic correlations between-sexes or

wing-morphs significantly less than one in the same traits

where they found the combined heritability estimate was

lower than the sex-specific or wing-morph-specific esti-

mates. Roff and Fairbairn’s results highlight that morphs

within a population, particularly the two sexes, often have

different distributions of breeding values that reflect the

different evolutionary processes (e.g., selection) experi-

enced by the morphs.

The proposal that it is necessary to consider the quanti-

tative genetic architecture of a trait separately for each sex

is not new (e.g., Fedorka et al. 2007). In agricultural

breeding, the approach has often been to compare differ-

ences in parameter estimates from models that do or do

not consider the sexes separately (e.g., Garrick et al. 1989;

Rodr�ıguez-Almeida et al. 1995; Lee and Pollak 1997; Van

Vleck and Cundiff 1998; N€asholm 2004). Careful consid-

eration of results from these studies demonstrates that the

sex-specific and combined-sex additive genetic variance

estimates differ greatly when the between-sex genetic cor-

relations are significantly less than unity. Consequently,

recommendations as to the separate or combined consid-

eration of the sexes are proffered on a study by study

basis.
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Taken together, empirical support for separate esti-

mates of morph-specific additive genetic variances (e.g.,

Roff and Fairbairn 2011) and evolutionary theory both

promote adoption of a null model that considers the

quantitative genetics of discrete morphs as different. To

determine how often this occurs in practice, we sampled

the recent literature and noted how researchers have trea-

ted discrete morphs in quantitative genetic analyses

(details in the Appendix S2). We included papers estimat-

ing genetic variances or heritabilities that were published

in Evolution, the American Naturalist, Journal of Evolution-

ary Biology, and Heredity between January 2013 and Octo-

ber 2014 (Table S2.1 in Appendix S2).

The most common taxa in these papers are insects (31

papers), birds (21 papers), and plants (11 papers). We

found 79 papers estimating quantitative genetic parame-

ters, 63 of which studied traits expressed by discrete mor-

phs or classes within a population or breeding design. Sex

was the most common dimorphic trait (35 of 63), but

discrete environments, resource availabilities (e.g., diet

treatments), ages, or populations/lines were also common.

Note, however, that morph classifications are not mutu-

ally exclusive. For example, Ingleby et al. (2013) studied

cuticular hydrocarbons in Drosophila simulans that were

measured on individuals in separate diet and temperature

treatments as well as in both sexes.

Only one of the 63 studies ignored the effects of the

discrete morphs in their data. Of the studies that explic-

itly considered dimorphism (or polymorphism) in their

analyses, 53 included a fixed effect (see Appendix S2), 44

estimated morph-specific additive genetic variances or

heritabilities within the same model (e.g., the bivariate

model in equation S1.2 Appendix S1) and just over one-

third (24 of 62) analyzed morphs in separate models. In

many cases (12), researchers used more than one method,

for example, a univariate, fixed-effects model or a bivari-

ate model combined with separate analyses of the two

morphs. However, in 10 studies, the dimorphic or poly-

morphic variation was analyzed only using a fixed effects,

univariate model (equation S1.1 in Appendix S1). The

methods used to analyze data in these 10 studies were

animal models (8), full-sib variance partitioning model

(1), and parent-offspring regression (1).

In the absence of supplemental models or previous esti-

mates from the study populations, it is not possible to

determine whether the additive genetic variance estimates

are biased downward in the 10 studies that relied only on

univariate models (e.g., as predicted by equation 2). In

some cases, univariate models are sufficient, but often-

times not. Examples from studies that fitted both the uni-

variate and bivariate models illustrate this point. Weiß

and Foerster (2013) studied dominance rank in greylag

geese (Anser anser) and found that the sex-specific herita-

bility estimates (i.e., from the bivariate model, equation

S2.2 in Appendix S2) were much higher than the estimate

when the sexes were combined (i.e., from the univariate

model, equation S2.1 in Appendix S2). As expected from

our equation 2, their result can be explained in part by

the low between-sex correlation (see table 3 in Weiß and

Foerster 2013). Conversely, Berger et al. (2013) found no

differences between additive genetic variances estimated

for development rate in Sepsis punctum in two food treat-

ments and thus combined these two classes for further

analyses. In a third example, Schaper et al. (2013) were

unable to fit a model of great tit (Parus major) gonadal

size across months given the dataset available. Instead,

they allowed for month-specific additive genetic variances

by fitting separate models for each month. These studies

illustrate the recommended practice of including dimor-

phic (or polymorphic) trait variation in analyses and only

simplifying the models after confirming similar morph-

specific additive genetic variances and between-morph

additive genetic correlations of approximately one.

Discussion

Estimates of additive genetic variance are at the heart of

many studies in evolutionary ecology that are conducted

to answer general questions regarding (1) the evolution-

ary forces that shape additive variance; and (2) popula-

tion responses to selection. Discrete morphs or

phenotypic classes occur in some species by virtue of dif-

ferent patterns of gene expression. There is no a priori

reason to assume that the patterns of variances within

and covariances among traits should be the same for

traits expressed in these two genetic environments.

Therefore, initial estimates of variances and covariances

should consider the separate morphs or classes as dis-

tinct with the potential for genotype-by-morph interac-

tions between them. As demonstrated above, when such

genotype-by-morph interactions are not explicitly consid-

ered the resulting variance in the joint distribution of

breeding values will be less than the variance in breeding

values for either class. Thus, the estimated effect of evo-

lutionary forces on additive genetic variance and predic-

tions for evolutionary responses in mean phenotype may

differ substantially based on the way phenotypes are

modeled in a quantitative genetic analysis (i.e., joint dis-

tribution of breeding values versus morph-specific distri-

butions). The common practice from papers in our

literature sample (ca. 84%) and the approach we argue

for here is to estimate morph-specific additive genetic

variances and only combine traits across morphs when

there is no evidence for morph-specific genetic architec-

ture (i.e., when morph 1 and 2 (co)variances are

r2a–1 = r2a–2 = ra-1,2).
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Downward biases in estimates of additive genetic vari-

ance exacerbate problems with quantitative genetic infer-

ence in limited datasets (e.g., some wild populations).

Such datasets often do not have the sample size or infor-

mative relationships necessary to disentangle additive var-

iance from other sources of phenotypic resemblance

among relatives (e.g., see discussion above of Schaper

et al. 2013). These issues are compounded when the sta-

tistical model attributes less of the phenotypic variance to

additive genetic effects then it should because of the

biases discussed above. The extent of this problem will, in

part, be dictated by the additive genetic correlation

between the trait values in the morphs.

Although the arguments made above have been framed

within a single trait context for simplicity and ease of

interpretation, the results extend to multivariate trait

relationships where the pattern of covariances among

traits will often differ between classes as well. This point

is particularly salient for predicting evolutionary change

using the statistical relationship between breeding values

of a trait and of relative fitness (Secondary Theorem of

Natural Selection; Robertson 1966; Price 1970). For

example, studies of sexually dimorphic traits often find

differences between the sexes in among-trait covariance

matrices (e.g., Preziosi and Roff 1998; Jensen et al. 2003;

Fedorka et al. 2007; Steven et al. 2007; Walling et al.

2008; Roff and Fairbairn 2011) which have been shown

to impact predicted responses to selection (Fedorka et al.

2007).
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Appendix 1

Narrow-sense heritability, the ratio of the additive genetic variance to the phenotypic variance, is central to predicting

the amount by which the average phenotype in a population will change from one generation to the next using the bree-

der’s equation (Falconer 1989). Assuming equal residual variances for both morphs, if the heritability in morph M1

equals the heritability in morph M2, equation 1 can be extended to show that the heritability of the morphs combined

will underestimate the within-morph heritabilities whenever the between-morph additive genetic correlation is less than

one (Roff and Fairbairn 2011). If the heritabilities in morphs M1 and M2 are not equal, then by a similar rearrangement

to the one which produces equation 2, the between-morph genetic correlation at which the heritability of the morphs

combined will be less than both of the heritabilities in the two morphs occurs when

ra�1;2\
½ððVarða2ÞVarðp1ÞÞ=Varðp2ÞÞ þ 1

2 ðVarða2Þ � Varða1ÞÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðVarða1ÞVarða2ÞÞ
p : (A1)

In equation A1, p1 and p2 refer to the distributions of M1 and M2 phenotypes, respectively.
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