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Abstract: Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally. Most
patients present with late diagnosis, leading to poor prognosis. This narrative review explores novel
biomarkers for early HCC detection. We conducted a comprehensive literature review analyzing pro-
tein, circulating nucleic acid, metabolite, and quantitative proteomics-based biomarkers, evaluating
the advantages and limitations of each approach. While established markers like alpha-fetoprotein
(AFP), des-gamma-carboxy prothrombin, and AFP-L3 remain relevant, promising candidates include
circulating tumor DNA, microRNAs, long noncoding RNAs, extracellular vesicle, and metabolomic
biomarkers. Multi-biomarker panels like the GALAD score, Oncoguard, and Helio liver test show
promise for improved diagnostic accuracy. Non-invasive approaches like urine and gut microbiome
analysis are also emerging possibilities. Integrating these novel biomarkers with current screening
protocols holds significant potential for earlier HCC detection and improved patient outcomes. Future
research should explore multi-biomarker panels, omics technologies, and artificial intelligence to
further enhance early HCC diagnosis and management.

Keywords: liver neoplasms; hepatocellular carcinoma; early detection of cancer; biomarkers; diagnosis:
screening; surveillance

1. Introduction

Over 860,000 cases of liver cancer were diagnosed in 2022, making it the sixth most
common cancer. Nearly 760,000 cancer deaths were due to liver cancer, which is the third
leading cause of cancer death, accounting for 7.8% of all cancer deaths [1]. Between 75%
and 85% of liver cancer cases are hepatocellular carcinoma (HCC) [2].

Most cases of HCC are associated with chronic liver disorders and cirrhosis, primarily
resulting from hepatitis B virus (HBV) and C viruses (HCV) infections, alcohol-associated
liver disease, and metabolic dysfunction-associated steatotic liver diseases (MASLD) or
steatohepatitis (MASH) [3]. HBV and HCV account for about 55% and 21% of HCC cases,
respectively [4]. Chronic inflammatory processes result in the development of liver fibrosis
and cirrhosis. Ultimately, this may lead to the development of HCC. Regrettably, the
majority of individuals with early-stage HCC do not exhibit any symptoms, resulting in
the late diagnosis of HCC in the absence of a surveillance test [5].
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Due to the frequent presentation of HCC in later stages, there is an urgent need
to investigate newer strategies for detecting early-stage HCC [6]. The Early Diagnosis
Research Network (EDRN) has introduced a five-phase approach to standardize research on
novel cancer biomarkers, which have gained significant acceptance and implementation [7].
In 2021, the International Liver Cancer Association (ILCA) proposed customized EDRN
biomarker stages specifically designed for HCC, which will be discussed in the subsequent
sections [8].

In this review, we aim to discuss the use of various biomarkers for the diagnosis of
HCC, including downregulated/upregulated proteins during HCC carcinogenesis, circu-
lating nucleic acids or cells, metabolites, and the newly discovered biomarkers identified
through quantitative proteomics. We delineate the constraints of the existing HCC screen-
ing strategy, examine the theoretical framework of precision medicine methods to surmount
these obstacles, and provide an overview of upcoming advancements aimed at improving
early HCC detection. Our particular emphasis is on novel biomarkers that are expected to
impact the HCC screening program, ultimately increasing early-stage cancer detection and
decreasing mortality.

2. Materials and Methods

In this narrative review, we searched multiple databases, including PubMed, Scopus,
and Web of Science, to explore studies on novel biomarkers for the early detection of HCC.
Keywords such as “Hepatocellular Carcinoma”, “Early Detection”, “Biomarkers”, “Protein
Biomarkers”, “Circulating Nucleic Acids”, “Metabolomics”, and “Proteomics” were used
to guide the search. The review included studies that met the following criteria: (1) pub-
lished in peer-reviewed journals, (2) focused on novel biomarkers (e.g., protein, nucleic
acid, metabolite, or quantitative proteomics-based biomarkers) for the early detection of
HCC, and (3) available in English. Non-peer-reviewed articles and studies with insufficient
methodological details were excluded. We categorized biomarkers into two groups, tradi-
tional and emerging biomarkers, and discussed the future of HCC biomarkers for early
detection. For conflicting topics, we compared studies with differing results, and when
meta-analyses were available, we included them in the discussion.

2.1. Challenges in Hepatocellular Carcinoma Screening

Detecting HCC at an early stage is crucial for enhancing patient outcomes. Surveillance
programs have been put in place to identify individuals who pose a high risk for HCC.
Effective HCC screening is still a difficult task, nevertheless, for a number of reasons.
It might be difficult to accurately identify people who are at risk of developing HCC,
often known as surveillance candidates. Moreover, the sensitivity of common surveillance
tests, such as alpha-fetoprotein (AFP) and ultrasound, is limited, frequently resulting in
missed diagnoses. Furthermore, patients with obesity or MASLD have poor diagnostic
accuracy with ultrasonography. The changing etiology of HCC also makes it challenging
to implement screening programs. The increasing prevalence of obesity and metabolic
disorders worldwide has led to more cases of non-viral HCC, making traditional risk
assessment models less reliable. These shifts in HCC require the development of new
screening methods that are specific to different causes of the disease [3,9]. These drawbacks
highlight the urgent need for better screening methods to enhance early HCC identification
and improve patient outcomes [10–12].

A considerable proportion of HCC cases are discovered at advanced stages due to
individuals with cirrhosis not undergoing surveillance, which contributes to the poor
prognosis of HCC [11–13]. Performing abdominal ultrasonography every six months
for HCC surveillance is linked to the early identification of tumors, receiving curative
therapy, and improved overall survival [12]. However, fewer than 25% of individuals
with cirrhosis who are at risk undergo HCC surveillance [14]. HCC surveillance is less
commonly performed in racial and ethnic minority groups, including Black and Hispanic
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individuals, as well as those with lower socioeconomic status. This gap in surveillance
contributes to the variations in HCC outcomes [15–17].

Efficient cancer screening necessitates a series of actions in a continuous process of care,
which involves identifying individuals who are susceptible to cancer, healthcare providers
advising and requesting screening, and patients complying with the timely completion
of surveillance tests [18,19]. Surveillance failures can happen at any point across the
range of factors relating to patients, clinicians, and the healthcare system [20]. Previous
research examining obstacles to HCC monitoring has indicated that patient-related factors,
such as logistical challenges (e.g., transportation), and clinician-related issues, such as
limited knowledge and time restrictions in the clinic, are linked to the receipt of HCC
surveillance [10,21,22].

Finally, despite its high sensitivity for detecting HCC overall, ultrasound with AFP
fails to detect more than one-third of cirrhotic HCC cases at early stages [23]. Moreover,
ultrasonography and AFP frequently produce false-positive or inconclusive outcomes,
leading to possible physical, financial, and psychological damage [24].

The significant constraints of existing monitoring systems underscore the lack of a
straightforward and effective approach to HCC surveillance. Therefore, there is a pressing
need for the development of novel methods and strategies to improve the efficiency of
HCC screening.

2.2. Precision in Hepatocellular Carcinoma Surveillance and Early Detection

To overcome the shortcomings of the existing HCC screening process and enhance
its efficacy, it is necessary to improve the performance of risk stratification and early
detection tests. Additionally, these tests should be logically integrated and arranged
within a systematic HCC screening algorithm. To improve the efficiency of each test,
the combination of clinical, molecular, and imaging factors has often been used for both
risk stratification and early-stage disease detection. This approach aims to improve the
effectiveness and practicality of early detection tests [25]. To prevent the failure of early
detection and unnecessary harm from screening tests, it is important to use early detection
tests based on the expected risk of HCC. This will help avoid underscreening high-risk
patients and over-screening low-risk patients [26]. Precision medicine has the potential to
improve both the early detection rate and precision of diagnosing HCC. Recent research
has uncovered new information about the complex signaling regulatory network in HCC,
leading to a better understanding of the disease and improving the accuracy of HCC
detection [27].

To effectively execute screening, it is crucial to use an individualized, risk-based, and
customized strategy. Utilizing methods like gene sequencing and omics technology to
categorize HCC based on its molecular characteristics can contribute to the advancement
of precision medicine. In addition, the rapid advancement of biocompatible nanomaterials,
artificial intelligence, machine learning, data mining technologies, and interdisciplinary
collaboration have greatly supported the field of radiomics and the development of new
contrast agents. This has led to significant improvements in the accuracy of medical imaging
for HCC diagnosis [27]. Utilizing next-generation sequencing (NGS) may help characterize
the microenvironment of precancerous liver tissue. Nevertheless, the customized strategy
should also provide a cost-efficient and accurate biomarker for patients who are at risk of
HCC. The identification of biomarkers with high sensitivity and specificity is crucial for
personalized surveillance strategies [28].

NGS is a potential approach for discovering the molecular basis of HCC, allowing for
the detection of new biomarkers. By customizing surveillance strategies according to spe-
cific patient features and genetic profiles, we can improve the early diagnosis of HCC and
enhance patient outcomes. Successful precision medicine in HCC surveillance will require
overcoming hurdles associated with refined risk stratification and implementation [29].
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2.3. Biomarker Development for Early Detection of Hepatocellular Carcinoma

Screening is essential for the early identification and successful management of HCC.
Clinical symptoms, imaging, and serum protein biomarkers are used in detecting HCC [30].
The serum protein biomarkers often used for HCC include AFP, des-γ-carboxyprothrombin
(DCP) [31], and glypican-3 (GPC-3) [32]. The presence of heterogeneity in HCC greatly
hampers the ability to diagnose and treat individuals with this condition [33,34], resulting
in poor diagnostic and therapeutic efficiency. With the emergence of NGS and the advance-
ments in precision medicine, omics data, such as genomics, epigenomics, transcriptomics,
proteomics, and metabolomics, can detect biological heterogeneity, facilitating the discovery
of novel HCC biomarkers, as seen in Figure 1.
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Figure 1. Development of early detection biomarkers for hepatocellular carcinoma using “omics” data.

This figure illustrates the integration of various omics data in the development of early
detection biomarkers for HCC. The components include (1) ctDNA, miRNA, circRNA, and
lncRNA. These represent different types of nucleic acids found in the bloodstream, which
can be sequenced and analyzed to identify tumor-specific mutations, expression patterns,
or other biomarkers indicative of HCC. (2) Tumor Protein Markers: Proteins produced
by tumor cells can serve as biomarkers detectable in blood samples. (3) Extracellular
Vesicles (EVs), Red Blood Cells (RBCs), Circulating Tumor Cells (CTCs), and Lymphocytes:
These circulating components can carry tumor-specific markers, which can be analyzed
to detect the presence of HCC. (4) HCC Tissue: Direct analysis of HCC tissue provides
critical insights into the molecular and genetic characteristics of the tumor, contributing
to biomarker discovery. (5) Intestinal Flora: The composition and interactions of the gut
microbiome with the host can influence liver disease and potentially serve as indirect
biomarkers for HCC.

EDRN established five widely accepted stages for developing early cancer detection
biomarkers [7] and, in 2021, ILCA customized these stages specifically for HCC [8]. Phase 1
is a preliminary investigation conducted in preclinical environments to identify possible
biomarkers. Typically, this procedure involves comparing tumor tissue with non-tumor
tissue using equipment that may identify protein or gene expression. The goal of a Phase
1 gene expression or proteomics investigation is to detect genes or proteins that show
higher or lower levels of expression in tumor tissue compared to control tissue. However,
the harvesting of organ tissue is typically too intrusive to be used for clinical screening
purposes. Therefore, the next phase involves developing a clinical test that relies on mea-
suring either the quantities of proteins produced by the identified genes in the serum or
the level of antibodies against those proteins in the serum. Phase 2 involves developing a
clinical test by comparing samples from individuals with malignancies to those without.
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The procedure is conducted in a clinical environment, often through a case-control study,
following the diagnosis of cancer in individuals. The purpose of this phase is to calculate
the true positive rate (TPR) and false positive rate (FPR) and to assess the area under the
receiver operating characteristic curve (AUROC) of the clinical biomarker assay, evaluating
its capacity to differentiate individuals with cancer from those without. Phase 3 is a retro-
spective longitudinal study designed to assess the early detection capability of biomarkers
and to establish the criteria for a positive screening test in preparation for Phase 4. This
study contrasts individuals who have developed cancer with those who have not, utilizing
clinical assays conducted at different time points. Phase 4 is a study designed to assess the
effectiveness of biomarkers as a screening tool in a specific population. Phase 5 is a metic-
ulously regulated investigation, preferably a randomized controlled trial, that includes
therapeutic intervention if necessary. Its purpose is to assess the mortality advantage of
biomarker screening using a positive screening test. A summary is shown in Figure 2.
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Figure 2. Phases of Cancer Biomarker Development for Early Detection of Hepatocellular Carcinoma:
This figure summarizes the sequential phases involved in the development of cancer biomarkers
specifically for the early detection of HCC: (1) Phase 1—Preclinical Exploratory: This initial phase
involves identifying potential biomarkers by comparing tumor tissues with non-tumor tissues. The
focus is on discovering gene expressions or protein markers that are differentially expressed in
tumor tissues. (2) Phase 2—Clinical Case-Controlled: In this phase, a clinical assay is developed by
comparing samples from individuals with and without HCC. The aim is to evaluate the true positive
and false positive rates and the assay’s ability to differentiate between those with and without the
disease. (3) Phase 3—Retrospective Longitudinal: This phase evaluates the early detection ability of
the biomarkers. It involves a retrospective study comparing individuals who developed HCC with
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those who did not, using previously collected clinical samples. (4) Phase 4—Prospective Screening:
The biomarkers identified in earlier phases are tested as screening tools in a target population. This
phase evaluates their effectiveness in detecting HCC in a broader, real-world setting. (5) Phase
5—Randomized Controlled Trial: The final phase involves a controlled trial to assess the mortality
benefit of using the biomarkers for screening, potentially coupled with therapeutic interventions.
This phase determines the clinical utility of the biomarkers in improving patient outcomes.

2.4. Classification of Biomarkers

The ideal biomarker for routine clinical analysis should possess several key properties.
It should be sensitive and specific and not require extensive operator experience. Addi-
tionally, it should be inexpensive, highly reproducible, and capable of producing rapid
results [35]. Finally, the biomarker should also correlate with tumor stages and be easily
obtainable without the need for pretreatment of the available samples, such as blood or
urine, as shown in Figure 3. The categorization of HCC markers is detailed in Table 1.
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Figure 3. Characteristics of Ideal Biomarkers: This figure highlights the key attributes of an ideal
biomarker for clinical use, including specificity, sensitivity, reproducibility, and cost-effectiveness.
The biomarker should be easily obtainable with minimal processing, correlate with tumor stages, and
provide rapid results without requiring extensive operator expertise.
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Table 1. Classification of biomarkers for hepatocellular carcinoma diagnosis.

Category Biomarker Examples Advantages Limitations

Proteins
AFP, AFP-L3, DCP,

Glypican-3, osteopontin,
GALAD score,

Widely available assays,
non-invasive or minimally

invasive collection, relatively
simple detection methods

Low sensitivity and specificity for
early-stage HCC—Elevated levels

in non-HCC conditions

Emerging Biomarkers

Nucleic Acid Biomarkers:
miRNAs and lncRNAs,

ctDNA

Potentially high sensitivity and
specificity, potential for
personalized medicine

Extracting and examining certain
nucleic acids from blood may be
technically demanding and need

specialized equipment.

Exosomes, EV-associated
biomarkers, Integrated Omics

Non-invasive, tumor specificity,
stability, targeted therapeutics

These methodologies are
currently in the process of being

developed, and more
investigation is required to verify

their efficacy in clinical
environments.

Metabolites: amino acids, bile
acids

Non-invasive approach, early
detection potential, potential for

multi-marker panels

Limited understanding of specific
metabolite roles, standardization

challenges

Urine/Stool samples miRNAs

Non-invasive, early detection
potential, Indicates the conditions

of the intestines and the
possibility of detecting cancer at

an early stage.

Low sensitivity and specificity

Abbreviations: AFP: alpha-fetoprotein; DCP: des-gamma-carboxy prothrombin; miRNAs: microRNAs; lncR-
NAs: Long noncoding RNAs; ctDNA: circulating tumor DNA; EV: extracellular Vesicles; HCC: hepatocellular
carcinoma.

2.5. Traditional Serum Protein Biomarkers
2.5.1. Alpha-Fetoprotein

The serum AFP is used as a biomarker for screening and monitoring of therapeutic
response for HCC. AFP is a glycoprotein detectable in the blood of fetuses and is the first
acknowledged oncofetal biomarker. Its usefulness in liver cancer diagnostics dates back to
its initial identification in mouse hepatoma and subsequent confirmation in the serum of
patients with HCC [36,37]. As far back as the 1960s, AFP was identified as a biomarker not
only for HCC but also for distinguishing between primary and metastatic liver tumors [38].
Following that, sequential biomarker investigations have examined the utility of AFP
for the identification and screening of HCC [37]. The AUROC for AFP was 0.77, with a
sensitivity and specificity of 62% and 87%, respectively [39]. The blood AFP level in healthy
persons is less than 5 ng/mL. Conversely, a high concentration of AFP in the blood is often
linked to HCC or other inflammatory liver conditions. However, a significant percentage
of patients with HCC may have normal AFP levels, even in advanced stages of the disease,
limiting its role as a standalone test for HCC surveillance [40].

2.5.2. Des-γ-Carboxy Prothrombin

DCP is a variant form of prothrombin that is deficient in γ-carboxy residues, result-
ing in impaired clotting ability. This protein is activated in response to a deficiency or
inhibitor of vitamin K, known as PIVKA II. Malignant hepatocytes have a deficiency in
carboxylating glutamic acid to produce γ-carboxy glutamic acid. DCP, also known as
aberrant prothrombin, is produced due to this malfunction [41]. When comparing AFP
and DCP levels, it was shown that DCP levels had higher sensitivity and specificity in
differentiating between HCC and chronic nonmalignant hepatic disorders. The sensitivity
of HCC detection was enhanced by combining the use of DCP and AFP [42,43]. In a study
that included 689 patients with cirrhosis and/or chronic hepatitis B, as well as 42 cases of
HCC, matched analysis showed that the AUROC for DCP was 0.7 at HCC diagnosis [44].



Diagnostics 2024, 14, 2278 8 of 20

2.5.3. Alpha-Fetoprotein-L3

AFP-L3 is a subtype of AFP that is found in cancerous liver cells and is considered to
be specific to HCC [45]. By measuring the proportion of AFP-L3 to total AFP (AFP-L3%), it
is possible to diagnose HCC at an early stage. Previous studies have shown that AFP-L3%
has a diagnostic sensitivity for HCC ranging from 75.0% to 96.9%, with a specificity of
from 90.0% to 92.0% [46,47]. In a study involving 689 patients with cirrhosis or chronic
HBV, 42 who progressed to HCC were matched with 168 controls. The AUROCs for AFP,
AFP-L3, and DCP at diagnosis were 0.77, 0.73, and 0.71, respectively. Combining AFP and
AFP-L3 improved the AUROC to 0.83, but adding DCP only slightly increased it to 0.86.
The optimal cutoff values for AFP (5 ng/mL) and AFP-L3 (4%) yielded a sensitivity of 79%
and specificity of 87% for HCC detection [39].

3. Emerging Biomarkers
3.1. Nucleic Acid Biomarkers
3.1.1. Circulating Tumor DNA (ctDNA)

In genomics, ctDNA is a valuable diagnostic tool for cancer. It is minimally invasive,
requiring only a small blood sample, and can reveal genetic and epigenetic changes as-
sociated with cancer and its spread. ctDNA provides an easy and accurate method for
ongoing tumor genome surveillance [48]. In the field of epigenomics, the examination of
methylation patterns in ctDNA shows potential for the detection of HCC [49]. Building
on this potential, several blood test panels were developed for early liver cancer detection
using ctDNA analysis. HelioLiver Test combines circulating cell-free DNA methylation
markers with patient demographic data and established HCC tumor markers. In a 2022
study, the HelioLiver Test was assessed in 247 participants (122 with HCC and 125 with
chronic liver disease). The test demonstrated an AUROC of 0.944, outperforming AFP
(0.851; p < 0.0001) and GALAD (0.899; p < 0.0001). It achieved 85% sensitivity (95% CI:
78–90%) for any-stage HCC, 76% sensitivity (95% CI: 60–87%) for early-stage HCC, and 91%
specificity (95% CI: 85–95%), indicating its superior performance and potential for effective
HCC surveillance [50]. Similarly, the Oncoguard Liver test, which combines methylation
biomarkers such as HOXA1, TSPYL5, and B3GALT6 with sex and AFP, demonstrated a
sensitivity of 72% (95% CI: 61–80%) and specificity of 88% (95 CI: 84–91%) for detecting
early-stage HCC in the algorithm development study. The validation study showed 82%
(95% CI: 72–89%) sensitivity and 87% (95% CI: 82–91%) specificity. Like the HelioLiver Test,
this test outperforms AFP and GALAD for early-stage detection but has lower specificity
compared to these tests [51].

These commercially available tests highlight the growing clinical utility of ctDNA as a
minimally invasive approach for the early detection and surveillance of liver cancer.

3.1.2. MicroRNAs (miRNAs), Long Noncoding RNA (lncRNAs), and Circular
RNA (circRNAs)

Transcriptomics has shown distinct expression patterns of circulating miRNAs in
different tumors, including HCC [52–54]. The diagnostic value of three different types of
RNA for HCC diagnosis was assessed in several studies. Several studies have demonstrated
the diagnostic potential of specific miRNAs for HCC. For example, miR-122, miR-21, and
miR-221 have been extensively studied, with findings indicating their elevated levels
in HCC patients compared to healthy controls [55,56]. A meta-analysis reported that
the diagnostic accuracy of miRNAs for HCC was comparable to traditional biomarkers,
with sensitivity, specificity, and AUROC values exceeding 80% [57]. A network meta-
analysis determined that circular RNA (circRNAs) is the most effective, with lncRNAs and
miRNAs ranked second and third, respectively [58]. Several meta-analyses have assessed
the diagnostic value of circRNAs in HCC diagnosis, reporting specificity, sensitivity, and
AUROC values of at least 74%, 72%, and 0.815, respectively [59–61].

lncRNAs typically consist of about 200 nucleotides and play roles in maintaining
the integrity of RNA and in binding to proteins and DNA. Several lncRNAs circulating
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in the blood have shown diagnostic potential for HCC. Li et al. [62] demonstrated that
the combination of circulating lncRNAs of highly upregulated liver cancer (HULC) and
Linc00152 resulted in an AUROC of 0.87 for HCC diagnosis. Furthermore, when these
lncRNAs were combined with AFP, the AUROC increased to 0.89. Another study used a
mix of three plasma lncRNAs—LINC00152, RP11-160H22.5, and XLOC014172—and found
AUROC values of 0.985 and 0.986 for distinguishing between healthy individuals or those
with chronic hepatitis and those with HCC [63]. Furthermore, other lncRNAs, such as
p34822, have also been shown to possess diagnostic significance [64].

A 2021 meta-analysis involving approximately 5000 patients and 4600 controls eval-
uated the diagnostic value of lncRNAs for HCC, reporting pooled sensitivity, specificity,
and AUROC values of 0.85 (95% CI: 0.82–0.88), 0.76 (95% CI: 0.73–0.80), and 0.88 (95% CI:
0.85–0.91), respectively [65].

Another meta-analysis, published in 2024, focused on the serum levels of three lncR-
NAs, HULC, urothelial carcinoma-associated 1 (UCA1), and homeobox transcript antisense
intergenic RNA (HOTAIR), and found that these lncRNAs, when evaluated together, of-
fered significantly better sensitivity and specificity for diagnosing HCC than traditional
biomarkers or other ncRNAs. These results underscore the potential of these lncRNAs to
improve early detection and support personalized treatment strategies for HCC [66].

3.2. Metabolomic Biomarkers

Metabolomics, a branch of the “omics” technique, enables the reliable identification,
quantification, and characterization of small metabolites with molecular masses below
2 kDa. HCC is characterized by a variety of cellular metabolic changes. These modifica-
tions result in the formation of identifiable substances in the bloodstream, including bile,
phospholipids, peptides, sphingolipids, reactive oxygen species, amino acids, long-chain
carnitines, and modified nucleosides like 1-methyladenosine (M1A), among others [67].
Hepatocellular metabolic changes are of utmost importance in the development of can-
cer [35]. For example, in tumors, the glycolysis process is redirected to produce nucleotides
that are needed for the pentose-phosphate pathway instead of generating energy in the
form of ATP. Nevertheless, comprehending the metabolomics of tumors presents a promis-
ing strategy for identifying possible biomarkers that might aid in the early detection of
HCC [68–70]. Metabolomics analysis of 612 blood samples from 203 MRI-monitored cir-
rhotic patients, 37 of whom developed HCC, identified six key markers that effectively
distinguished patients with HCC from those without it within a year. The markers (AFP,
6-bromotryptophan, N-acetylglycine, salicyluric glucuronide, testosterone sulfate, and age)
achieved an AUROC of 0.88 (95% CI: 0.83–0.93). This study highlighted N-acetylglycine,
certain amino acids, bile acids, and choline-related metabolites as potential HCC risk
biomarkers [71].

3.3. Extracellular Vesicles (EV)

The presence of a lipid layer in EV prevents the degradation of mRNA, microRNA,
and lncRNA by RNases. Multiple studies have shown that serum EV-containing RNAs can
serve as biomarkers for screening HCC [53,72]. Xu et al. compared serum levels of the EV
markers ENSG00000258332.1 and LINC00635 among HCC patients, chronic HBV-infected
patients, and healthy controls. They found that these markers were elevated in HCC
patients and decreased after surgery. Combining ENSG00000258332.1, LINC00635, and
AFP achieved a high diagnostic accuracy with an AUROC of 0.894, sensitivity of 83.6%,
and specificity of 87.7%. ENSG00000258332.1 and LINC00635 individually had AUROCs
of 0.719 and 0.750, respectively, for distinguishing HCC from chronic HBV [73]. Wang et al.
utilized deep sequencing to analyze serum EV miRNA profiles and compared them among
groups with HCC, liver cirrhosis, and healthy controls. They found that EV miRNA-148a
had an AUROC of 0.891 (95% CI: 0.809–0.947) for differentiating HCC from liver cirrhosis,
while AFP had an AUROC of 0.712 (95% CI: 0.607–0.803). The combined use of EV miR-122,
miR-148a, and AFP improved the AUROC to 0.931 (95% CI: 0.857–0.973), making it effective
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for distinguishing early HCC from liver cirrhosis. Among these markers, miR-122 was
particularly effective in differentiating HCC from healthy controls, with an AUROC of
0.990 (95% CI: 0.945–1.000) [74].

In addition, serum EV heterogeneous nuclear ribonucleoprotein H1, LINC00161, and
miRNA224 were shown to effectively differentiate between patients with HCC and healthy
individuals, with AUROC values of 0.865, 0.794, and 0.91, respectively [75–77].

LINC00853, present in EVs, was found in 97% of people with early HCC who had
negative AFP tests and in 67% of those with positive AFP tests [78]. The expression levels of
Long Intergenic Non-Protein Coding RNA 853 (LINC00853) and miR-10b-5p were increased
in HCC tissues and extracellular EVs [79]. The corresponding AUROC values were 0.96
and 0.94 for detecting early-stage HCC (single lesion: <2 cm), respectively [78,80].

There are also other encouraging studies indicating that EV-based biomarkers could
play a role in the early diagnosis of HCC. RNA sequencing of EVs revealed the presence
of three distinct clusters of short RNA molecules. These mostly unannotated short cluster
RNAs, characterized by a 20-nucleotide sequence, were significantly elevated in HCC
patients. In the phase 2 biomarker case-control study, performed on 105 patients with
early-stage HCC (BCLC stage 0/A) and 85 patients with chronic liver disease [81], these
clusters demonstrated high sensitivity, specificity, and AUROC values of 86%, 91%, and
0.87, respectively. In another study, the HCC EV surface protein assay (combining cova-
lent chemistry for EV purification with duplex real-time immune PCR for quantification)
analyzed eight HCC EV subpopulations in 400-microliter plasma samples. By measuring
these subpopulations (epithelial cellular adhesion molecule+ CD63+ HCC EVs, CD147+
CD63+ HCC EVs, and Glypican 3 Protein+ CD63+ HCC EVs), a logistic regression model
developed an HCC EV ECG score to distinguish early-stage HCC from cirrhosis. The phase
2 biomarker study found that this ECG score achieved an AUROC of 0.95 (95% CI: 0.90–0.9)
in the training cohort and 0.93 (95% CI: 0.87–0.99) in the validation cohort, highlighting its
effectiveness for early HCC detection [82]. In a 2020 study, Sun et al. developed a unique
EV mRNA panel utilizing a combination of microfluidics and reverse-transcription droplet
digital PCR, and it showed a sensitivity of 94%, specificity of 89%, and an AUROC of 0.93
(95%CI: 0.86–1.00) for early detection of HCC among at-risk cirrhotic patients. This was
observed in a group of 36 patients with early-stage (BCLC stage 0/A) HCC and 26 cirrhosis
controls [83]. Furthermore, a meta-analysis of 18 studies, published in 2023, analyzed the
effectiveness of serum-derived EV for diagnosing HCC. The analysis looked at four types
of biomarkers: EV miRNAs, EV RNAs, AFP, and a combination of EV RNAs with AFP. EV
miRNAs had the highest sensitivity (0.86) and the lowest negative likelihood ratio (0.17).
The combination of EV RNAs and AFP had the highest specificity (0.89), positive likelihood
ratio (7.55), diagnostic odds ratio (35.96), and AUROC (0.93). This study showed that EV
biomarkers perform better than AFP alone, and combining them yields the best diagnostic
results [84]. Overall, while these studies highlight the potential of EVs as early detection
biomarkers for HCC, larger studies are still needed.

3.4. Biomarker Panels

Although several attempts have been made to find optimal biomarkers, there is
currently no single biomarker with high sensitivity for HCC. When used with other clinical
indicators, the identification of some biomarkers exhibits greater sensitivity and specificity
compared to using a single biomarker alone. Thus, more recent biomarkers and models,
such as Lens culinaris agglutinin-reactive fraction of AFP, AFP-L3, DCP, or PIVKA-II, and
the GALAD score, are being used for early-stage HCC detection [85].

The GALAD score is a biomarker panel-based model that was developed to assess the
risk of HCC in high-risk patients. It takes into account the individual’s gender, age, and
levels of AFP, AFP-L3, and DCP [86]. The GALAD algorithm has shown notable accuracy
in HCC detection, notably in individuals with cirrhosis, irrespective of the etiology of their
liver illness [85].
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GALAD score was validated in the US in a study published in 2019, where the authors
found that the AUROC of the GALAD score for detecting HCC was 0.88 (95% CI: of
0.85–0.91) in the EDRN multicenter prospective cohort. Furthermore, the authors also
introduced the GALADUS score, which combines the GALAD with ultrasound to improve
its effectiveness. This new score achieved an AUROC of 0.98 (95%CI: 0.96–0.99) with a
cut-off of −0.18, showing a sensitivity of 95% and a specificity of 91% [87].

The GALAD score has also been evaluated in studies conducted in various other
countries. In a multicenter study that included over 2000 patient samples from six Latin
American and two European countries, researchers assessed the effectiveness of the GALAD
score in distinguishing HCC from cirrhosis. In Latin American patients, the GALAD score
achieved an AUROC of 0.76, with a sensitivity of 70% and specificity of 83%, while, in a
European cohort, it showed an AUROC of 0.69, with 66% sensitivity and 72% specificity.
The study also explored an optimized version of the score, revealing that AFP-L3 had
minimal impact on early-stage HCC detection. This led to the creation of the ASAP score,
which excludes AFP-L3. The ASAP score demonstrated significant potential for early-
stage HCC detection and could identify cirrhotic patients at high risk for advanced HCC
up to 15 months before diagnosis. Additionally, it successfully differentiated HCC from
hemangiomas, with 100% specificity at 71% sensitivity [88].

Another notable score is the HCC Early Detection Screening (HES) score, which
incorporates AFP, age, alanine aminotransferase, and platelet count. This score has shown
improved early detection of HCC compared to AFP alone. In an effort to find a better
alternative to GALAD and ASAP, researchers developed an updated version of HSE called
HES 2.0. This new version includes AFP-L3 and DCP to improve accuracy and was
evaluated in a prospective cohort study of 2331 patients with cirrhosis, including 125 who
developed HCC (71% of which were at an early stage). The study demonstrated that
HES 2.0 outperformed both GALAD and ASAP scores in terms of sensitivity or TPR for
early HCC. Specifically, HES 2.0 had higher sensitivity/TPR compared to GALAD overall
(+6.7%) at 12 months (+6.3%) and at 24 months (+14.6%), though it was similar to GALAD
at 6 months (+0.0%). Additionally, HES 2.0 showed higher sensitivity/TPR compared to
ASAP at all evaluated time points (+13.4% to +18.0%) [89].

In summary, combining multiple biomarkers, as seen in the GALAD and HES 2.0
scores, offers better early-stage HCC detection than using a single biomarker, with HES 2.0
showing the best performance.

3.5. Urine-Based Biomarkers

The advancement of highly sensitive omics profiling technology has made it possible
to analyze different cancer-related molecular information in bodily fluid samples, such as
blood and urine [79]. Urine testing is a noninvasive technique that has been extensively
investigated as a biomarker in human diseases [90]. The samples may be simply collected,
transported, and kept. Urine, being a bio-product of blood filtration, collects unusual waste
substances from the body’s circulation. This includes early signs of cancer development,
which may be more plentiful and easier to detect in urine compared to blood [91]. The
urine samples are more resistant to environmental fluctuations and less susceptible to
disruption or contamination throughout the inspection processes [91]. Although the overall
concentration of proteins, nucleic acids, and other compounds is reduced in urine com-
pared to blood, this reduction in background noise can make it easier to accurately detect
biomarkers owing to the decreased level of background noise. Recently, there has been a
growing interest in urinary biomarkers for HCC detection. Certain biomarkers discovered
via these studies have shown significant potential not only in the areas of HCC diagnosis
but also in therapy, monitoring, and prognosis [92].

A Phase 1/2 multicenter trial was conducted to assess a urine ctDNA panel consisting
of a TP53 mutation and two methylation markers, mRASSF1A and mGSTP1. The panel
was examined in a total of 279 patients with chronic hepatitis B, 144 patients with cirrhosis,
and 186 patients with HCC [93]. The ctDNA panel did not perform better than AFP, with
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an AUROC of 0.74 and 0.85, respectively. Nevertheless, the use of a two-step approach,
including the first application of AFP followed by the utilization of the ctDNA panel in
patients with AFP levels below 20 ng/mL, resulted in a significant enhancement of the
AUROC to 0.91. The sensitivities for identifying BCLC stage 0 and stage A HCC using this
two-step technique were 92% and 77%, respectively, with a fixed specificity of 90%. Lin
et al. investigated the use of cell-free DNA to identify methylation markers associated with
HCC. They analyzed samples from 31 non-HCC and 30 HCC patients, identifying 29 genes
with differential methylation. Methylation-specific qPCR validated significant changes in
four genes (GRASP, HOXA9, BMP4, and ECE1) between HCC and non-HCC patients. In a
separate cohort of 87 non-HCC and 78 HCC patients, a 6-marker panel, including GSTP1
and RASSF1A, achieved an AUROC of 0.908 for HCC detection, surpassing the AUROC
of 0.841 for AFP alone. Furthermore, the 4-marker panel also showed comparable results,
with 80% sensitivity versus AFP’s sensitivity of 29.5% and a specificity of 85% [94].

In a study focused on improving the early detection of HBV-related HCC, miR-93-5p
emerged as a promising biomarker, identified not only in HCC tissue and plasma but also
in the urine of patients with early HBV-related HCC. Urine miR-93-5p, with an AUROC
of 0.901, demonstrated 87.5% sensitivity and 97.4% specificity for early HCC detection.
Importantly, there was no significant difference between plasma and urine miR-93-5p in
detecting early HBV-related HCC. However, the use of healthy controls may have led
to an overestimation of detection power, and the small number of samples from cases
with HBV-related HCC, along with the restriction to a Chinese Han population, were the
main limitations. Therefore, further multinational studies are needed to confirm these
findings [82].

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique that
amplifies the Raman scattering signals of molecules adsorbed on nanostructured metallic
surfaces, such as gold or silver. This amplification enables the detection of molecular
compositions at very low concentrations, making SERS highly sensitive for both chemical
and biological analyses. In a study published in 2022, SERS spectra were recorded from
the urine of 49 liver cirrhosis patients, 55 HCC patients, and 50 healthy volunteers using
a Raman spectrometer. The analysis, combined with a support vector machine (SVM)
algorithm, revealed distinct differences in specific biomolecules and metabolic profiles
associated with liver cirrhosis and HCC. The urine SERS method demonstrated strong
performance in distinguishing HCC, achieving a sensitivity of 85.5%, specificity of 84.0%,
and accuracy of 84.8%. Compared to serum AFP, the urine SERS method exhibited greater
diagnostic sensitivity for HCC, reaching up to 90% [95]. In addition, a 2022 study explored
using urine fluorescence spectroscopy with machine learning to differentiate between
HCC, liver cirrhosis, and healthy controls. Urine samples from 62 HCC patients, 65 people
with liver cirrhosis, and 60 healthy individuals were analyzed using a fluorescent scan
multimode reader with a 405 nm excitation wavelength. The study found clear differences
in certain metabolites, particularly abnormal levels of porphyrin derivatives and bilirubin in
those with HCC and liver cirrhosis. Using the SVM algorithm on these data, the approach
reached an overall diagnostic accuracy of 83.42%. It showed a sensitivity of 93.6% for
detecting HCC and 73.9% for liver cirrhosis, with specificities of 88.0% and 89.3% for each
condition, respectively [96].

Due to its practical advantage in sample accessibility, urine is expected to remain a
viable source of molecular information for early diagnosis of HCC once its accuracy is
validated in larger prospective studies.

3.6. Gut Microbiome

The microbiome plays a crucial role in maintaining health and influences diseases
by regulating vital inflammatory, metabolism, and immune responses. HCC risk could
be modulated by the gut microbiome via interactions between the gut and liver. This
has been shown in both animal models and human investigations. Therefore, biomarkers
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derived from gut microbiota may show great potential as non-invasive methods for the
early detection of HCC [97].

Several studies have sought to determine the composition of the gut microbiome in
HCC cases with different etiologies, including in viral and non-viral groups [98], HBV [99],
HCV [100], MASLD [101], and in combined MASLD and HCV cases [102]. In cases of
HCC associated with MASLD-related cirrhosis, patients exhibited higher levels of fecal
calprotectin and plasma levels of IL-8, IL-13, CCL3, CCL4, and CCL5 compared to those
with MASLD-induced cirrhosis without HCC. These HCC patients also had increased
levels of Bacteroides, Enterococcus, and Ruminococcaceae, while Bifidobacterium levels
were reduced. [103] Ex vivo studies indicated that bacterial components of microbiota from
the MASLD-HCC triggered a T cell immunosuppressive response, characterized by an
increase in regulatory T cells and a decrease in CD8+ T cell activity. This highlights the gut
microbiota’s role in modulating the peripheral immune response in MASLD-HCC [101].
Using a mouse model lacking the inflammasome sensor molecule NLRP6, Schneider
et al. demonstrated that dysbiotic microbiota negatively impacted immune surveillance
against tumors by inducing a Toll-like receptor 4 (TLR4) dependent expansion of hepatic
monocytic myeloid-derived suppressor cells (mMDSCs) and reducing T-cell abundance.
This inflammatory microenvironment accelerated liver disease progression towards HCC,
but the effects are reversible with antibiotic treatment or by reintroducing the beneficial
bacterium Akkermansia muciniphila [104].

The gut microbiota is reported to increase from cirrhotic cases to early HCC cases [105,106].
Ren and colleagues investigated the gut microbiome in HCC patients and its potential as a
non-invasive diagnostic tool. Analyzing 486 fecal samples from various regions in China,
they focused on 75 early HCC patients, 40 cirrhotic patients, and 75 healthy controls. The
study revealed increased microbial diversity from cirrhosis to early HCC, with notable
elevations in Actinobacteria and specific genera like Gemmiger and Parabacteroides in
early HCC. Butyrate-producing bacteria were reduced while lipopolysaccharide-producing
bacteria increased. A model with 30 microbial markers achieved an AUROC of 80.6%
for distinguishing early HCC from non-HCC, showing strong diagnostic potential across
regions [105]. Similarly, a more recent study analyzed fecal samples from patients with
hepatitis, cirrhosis, HCC, and healthy controls. They observed significant differences in gut
microbial diversity, with notable increases from cirrhosis to HCC, particularly in cirrhosis-
induced HCC cases. Thirteen bacterial genera were linked to tumor size, and three genera
(Enterococcus, Limnobacter, and Phyllobacterium) were identified as potential biomarkers
for HCC. The study found that dysbiosis was more prevalent in liver cirrhosis-induced
HCC, marked by decreased butyrate-producing bacteria and increased lipopolysaccharide-
producing bacteria [106]. Another study analyzed gut microbiomes of 30 patients with
HCC-associated cirrhosis (HCC–cirrhosis), 38 with cirrhosis without HCC, and 27 healthy
controls using 16S rRNA sequencing. Both cirrhosis groups had lower bacterial richness
compared to healthy controls, but HCC–cirrhosis patients exhibited a distinct microbial
profile with higher Clostridium and CF231 and lower Alphaproteobacteria abundance. The
HCC–cirrhosis group was accurately classified from healthy controls with 82% accuracy
and an AUC of 0.9 using a random forest classifier. Key discriminatory features included
Veillonella dispar, Faecalibacterium prausnitzii, and Ruminococcus gnavus [102].

Focusing on chronic HBV cases, one study investigated the gut microbiome to iden-
tify biomarkers for diagnosing cirrhosis and HCC in a Chinese population. Researchers
identified 14 cirrhosis-associated and 10 HCC-associated bacterial genera that significantly
differed from healthy controls. These findings were used to develop random forest models
that accurately distinguished cirrhosis and HCC from healthy individuals, with AUROC
values of 0.824 and 0.902, respectively. The models’ accuracy improved further when
clinical factors were included, highlighting their potential for early diagnosis of liver
cirrhosis and HCC in chronic HBV cases [107]. The bacterial composition also proves
useful in distinguishing between healthy individuals and different types of liver cancer.
A classification model using eight key bacterial genera achieved high diagnostic accuracy
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(AUC = 0.989 for healthy controls, 0.967 for HCC, and 0.920 for cholangiocarcinoma). Fur-
thermore, increased gram-negative bacteria and higher inflammatory markers were noted
in cholangiocarcinoma compared to HCC [108].

In summary, the gut microbiome exhibits distinct alterations associated with liver
cancer progression and type, demonstrating its potential as a non-invasive diagnostic tool.
Elevated microbial diversity and specific bacterial profiles, along with associated inflamma-
tory markers, highlight the gut microbiome’s role in early detection and differentiation of
liver diseases, offering promising avenues for future diagnostic and therapeutic strategies,
summarized in Table 2.

Table 2. A summary of specific bacterial profiles associated with different liver pathologies.

Disease/Condition/Model
(Reference) Bacterial Genera (Increase/Decrease) Key Findings

HCC Progression (Mouse Model)
[104]

Dysbiotic microbiota, Akkermansia
muciniphila ↓

TLR4 activation → Increase in mMDSCs →
Suppression of T-cells → Weakens the body’s

immune response → Allows HCC to
progress: reversible with antibiotics or

Akkermansia muciniphila.

MASLD-related Cirrhosis with HCC
vs. Without HCC [101,103]

Bacteroides ↑, Enterococcus ↑,
Ruminococcaceae ↑, Bifidobacterium ↓

Increased inflammation markers (fecal
calprotectin, IL-8, IL-13, etc.). Microbiota

triggered immunosuppressive response: ↑
regulatory T cells, ↓ CD8+ T cell activity.

Early HCC vs. Cirrhosis [105,106]

Actinobacteria ↑, Gemmiger ↑,
Parabacteroides ↑,

Lipopolysaccharide-producing bacteria ↑,
Butyrate-producing bacteria ↓.

Increased microbial diversity, potential for
non-invasive diagnostics. A model with 30
microbial markers had AUROC of 80.6%,
distinguishing early HCC from non-HCC.

Cirrhotic Cases with HCC vs.
Without HCC and Healthy Controls

[102]

Clostridium ↑, CF231 ↑, Alphaproteobacteria
↓.

Cirrhotic cases (with/without HCC) had
lower bacterial richness than healthy

individuals. Key classifiers of HCC–cirrhosis
from healthy controls: Veillonella dispar,

Faecalibacterium prausnitzii, Ruminococcus
gnavus.

HCC vs. their healthy first-degree
relatives [109]

Lachnospiraceae ↑, Veillonella ↑,
Ruminococcaceae UCG-014 ↑,

Peptostreptococcaceae ↓, Romboutsia ↓,
Citrobacter ↓.

Gut microbial composition in HCC patients
is significantly altered. Romboutsia,

Veillonella, and Peptostreptococcacae are
potential biomarkers for HCC detection

Early vs. Middle vs. Advanced Liver
cancer [110]

Early: Clostridiales ↑, Firmicutes ↑,
Streptococcus ↑.

Middle: Ruminococcaceae ↑, Pasteurellaceae
↑, Tanticharoenia ↑, Vagococcus ↑.

Advanced: Bifidobacteriales ↑, Actinobacteria
↑, Barnesiella ↑, Porphyromonadaceae ↑,

Pseudomonadales ↑.

Changes in microbiota with liver cancer
progression: Barnesiella increased,

Ruminococcaceae decreased.

HCC in elderly patients
(60–80 years-old) [111]

↓: A Blautia, Fusicatenibacter, Anaerostipes,
CAG-56, Eggerthella,

Lachnospiraceae_FCS020_group, Olsenella.
↑: Escherichia-Shigella, Fusobacterium,
Megasphaera, Veillonella, Tyzzerella_4,

Prevotella_2, Cronobacter

Age affects gut microbiota composition in
HCC cases, and specific microbiota can be

used as indicators for screening and
diagnosing changes in elderly HCC patients.

Cirrhotic HCV Cases with HCC vs.
Without HCC and Control [100]

Bacteroides ↑, Lactobacilli ↑, Prevotella ↓,
Prevotella/Bacteroides ↓.

HCV-related cirrhosis and HCC show
microbial dysbiosis, with HCC patients
having higher proinflammatory bacteria

compared to cirrhosis.
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Table 2. Cont.

Disease/Condition/Model
(Reference) Bacterial Genera (Increase/Decrease) Key Findings

Viral HCC vs. Non-Viral HCC [112]

Viral HCC: Faecalibacterium ↑,
Agathobacter ↑, Coprococcus ↑. Non-Viral

HCC: Bacteroides ↑, Streptococcus ↑,
Ruminococcus gnavus ↑, Parabacteroides ↑,
Erysipelatoclostridium ↑. Short-chain fatty

acid-producing bacteria ↓.

Gut dysbiosis linked to hepatocarcinogenesis
and varies by HCC etiology. Microbiota
signatures distinguish Viral-HCC and
non-Viral HCC, offering potential for

diagnosis and therapy.

HBV-related HCC vs. HBV-related
Cirrhosis [113]

Veillonella ↓, Streptococcus ↓, Fusobacterium
↓, Blautia ↑, Agathobacter ↑

Certain bacterial genera may drive
progression from cirrhosis to HCC in HBV

cases, with gut microbiome showing
potential for early HCC diagnosis.

HCC vs. iCCA [114] iCCA: Ruminococcus gnavus ↓, Veillonella ↑.
HCC: Blautia ↑.

Greater gut microbiome heterogeneity in
iCCA vs. HCC and healthy controls. High

Veillonella in iCCA linked to amino acid
biosynthesis and glycolysis, while Blautia in
HCC linked to phospholipid and thiamine

metabolism.

Abbreviations: HCC: hepatocellular carcinoma; TLR4: Toll-like receptor 4; mMDSCs: monocytic myeloid-derived
suppressor cells; MASLD: metabolic dysfunction-associated steatotic liver disease; AUROC: area under the
receiver operating characteristic curve; HBV: hepatitis B virus; HCV: hepatitis C virus; iCCA: intrahepatic
cholangiocarcinoma.↓: Decrease; ↑: Increase; →: Leads to or results in.

4. The Future of Hepatocellular Carcinoma Biomarker for Early Detection

With advances in multiomic approaches, new biomarkers will become accessible
for the early detection of HCC. Obstacles persist in biomarker investigations, such as
incomplete cohort data, biased sample collection, and small sample sizes for both initial
discovery and subsequent validation studies. Due to the characteristics of HCC, the intricate
nature of the illness, and the diverse range of risk factors, it is challenging to pinpoint and
use a singular and universally applicable biomarker for the detection of early-stage HCC.
Advancements in artificial intelligence and machine and deep learning methods, such as
the integration of biomarkers with multiple features, have the potential to significantly
improve the accuracy of prediction and diagnosis in the near future. The efficacy of this
novel technique relies on the accessibility and availability of various types of information,
including human genetic data and original laboratory and clinical data [115–117].

5. Conclusions and Perspectives

The advancement of omics technology has led to the discovery of several new biomark-
ers for HCC. Nevertheless, most of these novel biomarker candidates are based on pre-
liminary research. Validating these biomarkers will require rigorous phase 3 or phase
4 studies with large sample sizes. Importantly, the concurrent use of multiple biomarkers,
in conjunction with omics-based technologies and artificial intelligence, has the potential to
enhance early identification and ultimately improve the dismal prognosis of HCC.
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