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Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal disease. Although progress has been made 
in the field of transplantation medicine in recent decades in terms of surgical techniques and immunosuppression, long-term 
organ survival remains a challenge. Also, for reasons of organ shortage, there is an unmet need for new therapeutic approaches 
to improve the long-term survival of transplants. There is increasing evidence that the complement system plays a crucial role 
in various pathological events after transplantation, including ischemia/reperfusion injury as well as rejection episodes. The 
complement system is part of the innate immune system and plays a crucial role in the defense against pathogens but is also 
involved in tissue homeostasis. However, the tightly regulated complement system can become dysregulated or activated by 
non-infectious stimuli, then targeting the organism’s own cells and leading to inflammatory tissue damage that exacerbates 
injury. In this review, we will highlight the role of the complement system after transplantation and discuss ongoing and 
potential therapeutic approaches.

Key Points 

Kidney transplantation is the best life-saving strategy for 
patients with end-stage renal disease. Achieving long-
term graft survival is still challenging and requires new 
therapies.

Complement-mediated injury is central in renal trans-
plantation and occurs early during ischemia/reperfusion 
injury but is also involved in transplant rejection.

The complement system was targeted in clinical studies 
at different levels of the complement cascade to prevent 
delayed graft function (DGF) and antibody-mediated 
rejection (ABMR).

1  Introduction

The complement system is an essential component of the 
innate immune system, involved in (i) opsonization, (ii) 
stimulation of different inflammatory pathways and (iii) 
osmolytic lysis of pathogens and damaged cells in numerous 
diseases, especially in inflammatory kidney disease [1]. This 
highly regulated system consists of >40 fluid-phase and sur-
face-bound factors including activating proteases, regulating 
inhibitors, pore-forming proteins and complement receptors 
(Fig. 1). Three distinct activation pathways are known: (i) 
the classical pathway, activated by any structure that is rec-
ognized by C1q [2], (ii) the lectin pathway, activated when 
saccharide patterns are recognized by pattern recognition 
complexes [3] and (iii) the alternative pathway, activated 
through spontaneous hydrolysis of C3 [4].

For the activation of the classical pathway, the initiator 
molecule C1q recognizes a big variety of target molecules 
including immunoglobulin (Ig)G and IgM, C-reactive pro-
teins, bacterial and viral proteins, apoptotic cells and oth-
ers [2, 5]. A tetramer of the two serine proteases C1r and 
C1s binds to C1q and thereby forms the C1 complex [6]. 
The lectin pathway can be initiated by either mannose-
binding-lectin (MBL), ficolin 1-3 or collectin 10 and 11, 
which recognize saccharides on the surface of pathogen- or 
danger-associated molecular patterns (PAMPs, DAMPs) [3, 
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7]. Upon binding of the recognition molecules to the specific 
carbohydrates, serine protease MASP-2 is activated [8]. In 
the classical as well as in the lectin pathway, the activation 
of the serine proteases leads to the cleavage of C4 and C2 
into C4a and b and C2a and b [6, 8]. C2a attaches to C4b, 
whereby the complex becomes enzymatically active and 
forms the C3 convertase [9]. The alternative pathway has 
two different functions: it amplifies the C3 level activated 
by the other two pathways and it induces an independent 
activation [8]. C3 is constantly hydrolyzed and the resulting 
C3b binds to target molecules like foreign cells and bacteria. 
Factor B binds to C3b and is thereafter cleaved by Factor D, 
forming the C3 convertase C3bBb [10].

At this point, the three pathways merge. Both C3 con-
vertases, the C4b2a of the classical and the lectin pathway 
and the C3bBb of the alternative pathway cleave C3 and 
release C3a and C3b [11]. C3a is an anaphylatoxin, and as 
such a pro-inflammatory chemoattractant that activates and 
recruits inflammatory cells including neutrophils and mast 
cells [12]. C3b can on the one hand opsonize target cells and 
on the other hand bind to the C3 convertase. Upon binding of 
C3b, the C3 convertase switches its specificity to the binding 
of C5 and becomes a C5 convertase [13]. The C5 convertase 

cleaves C5 and releases C5a and C5b. While C5a is an ana-
phylatoxin similar to C3a, C5b recruits the complement 
factors C6, C7, C8 and C9 to form the membrane-attack-
complex (MAC) [14]. The MAC forms pores in the mem-
brane of target cells disturbing calcium passage and thereby 
leading to apoptosis of these respective cells. The pore size 
is determined by the number of C9 molecules assembling 
in the MAC, which can vary from 2 up to 18 C9 molecules 
[15]. To prevent overactivation of the complement system, 
it is regulated by soluble (e.g. complement factor H [CFH]) 
and membrane bound (e.g. CD46) endogenous inhibitors 
that act at different levels of the complement cascade. Early 
activation of the classical and lectin-mediated pathways can 
be inhibited by the C1-esterase inhibitor SERPING1. CD35, 
also known as CR1, and CD55 can act as decoy receptors, 
limiting the activation of complement convertases. The 
formation of the C5 convertases C3bBbC3b in the alterna-
tive pathway is inhibited by soluble CFH and C4b2aC3b of 
the other two activation pathways by the surface molecule 
CD46. In the terminal complement cascade, CD59 inhibits 
the formation of the MAC. Of these endogenous comple-
ment inhibitors, SERPING1 is being tested therapeutically 
as a C1 inhibitor [16] and double transgenic pigs expressing 
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human CD55 and CD59 were generated to be used in the 
future in xenotransplantation [17].

2 � Involvement of Complement in Adverse 
Outcome of Renal Transplantation

2.1 � Ischemia/Reperfusion Injury and Delayed Graft 
Function

During transplantation, complement is involved at different 
time points. Relevant factors are the donor type (deceased 
or living donor), ischemia/reperfusion (cold and warm 
ischemia time) but also antigen mismatch, the occurrence of 
donor-specific antibodies and rejection events. Many com-
ponents of the complement cascade are primarily formed in 
the liver, but can also be produced locally in response to a 
damaging stimulus [18]. The relevance of locally produced 
complement has been demonstrated in a mouse transplanta-
tion model using C3-deficient isografts showing only mild 
reperfusion injury compared with wildtype grafts when 
transplanted in a C3-positive recipient [19]. Gene expression 
analyses in biopsies taken before transplantation revealed 
significantly higher expression of various complement genes 
in kidneys from deceased donors compared with living 
donors [20]. Furthermore, complement factors are expressed 
at significantly higher levels in deceased donors at later time 
points after renal transplantation [20, 21], and correlate sig-
nificantly with cold ischemia time [21].

The importance of complement activation in mediating 
ischemia/reperfusion (I/R)-induced tissue damage has been 
demonstrated in animal models using mice deficient for a 
particular complement factor or by using different comple-
ment inhibitors [22–26]. In this regard, complement acti-
vation does not appear to be restricted to one pathway, as 
both inhibition of the alternative pathway by factor B defi-
ciency [24] or anti-factor B antibodies [27], and C1-inhibitor 
therapy were successful in reducing I/R damage [28]. The 
C1-inhibitor SERPING1 is a serine esterase inhibitor that 
blocks C1s and C1r proteases of the classical pathway and 
MASP2 of the lectin pathway [29].There is an increasing 
body of evidence that the lectin pathway is of particular 
importance in mediating I/R injury [30–33]. The pattern rec-
ognition molecule collectin-11 recognizes hypoxia-induced 
fucosylated ligands, which allow the formation of a com-
plex with MASP2 and subsequent activation of the lectin 
pathway. Consequently, deficiency for collectin-11 but also 
treatment with l-fucose prevented I/R injury in mice [34, 
35]. Delayed graft function (DGF) is a major consequence 
of a profound kidney injury mediated by different factors 
resulting from unstable hemodynamics, impaired homeosta-
sis and circulating DAMPs from injured cells due to brain 
death, hypoxia or related to the primary disease. Reperfusion 

of the donor organ in the recipient exacerbates organ dam-
age. Complement activation was shown to be observed in 
brain death donors before I/R as demonstrated by increased 
expression of complement factors in donor organs [36] and 
systemic complement activation [37]. Accordingly, sC5b-9 
levels can be used as a sensitive marker to predict DGF [38] 
and donor treatment or ex vivo complement inhibition is 
thus a promising way to prevent the earliest effects of com-
plement activation. This concept was successfully tested in 
a rat model of kidney transplantation [39] and was also used 
in the EMPIRIKAL study using the C3 inhibitor miroco-
cept [40] (Table 1). Complement-mediated injury can be 
a direct consequence of the formation of the MAC or indi-
rectly caused by enhancement of the inflammatory response 
by anaphylatoxins C3a and C5a. The anaphylatoxins are 
involved in leukocyte chemotaxis and activation as well as 
inducers of the production of pro-inflammatory mediators 
like cytokines and chemokines [41]. The C5a/C5aR1 axis 
has been shown to be critically involved in mediating I/R 
injury [42, 43]. Moreover, C5a/C5aR2 signaling in renal 
I/R is involved in activation of inflammatory cells but not 
in chemotaxis [44]. Thus, the C5a/C5aR axis represents a 
possible target for treatment of I/R injury.

2.2 � Antibody‑Mediated Rejection

Antibody-mediated rejection (ABMR) is the leading cause 
of subsequent kidney transplant failure [45], but efficient 
treatment options are lacking. Components of the comple-
ment system are involved in both regulation of the humoral 
response and ABMR-mediated allograft injury. In ABMR, 
HLA IgG alloantibodies produced by plasma cells bind 
to the donor antigens on graft microvasculature, leading 
to complement activation, margination and activation of 
inflammatory cells, and endothelial cell injury, sometimes 
with intimal arteritis. Donor-specific antibodies (DSA) play 
a key role in mediating ABMR pathology and are present at 
the time of transplantation in sensitized patients who have 
developed DSA due to a previous transplant, but may also 
be formed by the recipient later after transplantation. When 
DSAs bind to surface antigens, such as HLA antigens on 
endothelial cells, C1q recognize these immune complexes 
and can initiate the complement cascade via the classical 
pathway, ultimately leading to MAC formation and endothe-
lial cell lysis [46]. This process is known as complement-
dependent cytotoxicity. Additional to activation via the clas-
sic pathway, activation can also occur via the lectin pathway; 
in this case, sugar residues on IgM and IgG antibodies are 
recognized by mannose-binding lectin (MBL), for example, 
and initiate the activation cascade [47].

Not all antibodies have the ability to bind complement. 
In a study with more than 1000 transplanted patients on the 
presence of complement fixing antibodies it was shown that 
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complement-binding donor-specific anti-HLA antibodies are 
helpful for the diagnosis and risk assessment of transplant 
rejection. The presence of C1q-fixing DSAs was associated 
with an increased rate of ABMR, a more severe graft injury 
phenotype with more extensive microvascular inflammation, 
and increased deposition of complement fraction C4d within 
graft capillaries [48]. Detection of complement-fixing DSAs 
allowed detection of ABMR also in C4d-negative cases [48]. 
Capillary C4d deposits have been established as a marker for 
ABMR and have been included in the Banff classification 
for ABMR diagnosis [49]. However, C4d deposits are not 
ABMR-specific and have been observed in other renal dis-
eases [50], and the absence of C4d deposits is by no means 
an exclusion criterion for ABMR [51].

Complement is involved not only in antibody-mediated 
injury but also in the regulation of antibody production [52]. 
Binding of C3d-opsonized antigen from injured cells to CR2 
on B cells promotes B-cell activation and antibody produc-
tion by lowering the activation threshold [53]. Memory 
B-cell maintenance is achieved by binding of C3d-fixed anti-
gens to CR2 on the surface of follicular dendritic cells [54]. 
B cells in the marginal zone can acquire intact major his-
tocompatibility complexes from dendritic cells by comple-
ment-dependent trogocytosis for presentation to T cells [55]. 
Activated B cells in germinal centers receive co-stimulatory 
signals from T helper cells. In these stimulated germinal 
center B cells, the expression of complement regulators on 
the surface shifts, enabling activation of complement recep-
tors on germinal center B cells, which is required for affinity 
maturation [56]. Positively selected B cells with high affinity 
can then differentiate into plasma cells that produce antibod-
ies reactive with the donor HLA. Subsequent sublytic com-
plement attack may stimulate endothelial cells to activate 
CD4+ and CD8+ T cells, promoting cellular and humoral 
rejection [57]. Anaphylatoxins C3a and C5a also play a role 
in ABMR by indirectly participating in the activation of B 
cells and polarization of T cells [58].

3 � Drugable Complement Targets in Kidney 
Transplantation

The complement cascade can be inhibited at different levels. 
The activation of the different complement pathways can 
either be inhibited separately early in the cascades, or the 
common final pathway can be targeted further downstream. 
The inhibition of complement activation at the beginning 
of a pathway has the advantage that all downstream compo-
nents of a specific pathway can be blocked, preventing the 
formation of reactive cleavage products such as anaphyla-
toxins. In addition, by inhibition of one selected complement 
pathway, patients could retain complement-mediated defense 
against infection, a consideration that might be important Ta
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in immunosuppressed transplant recipients, by sparing the 
other pathways. However, assuming at least two, maybe even 
three complement pathways are involved in the pathogenesis 
of transplant-related injury [59], complement blockade is 
incomplete and possibly not effective enough if only one 
pathway is inhibited. As all complement pathways terminate 
in a common pathway, other approaches use the inhibition of 
downstream complement factors such as C3 or C5.

In clinical trials for kidney transplantation, C1 and C5 
inhibitors and a C3 inhibitor have been tested so far. The 
goal was to prevent early graft failure by DGF (Table 1) or 
early and late rejection, especially ABMR (Table 2). These 
studies will be discussed in detail later. In addition to these 
inhibitors, which have already been tested in the setting of 
renal transplantation, others are available that have previ-
ously been applied in other complement-mediated diseases. 
Complement inhibitors not previously used in the transplant 
setting target the initiators of the lectin pathway (MASP-2 
[60]) and the alternative pathway (FD [61–63], FB [64]), the 
activation of C3 [65, 66], the activity of C3/C5 convertases 
[67, 68], the amplification of the alternative pathway [69], or 
prevent signaling through the C5aR1 [70, 71]. An overview 
of these therapeutics is given by Mastellos et al. (2019) [72]. 
Since these therapeutics can potentially be used in transplan-
tation, we have summarized the targets and therapeutics in 
Fig. 2.

4 � Past and Ongoing Studies on Complement 
Inhibition in Renal Transplantation

4.1 � Complement Inhibition to Prevent Delayed 
Graft Function in Clinical Trials

In clinical trials, two main inhibitors have been tested to 
prevent DGF after renal transplantation: (i) eculizumab, a 
recombinant humanized monoclonal antibody targeting C5, 
a key molecule of terminal complement activation, and (ii) 
C1-esterase inhibitors, also known as SERPING1, either 
purified from plasma or recombinantly produced and pro-
vided by different companies, inhibiting early activation of 
the classical and lectin-mediated pathway. An overview of 
all clinical trials investigating complement inhibition in early 
I/R injury to prevent DGF after transplantation is shown in 
Table 1.

Studies investigating the efficacy of eculizumab in pre-
venting DGF initially used a single dose of eculizumab 
1200 mg in a pilot study (ClinicalTrials.gov identifier: 
NCT01403389), which was administered before reperfu-
sion. However, this study was stopped after an interim 
evaluation and the treatment was changed to another pilot 
study that used an additional eculizumab dose 12–24 h 

after transplantation (NCT0191934). Eculizumab did not 
significantly reduce the number of patients with DGF in 
either of these two pilot studies or in the PROTECT trial 
(NCT02145182), which included a total of 288 patients 
[73]. Therefore, the second pilot study was also terminated 
before planned enrollment. In contrast, pediatric kidney 
transplant patients who received eculizumab showed bet-
ter early graft function, less arterial hyalinosis and chronic 
glomerulopathy in protocol biopsies taken at day 30, and 
after 1 and 3 years. However, four children in the eculi-
zumab group lost their graft during a flu-like infection, 
while none of the children in the control group lost their 
graft (NCT01756508) [74].

Other studies have investigated the efficacy of a C1 
inhibitor, which inhibits activation of the classical and lec-
tin pathways, in preventing DGF (Table 1). At the moment, 
only one phase I/II study using the C1-estase inhibitor 
(n = 35) compared with placebo (n = 35) has been com-
pleted (NCT02134314). Similar to the C5 inhibitor stud-
ies, therapy was given directly on the day of transplanta-
tion and 24 hours after surgery. Regarding the primary 
outcome, the occurrence of DGF, defined as the need for 
dialysis within the first week after transplantation, no dif-
ference was observed between the groups (C1-esterase 
inhibitor 44% vs placebo 60%) [75]. However, the duration 
of dialysis was significantly shortened in the C1-esterase 
inhibitor group [75]. In the follow-up of this study, 3.5 
years after transplantation, a significantly better eGFR was 
determined in the C1-esterase inhibitor group (56 mL/min 
per 1.73 m2 vs 35 mL/min per 1.73 m2) [76].

Further studies with C1 esterase inhibitors to reduce 
the incidence of DGF with higher (NCT04696146, 
NC T 0 2 4 3 5 7 3 2 )  a n d  m o r e  n u m e r o u s  d o s e s 
(NCT03791476) of the inhibitor are planned or currently 
have an unclear status (Table 1). Inhibition of the com-
plement cascade at the level of C3 was investigated in 
another study perfusing the grafts with the CR1 analog 
mirococept ex vivo instead of the standard cold perfusion 
fluid (Soltran®) (ISRCTN49958194) [77]. Primarily, seven 
study arms with different inhibitor concentrations were 
planned; however, the study was stopped after planned 
interim evaluation with the first dose of 10 mg (n = 53) 
versus placebo (n = 30), because the treatment did not 
prevent DGF. Instead of continuing the study, a re-dosing 
study was performed using pig kidneys to determine the 
saturation range for the inhibitor mirococept. The optimal 
dose for the pig kidney was determined to be 80 mg of 
mirococept, which is equivalent to a dose of 120 mg for 
the human kidney [40]. Ex vivo administration of miro-
cocept at this dose was safe and feasible and provides the 
basis for future new studies on the treatment of DGF in 
deceased donor kidney transplants.
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4.2 � Complement Inhibition to Prevent 
Antibody‑Mediated Rejection and Chronic 
Complement‑Mediated Injury in Clinical Trials

Similar to the studies focusing on prevention of DGF, mainly 
eculizumab and C1-esterase inhibitors have been used in 
clinical trials for the prevention of ABMR, but they were 
administered over a longer period of time and more fre-
quently (Table 2). In addition, these studies primarily treated 
patients who were at particularly high risk of developing 
ABMR due to an unfavorable cross match or pre-existing 
donor-specific antibodies. In some cases, however, the 
study design was so specific that the studies were termi-
nated because patients meeting the inclusion criteria were 

lacking (NCT01106027; NCT01095887; NCT03221842). 
A group of 26 highly sensitized recipients of living donor 
renal transplants, who received eculizumab post-transplant, 
was compared with a historical control group of 51 sensi-
tized patients treated with a similar plasma exchange pro-
tocol without eculizumab to test the incidence of biopsy-
proven ABMR in the first 3 months post-transplant. The 
incidence of ABMR was significantly lower in the ecu-
lizumab group compared with the control group (7.7% 
[2/26] vs 41.2% [21/51]; NCT00670774) [78]. In addition 
to decreased ABMR, chronic transplant glomerulopathy 
was detected after 1 year in 6.7% (1/15) of graft biopsies 
from eculizumab-treated recipients and in 35.7% (15/42) of 
control patients (p = 0.044) [78]. However, a later phase 
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II, randomized, multicenter, open label, two-arm, parallel 
group study including 51 patients per arm at first glance 
showed no protective effect of eculizumab treatment for the 
primary endpoint of treatment failure rate and was there-
fore terminated. Only a reassessment of the study including 
grade I ABMR finally showed a slightly significant differ-
ence between the groups, indicating a potential benefit of 
eculizumab compared with standard operation of care to 
prevent active ABMR in sensitized recipients [79]. In a sin-
gle-arm study of recipients who received a deceased donor 
transplant and had preformed donor-specific antibodies, the 
primary endpoint (a composite of biopsy‐proven grade II/
III ABMR, graft loss, death, or loss to follow‐up, within 9 
weeks post-transplant) was observed in 8.8% of eculizumab-
treated patients and was thereby lower than expected for 
standard care (40%) [80].

While the studies described above have investigated 
whether ABMR after transplantation can be prevented by 
eculizumab, smaller studies have also investigated whether 
the course of already developed ABMR can be favorably 
influenced. Patients were treated with eculizumab imme-
diately after diagnosis of biopsy-proven ABMR, followed 
by five additional weekly doses (n = 7) and compared with 
standard therapy (n = 4). Because eculizumab given as 
monotherapy did not significantly improve eGFR within 
3 months, the study was terminated (NCT01895127) and 
a planned study of complement inhibition for treatment of 
subclinical ABMR was withdrawn (NCT02113891). How-
ever, in the terminated study, the timing of complement 
inhibitory therapy after transplantation was not determined, 
but may be important for success, as suggested by a retro-
spective observational study reporting effective treatment of 
ABMR in the first month after transplantation [81]. For the 
treatment of chronic complement-mediated renal injury after 
kidney transplantation, 11 patients were treated with slightly 
lower single doses of eculizumab (900 mg) for 6 months. 
Compared with the control group (n = 5), eGFR tended to 
be improved, but endothelial cell damage was not reduced 
(NCT01327573) [82].

In contrast to the studies with the C5 inhibitor eculi-
zumab, of which many were designed to prevent ABMR, 
there is only one pilot study with a C1 esterase inhibitor 
(C1-INH). In this study with highly HLA-sensitized patients, 
none of the ten study participants developed DGF or ABMR 
in the C1-INH group (n = 10), while in the control group, 
four out of ten developed DGF and one developed ABMR. 
However, in further follow-up, two cases of ABMR occurred 
in each of the two groups [83]. The combination of standard 
therapy with antibody reduction and C1-INH may be useful 
for the prevention of ABMR, but further controlled studies 
are needed. Although a C1-INH trial to treat ABMR was 
withdrawn in 2012 due to reduced incidence of ABMR by 
recent improvements in clinical practice (NCT01035593), 

several new trials have still been initiated. The largest study 
with a total of 39 participants, 19 of whom received standard 
therapy for ABMR and 20 of whom also received C1-INH, 
showed in an interim evaluation no improvement in pro-
tection against transplant glomerulopathy and met the pre-
specified criteria for futility (NCT02547220). Previously, a 
pilot study with the same C1-INH had also shown no dif-
ferences in the primary endpoint, meaning no difference at 
day 20 after therapy initiation with respect to pathology or 
graft survival. However, no transplant glomerulopathy and 
a trend toward improved renal function in the C1-INH group 
was found at the 6-month biopsy (NCT01147302) [84]. In 
a first study with sutimlimab, which exclusively inhibits 
the classical pathway, five of eight C4d-positive recipients 
turned C4d negative in follow-up biopsies, while another 
two recipients showed a substantial decrease in C4d scores. 
There was, however, no change in renal inflammation, gene 
expression patterns, donor-specific antibody levels, or kid-
ney function [85].

4.3 � Side Effects of Complement‑Targeted Therapies 
and Combination With Other Drugs

In the treatment of transplant patients, complement inhibi-
tors are only used as monotherapy when given before trans-
plantation (e.g. to avoid DGF). As with any other immu-
nosuppressive therapy, it is a balancing act to, on the one 
hand, protect the graft from detrimental allogenic immune 
reactions and consequent graft loss, but, on the other hand, 
to avoid side effects, including primarily infections that also 
endanger the transplant and the patient. The complement 
system plays an important role in the opsonization of path-
ogens. One threatening side effect of eculizumab therapy 
is, therefore, the occurrence of meningococcal infections. 
As a result, appropriate vaccination is a critical prerequi-
site before treatment. However, vaccination of immunosup-
pressed patients is challenging and sometimes fails [86]. One 
study reported graft loss in four eculizumab-treated patients 
due to flu-like infection [74]. So far, drug-related serious 
adverse events associated with complement-inhibiting thera-
pies have been observed only rarely, so at least the C1 and 
C5 inhibitors studied in several clinical trials can be con-
sidered safe. This is probably due to the fact that there are 
different activation pathways of the complement system and 
that the available complement inhibitors always block only 
one part of the cascade. Complement-inhibiting therapies 
aim to suppress the innate immune defense during transplan-
tation and are used in addition to standard therapy includ-
ing tacrolimus, mycophenolate mofetil and prednisolone, if 
appropriate, which suppress cell-mediated immune defense. 
Since complement factors also stimulate immune cells, it 
may be possible to lower the doses of standard therapy and 
thereby minimize side effects when combining them with 
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complement inhibitors. Monitoring of complement activa-
tion in the plasma may help to determine an optimal and 
individual treatment of patients, allowing a tailored immune 
suppression [87].

5 � Conclusion

In the field of transplantation medicine, several studies have 
already been conducted assessing the blockade of the com-
plement system. The aim of these studies was to prevent I/R 
and DGF in the early phase or ABMR. Eculizumab, a C5 
inhibitor, and C1 esterase inhibitor were most commonly 
used. A number of different complement inhibitors have 
already been tested in clinical trials in the context of other 
diseases and could therefore also be a treatment option in the 
future, both concomitantly and after transplantation. Since 
only a few studies with larger numbers of cases exist, studies 
with well-defined study arms and larger numbers of patients 
are needed to investigate which patient groups can particu-
larly benefit from complement inhibition therapy. As com-
plement therapies are very expensive, future studies must 
confirm that they have a significant benefit on graft survival 
compared with established treatments to justify the costs. 
Moreover, in some settings the high expense may prevent the 
use of the drugs when resources are limited. Hopefully, in 
the future the detrimental effects of complement activation 
in the transplantation process can be reduced by targeted, 
organ or cell-specific complement therapies, without fear-
ing loss of the desirable systemic defense mediated by the 
complement system.
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