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Simple Summary: Agriculture systems use multiple chemical treatments to prevent pests and
diseases, and to fertilize plants and eliminate weeds around the crop. These practices are less
accepted by the consumers each day, mostly because of the associated environmental, health, and
ecological impact; thus, new sustainable green technologies are being developed to replace the
use of chemical products. Among green technologies for agriculture practices, the use of plant
elicitors represents an alternative with great potential, and extracellular DNA has shown beneficial
effects on important production traits such as defence mechanisms, plant growth and development,
and secondary metabolites production that results in yield increment and better-quality food. In
this review, we reunite experimental evidence of the natural effect that extracellular DNA has on
plants. We also aim to contribute a step closer to the agricultural application of extracellular DNA.
Additionally, we suggest that extracellular DNA can have a biostimulant effect on plants, and can be
applied as a highly sustainable treatment contributing to the circular economy of primary production.

Abstract: Agricultural systems face several challenges in terms of meeting everyday-growing quanti-
ties and qualities of food requirements. However, the ecological and social trade-offs for increasing
agricultural production are high, therefore, more sustainable agricultural practices are desired.
Researchers are currently working on diverse sustainable techniques based mostly on natural mech-
anisms that plants have developed along with their evolution. Here, we discuss the potential
agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant
metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limi-
tations of the industrial scale for this technology. We highlight the more viable natural mechanisms
in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern
(DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system,
where DNA is extracted from organic sources by a simple methodology to fulfill the molecular char-
acteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps
the total removal of, chemical pesticides, fertilizers, and insecticides application.

Keywords: eDNA; elicitors; hormesis; sustainable agriculture; DAMPs

1. Introduction

Climate change constitutes a serious threat to the environment and all living organisms.
In particular, numerous studies suggest serious consequences for the health of crop plants,
affecting both the productivity and the quality of raw materials destined for the food
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industry [1]. Among the agriculturally important risks associated with a changing climate
are drought, increased incidence of diseases and pests, decreased availability of water and
pasture resources, forest fires, hailstorms, and, in general, biotic and abiotic stress that
vegetal crops will have to overcome to maintain food production [2].

In this context, agricultural yields decline largely due to climatic changes, leading
to the loss of optimal conditions for crop production, but also due to an increase in the
incidence of pest-related losses [3–8]. By decreasing crop yields and decreasing global
income derived from crop production [9], climate change thus increases food insecurity, as
both agricultural and livestock production systems are threatened by changing patterns of
rainfall and temperature, which causes malnutrition [10]. The use of chemical pesticides,
fertilizers, and herbicides in agriculture has also generally decreased its acceptance due to
its high environmental, health, and ecological costs, plus the loss of aggregated value of
the non-organic crops [11,12].

In addition, current intensive agricultural practices, including land clearing, excessive
and inefficient use of fertilizers and pesticides, irrigation, and the use of fossil fuels for agri-
cultural machines, make agriculture a major contributor to greenhouse gas emissions [13],
and maintaining this never-ending cycle contributes to environmental problems.

To manage the risk of climate change, knowledge of climate-smart agricultural prac-
tices (CSAPs) is imperative [14]. A transformative approach that reorients the agricultural
sector to address climate change while ensuring sustainable food security, while food
production is maintained or increased to meet the needs of a growing population and
reducing negative environmental impacts from climate change and other factors, must be
developed and applied [15].

Recently, research interest has focused on understanding the natural defence mecha-
nisms of plants so new, natural agriculture treatments can be developed soon to cope with
pests and diseases. In this area, a problem has been addressed concerning the selection
of agronomically interesting traits in crops through common agricultural management,
resulting in plant domestication. This artificial process has led to dramatic phenotypical
changes in plants and unintended consequences for other traits may have ensued, such
as metabolic trade-offs between increasing edible biomass and the activation of chemical
defences as a reaction to biotic and abiotic stresses [16]. Theories concerning these kind of
trade-offs assume the physiological cost of secondary metabolites and the necessary energy
allocation [17]. Researchers have suggested that plant domestication may indirectly reduce
plant defences due to increased allocation of plant resources to increased yield, supported
by some experimental evidence [16–21].

In this context, the use of plant metabolism modifiers (PMFs) has been suggested as a
potential treatment that suits most modern agricultural needs. PMFs have been labelled
and classified in different ways, principally as biostimulants and elicitors and their use has
shown to obtain higher fruit production, enhancement of plant growth, reduction in plant
diseases occurrence, an increase in metabolites production as chlorophyll, carotenoids
and, protein contents, as well as the production of some important enzyme activities as
phenylalanine ammonia-lyase (PAL) and defence enzymes as catalase (CAT), superoxide
dismutase (SOD), among others [22–26].

The results of several studies of elicitors/biostimulants application to plants have
demonstrated that the dose of treatment shapes the effect in plant metabolism following a
hormetic dose-response curve [27]. This behaviour suggests that the fine characterization
of each elicitor/biostimulant molecule effect will help to determine a dose that elicits
immune responses, while stimulating growth-developing signalling pathways to reduce
the metabolic trade-off negative events [28].

One of the most promising emerging elicitors is extracellular DNA (eDNA), which has
multiple roles in plant metabolism that will be later explained focusing on the possibility of
being applied as a sustainable agricultural treatment. Here, we address the main concerns
about the practical application of this potential treatment, technical challenges, and, finally,
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we propose a new use for this molecule as a general plant biostimulant, enhancing the
possibility of a circular economy system.

2. Natural Conditions of eDNA Release and Sensing

Recently, a new condition of DNA has been identified as eDNA. This term refers
to all DNA molecules located outside a cell [29,30]. The presence of eDNA in almost
every environment results from multiple different processes of both active release from
physiologically active cells and passive release from moribund or dead cells from all kinds
of organisms [31,32]. eDNA has long been known as one of the most abundant molecules
in almost every environment and, therefore, organisms have developed different biological
roles for it, as a vector of horizontal gene transfer [33], as a source of nutrient and energy
due to its content of nitrogen and carbon [29], and as a structural molecule for biofilms and
extracellular neutrophil traps construction [34,35].

As eDNA can be diffused in the environment through various mechanisms, it can
be found in diverse conditions that reflect multiple natural events [36]. For example,
differences in eDNA fragments size can mean different cell death mechanisms. In the
process of apoptosis, nucleases cleave and degrade DNA and produce low molecular
weight species, including ladders [37]. In necrosis, the DNA is usually not cut following a
pattern, and generally, the molecule exhibits higher sizes [38].

The concentration of eDNA molecules can reveal the distance or time passed since
a biological event. Plants growing next to decomposing conspecifics would be exposed
depending on the distance to lower or higher concentrations of eDNA, indicating the close-
ness to possible danger and the possibilities to survive [39]. Relevantly, the source, carriage,
and deterioration of eDNA influence their physical state, regulating the mechanisms and
effects of its interactions. Organisms have developed sensing and signal transduction
mechanisms to respond to the presence of eDNA in specific situations, relevant for their
survival [40].

In this review, we focus on vegetal organisms, as it has been seen that eDNA molecules
play a major role in self and non-self-recognition and therefore in plant-host interactions.
The next question researchers have addressed is how the organisms perceive eDNA and
more importantly distinguish eDNA with specific molecular conditions.

To date, there is no knowledge about eDNA sensing and signal transduction mecha-
nisms in plants, but in mammals, there is now a broad consensus that the receptors involved
in nucleic acid-sensing have been identified as a specific family of Pattern Recognition
Receptors (PRR) [41,42]. Being the first category of nucleic acid receptors, the Toll-like
receptor family (TLR), specifically, TLR7, TLR8, and TLR9 recognize differences between
nucleic acids molecules (Table 1) in animals [42,43]. These TLRs are localized within in-
tracellular organelles and are involved in the recognition of microbial nucleic acids. The
specificity of each TLR is determined mainly by one structural motif called Leucine-Rich
Repeat (LRR), which is involved in the recognition of MAMPs [41].

Table 1. Activation of TLRs in mammals [41–43].

TLR Activation

TLR7 Respond to bacterial and viral single-stranded RNA (ssRNA), and are also
activated by imidazoquinolines and other small synthetic

immunomodulatory compoundsTLR8

TLR9 Activated by DNA of viruses or bacteria with unmethylated
CpG dinucleotides.

Interestingly, it has been observed that DNA samples of different bacteria showed
considerable differences in their potential to stimulate TLR-9 and this is correlated with
the frequency of CG dinucleotides of the samples [42]. This is relevant in ecological
interactions because differences in the content of CG DNA motifs have been addressed
between prokaryotic and eukaryotic organisms and even between genera of bacteria. This
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is the first hint of an eDNA receptor with the capacity to identify differences in the origin
of eDNA.

In the case of plants, some hypotheses have been discussed, Bhat and Ryu [44] attribute
the perceptions of eDNA to four possible mechanistic scenarios: (a) the presence of some
specific membrane-bound receptors of microbial DNA, consistent with what is known
for mammals, (b) the presence of transporter channels on the membrane, leading eDNA
through the cell membrane into the cytoplasm where they can trigger the proper signal
cascades, (c) the internalization of eDNA molecules by vesicles into the cell, and (d) the
presence of eDNA sensors that mediate the effect but localise intracellularly. Additionally,
according to some authors [39,45,46], the eDNA has a species-specific inhibitory effect on
the growth of plants, depending on the concentration, leading to the possibility of multiple
recognition ways for multiple eDNA conditions.

In a recent study, the authors demonstrate that plant cells can sense eDNA distin-
guishing between self and non-self-DNA, revealed by the display of very different effects
in plant transcriptome and different patterns of eDNA localization with non-self-DNA
entering root tissues and cells and self-DNA remaining outside [47].

3. Self-eDNA as a DAMP

Several plant responses have been identified to have as a principal goal the main-
tenance of a high ecological diversity by inhibiting the development of single-species
communities. These mechanisms are known as negative plant-soil feedback [48]. It has
been observed that the development of juvenile specimens of a given species was limited
in environments with a high density of adult organisms of the same species. This was
explained as the possible enhancements by adult communities of highly specific pathogens
living in the soil [49] or as the content of a molecule in the soil, where a plant grows, with an
inhibitory effect on new plants of the same species. The last one refers more to the capacity
of juveniles to distinguish highly similar organisms as “self” and respond to this stimulus.

The ability to distinguish “self” from “non-self” has been described as the most
fundamental aspect of an immune system [50]. Recently, researchers have focused on
identifying molecular mechanisms to explain self-inhibition. The suggested molecules for
this role had to be highly conserved along with the organisms from all the kingdoms, but
had to differ from one another in an identifiable way, depending on their origin, to allow
for a species-specific inhibitory effect. One of the suggested molecules is DNA, as a highly
species-specific, constantly present molecule. Supporting this hypothesis, several works
have suggested the role of self eDNA as a danger signal molecule. The first report of it was
made by Mazzoleni et al. [45] in a study where multiple species across different taxonomic
groups, including plants, were exposed to respective eDNA. The experiments produced
highly significant differences in responses to either self or non-self eDNA, treatments with
self eDNA always resulted in a concentration-dependent growth reduction. Later, eDNA
was applied in vitro and in vivo to different plant species at different concentrations. In
these studies, the authors assessed germination, plant development, and plant growth.
The root growth of all targeted species was significantly inhibited by fragmented self
eDNA treatments in a concentration-dependent manner. These studies highlighted the
importance of self eDNA fragmentation to produce biological reactions in plants. The
fragmentation resembles the natural decomposition of biological tissues and the DNA
degradation, resembling the decaying of a near specimen of the same species.

As with any other signal molecules, eDNA activates a hormetic dose-response in
plants [27]. This means that different doses of the same molecule can cause toxicity or
stimulation. In the case of self eDNA, the stimulation of several plant defence responses
have been reported. Lima bean (Phaseolus lunatus) and maize (Zea mays) leaves responded
to self eDNA with a plasma membrane potential depolarization and calcium signalling,
both early response events preceding the build-up of chemical defence in plants [51]. The re-
sponse had a linear behaviour with the concentration of treatment starting with <2 ug/mL
for Lima bean and 12 ug/mL for maize up to 200 ug/mL of self eDNA. The self eDNA
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responses were compared to non-self eDNA application with plants showing no response
to the latter [51].

Lettuce seedlings responses were also evaluated in the presence of self and non-self
eDNA. All self eDNA treatments, except for the highest concentration (200 ug/mL), showed
statistically significant changes in the hypomethylation levels of genomic DNA compared
to deionized water in control [46]. Additionally, gene expression of early defence enzymes
was evaluated in five-days-old lettuce seedlings, treated with self eDNA and non-self
eDNA extracted from two plants with different phylogenetic distances to lettuce. The self
eDNA treatment triggered a concentration-dependent effect in the expression of superoxide
dismutase (sod), catalase (cat), and phenylalanine ammonia-lyase (pal) (2–200 ug/mL).
Interestingly, non-self eDNA from C. chinense (phylogenetically close to lettuce) treatment
activated the expression of sod and cat in the same levels as self eDNA (200 ug/mL) but
A. angustissima (phylogenetically more distant from lettuce) did not affect the expression
of these genes. The effect of eDNA application on pal gene expression was different from
that of the other evaluated genes: pal expression was activated by A. angustissima eDNA
(non-self eDNA) at a higher level than C. chinense (phylogenetically closer non-self eDNA)
or even self eDNA. These results highlight the sensibility of plant immune responses
related to the phylogenetic distance between species.

Durán-Flores and Heil [52] reported the effect of eDNA application on the formation
of H2O2 and activation of MAPKs in the leaves of common bean. Self eDNA caused a
significant (almost three-fold) increase in H2O2 compared to plants treated with non-self
eDNA that had no detectable effect. Similarly, activation of MAPKs was detectable at
5 min and strongest at 30 min after self eDNA application. Non-self eDNA also showed
MAPKs activation but at a lower level. Surprisingly, plants treated with self or non-self
eDNA exhibited a decrease in infection rates after the inoculation of the phytopathogen
Pseudomonas syringae.

Similar to these studies, Rassizadeh et al. [53], treated Arabidopsis thaliana five-weeks-
old plants with self eDNA in different concentrations and evaluated its effect on signal
transduction and metabolic pathways activation by specific transcripts measure, production
of plant hormones, accumulation of H2O2, and resistance spectrum against pathogens with
inoculation of the biotrophic bacteria Pseudomonas syringae, the oomycete Hyaloperonospora
arabidopsis, the necrotrophic fungus Botrytis cinerea and the phloem sucking insect Myzus
persicae. The results showed an up-regulation of transcription of genes involved in ROS
signaling (OXIDATIVE SIGNAL-INDUCIBLE, OXI1 and calcium signaling (CALMOD-
ULIN LIKE 37, CML37) but interestingly, the study showed no differential expression in
some marker genes regulated by defense-related phytohormones, such as PATHOGENESIS-
RELATED GENE 1 (PR-1) for salicylic acid, PLANT DEFENSIN 1.2 (PDF 1.2), VEGETATIVE
STORAGE PROTEIN 2 (VSP2) and JASMONATE RESISTANT 1/JAR1) for jasmonic acid,
ETHYLENE RESPONSE FACTOR 2 and 5 (ERF2 and ERF5) for ethylene.

As for the induction of resistance against pathogens, the self eDNA treatment induced
plant resistance. The infection rates for pathogens were calculated by the measurement
of infected leaves per plant and colony-forming units (CFU) for P. syringae infection, the
number of conidiospores for H. arabidopsis, aphid population for M. persicae infestation, and
necrotic lesion diameter caused by B. cinerea inoculation, all of them significantly reduced
from control plants. All these results suggest that self eDNA treatment in A. thaliana plants
induces defence signalling but not direct defence responses per se. Highlighting that
although the signalling pathways of DAMP effects on plants are, at some level, studied,
self eDNA may activate different metabolic pathways than that expected from a common
DAMP recognition. Additionally, these authors, showed that self eDNA mediated defence
activation leads to a broad range-resistance against diverse biotic stresses [53].

By these reports, the role of self eDNA as a damage-associated molecular pattern
(DAMP) has been identified, similar to systemin [54], extracellular ATP [55], and AtPepl [56].
DAMPs have been described as aberrantly located endogenous molecules indicating
self-damage and therefore danger leading to the activation of defence responses [57].
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As immune system responses have been characterized, tested with multiple doses, vegetal
species, and applying times, researchers started considering the self eDNA treatment as a
possible agricultural application to elicit an early defence response from crops in a “vaccine-
like” mechanism, as described by Quintana-Rodriguez et al. [58] and Ferrusquia-Jimenez et al. [59].

New studies have focused on understanding the effect of self eDNA in plants in a
more global way. Barbero et al. [60] identified as an effect of self eDNA treatment in tomato
plants a negative regulation of genes related to gene ontology terms such as metabolic
and biosynthetic processes of Myo-inositol (>100-fold enrichment), nitric oxide metabolic
and biosynthetic processes (>70-fold enrichment), biosynthetic processes of ROS, cell wall,
jasmonic acid, and sucrose transport (>47 fold enrichment). Additionally, several genes
were identified as upregulated and related to the following gene ontology terms: oxygen
transport, defence against Gram-negative bacteria, and lactate biosynthetic processes
(>66-fold enrichment), adenine biosynthetic, and metabolic processes, auxin influx, and
cellular ion homeostasis processes (>33-fold enrichment).

Contrastingly, an up-regulation of MPK3 and OXI1 genes resulted from treatments
with broccoli, citrus, bean, and maize eDNA. Similarly, CML37 levels of expression were up-
regulated in A. thaliana plants treated with broccoli and bean eDNA only [60]. In this case,
the non-self eDNA had neither pathogenic nor microbial origin to support the hypothesis
of the eDNA effect as MAMP/PAMP but these results do support the phylogenetically
closeness-related effect described earlier [46,52].

In a more recent study [47], DNA extracted from Arabidopsis thaliana plants and com-
mon herring (Clupea harengus) were applied to A. thaliana plants as self and non-self eDNA
treatments. In self DNA responses, genes related to oxidative stress, toxic substances, and
ions were up-regulated, involving genes encoding detoxification and anti-oxidation protec-
tive enzymes, while downregulating typical stress-responsive genes, as PAD4 gene that has
been related to pathogen resistance response mediated by TIR-NB-LRRs. This contrasts
with the up-regulation of PAD4 as an effect of non-self-DNA treatment, as well as several
genes involved in systemic acquired resistance. These responses evidence differences in
self and non-self-DNA activated mechanisms, consistent with DAMP-, P/MAMP- like
responses, respectively.

Another important difference between responses is the up-regulation of genes re-
lated to ABA and jasmonic acid in the first hour after self eDNA treatment, while in
non-self eDNA analysis an up-regulation of genes related to ABA and salicylic acid was
revealed [47]. In self DNA response, an up-regulation of most of the genes belonging to
the cytokinin oxidase/dehydrogenase family also suggests cytokinin-mediates processes
affected, possibly involving cell cycle regulation, cell proliferation, and shoot and root
development. This coupled with a down-regulation of gibberellins transport may be related
to the growth inhibition as a result of defence mechanisms activation.

On one hand, the authors identified a remarkable differential gene expression in
non-self eDNA treated plants compared to control plants, involving both biotic and abiotic
stress-related genes accompanied by a hypersensitive response. On the other hand, a
minor differential expression gene response to self-eDNA compared to control plants was
identified relating to oxidative stress and the activation of the chloroplast gene expression,
and the downregulation of stress-responsive genes [47]. The observed role of non-self
eDNA in the activation of plant responses is described in the next section.

According to the observed reactions to different doses of self eDNA, Pontiggia et al. [61]
suggested in their review that the plant must be able to discriminate between a physi-
ological or a pathological event when sensing an accumulation of DAMPs, in this case,
eDNA. Conditions as the time of formation, concentration, and distribution may help
distinguish such events. In the case of a pathogen attack, plants need to respond quickly,
intensively, and systemically to the danger. On the contrary, in a physiological event, plants
may only need to activate local immune responses preventing a massive immune response
with negative effects on plant growth. Even in pathological infections as those established
by biotrophic or hemibiotrophic pathogens, early, local immune responses activated by



Biology 2021, 10, 1022 7 of 20

specific doses of DAMPs, may be enough to attenuate pathological symptoms or prevent
the switch between biotrophic to necrotrophic in pathogens, while maintaining the normal
plant growth [62–65].

This potential agricultural application offers several advantages due to its species-
selective mechanism and low concentration needed for an effect on the plant immune
system, but mostly by its natural origin with low environmental, health, and ecological
costs. Additionally, although there are no studies at a production scale of this natural mech-
anism, in theory, the raw material where DNA would be obtained from can be the same crop
waste, lowering costs and becoming, this way, a more sustainable agricultural practice.

4. eDNA as a MAMP/PAMP

One of the most important steps for the plant immune system to work is the identifica-
tion of the presence of a pathogenic organism to activate the proper responses to overcome
the potential danger [66]. Different from the role of self eDNA, the perception of eDNA not
only non-self but specifically coming from a prokaryotic source interpreted as the presence
of a possible pathogenic microbe, has been suggested to activate defence mechanisms
in plants [67–69]. Here we describe the role of microbial eDNA as a microbe-associated
molecular pattern (MAMP) for the plant immune system.

The release of DNases from several microorganisms [70–74] and even herbivores [75]
has been reported to induce pathogenesis-related genes and immune system activation
in plants. Moreover, these DNA degrading enzymes appear to be highly involved in the
pathogenic process. The role of DNases in pathogenesis has been little explored. Here, we
link the presence of DNases in enzymes that pathogenic microbes secrete, with the role of
microbe eDNA as a danger signal molecule for plants.

Wen et al. [76] reported the increase of infection by N. haematococca in pea roots
treated with DNAse I in contrast with the root tips without DNAse I inoculated with
the pathogen. This latter behaviour may be explained by the digestion of the eDNA
present in root cap slime that has been identified to confer resistance in pea to microbial
infections, but evidence suggests another explanation. The same experiments were carried
out this time with excised root tips (without root cap slime) immersed directly within the
treatment solutions. At 24 and 48 h after inoculation of root tips with fungal spores alone,
hyphal growth was minimal. In root tips co-inoculated with the pathogen and DNAse I, a
proliferation of hyphae on the surface and penetration into root tissue were evident within
24 h. In light of the latter result, we suggest that DNAse I could digest eDNA working as a
signal molecule, allowing the pathogen to establish infection by avoiding the activation of
the plant immune system.

As previously seen, the size of eDNA fragments is an important factor for the plant
to recognize it as a danger signal. In this study, the authors also treated root tip with
a slower degradation rate DNAse (BAL31) that generates genomic DNA fragments of
250 bp–6 kb after 24 h of treatment. By contrast, treatment with DNase I degrades DNA
to fragments smaller than 250 bp within 2 h. Treatment with BAL31 resulted in a delay in
infection establishment, compared with the response to DNase I, suggesting the presence
of eDNA-mediated defence mechanisms activation.

There are multiple reports of defence mechanisms in plants triggered by pathogenicity-
related-bacterial DNA. In 2009, Yakushiji et al. [67] treated Arabidopsis thaliana culture cells
and leaves with different digestion enzymes-treated E. coli plasmids and measured the
H2O2 production induced by treatments. The plasmid DNA trimmed in CG sequences
caused a less intense activation of H2O2 production, suggesting the CG islands are impor-
tant to this recognition mechanism. CpG DNA motifs are very rare in eukaryotic DNA but
very common in prokaryotic ge1omes, and their role as MAMPs of the animal immune
system is well known [77–79]. This DNA motif allows the organisms to discern between
eDNA originated from eukaryotic cells and prokaryotic cells.
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As a hypothesis, the total and rapid degradation of microbe eDNA by pathogen-
released DNases causes a slower activation of the plant immune system, allowing the
pathogen to establish an infection in a more discreet way for the immune system.

The treatment with a mixture of fragmented eDNA from different phytopathogenic
organisms (Phytophthora capsici, Fusarium oxysporum and Rhizoctonia solani) also showed a
protective effect in chili pepper against wilt and root rot disease [68]. In this study, both
disease severity and plant mortality were measured with a reduction of 60% and 40%
compared to the infected control, respectively. The plants immune system activation was
also measured by total phenolics determination as well as by phenylalanine ammonium
lyase and chalcone synthase gene expression analysis. The mixture of microbial fragmented
eDNA treatment showed an immune system activation effect that can be related to a
decrease in disease severity by the inoculated pathogenic complex in capsicum.

In another study, the application of short sequences of non-self eDNA with cytosine-
phosphate-guanine oligodeoxynucleotide motifs in a concentration of 9.5 × 10−5 g/liter
statistically reduced the lesions in leaves of wheat plants by the pathogenic fungus Z. tritici,
showing a similar effect to a commercial fungicide [69].

With all these observations, the ability of plants to distinguish microbial eDNA from
other kinds of eDNA is clear. The common hypothesis is that the content of CpG DNA
motifs helps plant receptors to respond differently to microbial eDNA, and this can confer
an ecological advantage to plants to identify near pathogens or beneficial bacteria. Thus,
this natural mechanism can be seen as a potential agricultural application that could
replace chemical pesticides at some level or completely. More tests are needed to complete
the information about hormetic curves in multiple plant species. The concentration of
applied eDNA needs to be carefully chosen because, as reviewed by van Butselaar and
Van den Ackerveken [80], there are multiple molecular pathways in plants that cause a
growth-immunity trade-off. It has been shown that the activation of immunity by salicylic
acid (SA) signalling and jasmonic acid (JA) inhibit growth, involving auxin receptors [81],
transport [82], and several transcription factors as TFBF1 [83]. Additionally, it has been
shown that growth affects SA signalling. As the initial burst of growth slowly declines in
the plant lifetime, SA signalling strengthens up [84].

Although the mentioned effects of eDNA application have been proved a great poten-
tial in agricultural management, each application must be carefully evaluated. A summary
of the effect of applied eDNA experimentally evaluated is shown in Table 2.

Table 2. Summary of effects of applied eDNA experimentally evaluated.

Reference Plant Source of DNA Concentration (ppm) Effect

[67] Arabidopsis thaliana Escherichia coli 500
H2O2 induction and growth
inhibition, callose deposition,
induced expression of FRK1

[45] Acanthus mollis

Acanthus mollis
2 No effect

20, 200 Reduction in root growth

Arabidopsis thaliana,
Quercus ilex,

Sarcophaga carnaria
200 No effect
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Table 2. Cont.

Reference Plant Source of DNA Concentration (ppm) Effect

[51]

Phaseolus lunatus S. littoralis oral secretions
and larvae, Zea mays 200 No effect

Zea mays

S. littoralis oral secretions
and larvae,

Phaseolus lunatus
200 No effect

Zea mays

2 No effect

12, 90, 120 Increase in plasma membrane
potential depolarization

200 Increase in plasma membrane
potential depolarization and Ca2+

Phaseolus lunatus Phaseolus lunatus
2, 20, 90, 120 Increase in plasma membrane

potential depolarization

200 Increase in plasma membrane
potential depolarization and Ca2+

[52] Phaseolus vulgaris

Phaseolus vulgaris

2, 20 No effect

50, 100, 150, 250 Root growth inhibition

200

Root growth inhibition, H2O2
increase, activation of MAPKs,
induction of extrafloral nectar,

lower infection rates by P. syringae.

Phaseolus lunatus 200
Root growth inhibition, activation
of MAPKs, lower infection rates by

P. syringae.

Acacia farnesiana 200 Lower infection rates by
P. syringae.

[46] Lactuca sativa

Lactuca sativa

2
Root growth inhibition, genome
methylation reduction, induced

expression of sod and cat

20
Root growth inhibition, genome
methylation reduction, induced

expression of sod, cat and pal

50, 100, 150
Root growth inhibition, genome
methylation reduction, induced

expression of pal

200 Root growth inhibition, induced
expression of sod, cat, and pal

Acaciella angustissima

2, 20, 50, 100, 150 No effect

200 Genome methylation reduction,
induced expression of pal

Capsicum chinense

2 No effect

20, 50 Inhibited root growth

100, 150 Inhibited germination and
root growth

200
Inhibited germination, genome

methylation, induced expression
of sod and cat
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Table 2. Cont.

Reference Plant Source of DNA Concentration (ppm) Effect

[68] Capsicum annum P. capsici, F. oxysporum
and R. solani mixed 20, 60, 100 Resistance to pathogens and increase of total phenols

and flavonoids

[53] Arabidopsis thaliana

Arabidopsis thaliana 150
MPKs, ROS and Ca2+ signalling, SA and JA related

genes expression upregulation, increase in H2O2 and
callose accumulation, resistance against pathogens

Brassica oleracea 150 Upregulation of MPK3, OXI1,
and CML37 gene expression

C. aurantrum, Solanum
lycopersicum, S. oleraceae 150 No effect

Phaseolus vulgaris 150 Upregulation of MPK3, OXI1,
and CML37 gene expression

Zea mays 150 Upregulation of MPK3 and OXI1 genes

[47] Arabidopsis thaliana
Arabidopsis thaliana 200

Differential expression of less than 2.5% of total genes
(upregulation: brassinosteroids and cytokinins,
downregulation: abscisic acid and gibberellins)

Clupea harengus 200
Differential expression of more than 15% of total

genes (upregulation: salicylic acid, downregulation:
abscisic acid and auxins)

[60] Solanum lycopersicum Solanum lycopersicum

50 Plasma transmembrane potential depolarization,
ligand-gated K+ channels, and H2O2 production

activationPlasma activation100

200

Plasma transmembrane potential depolarization,
ligand-gated K+ channels, and H2O2 production

activation, downregulation: Myo-inositol, NO, ROS,
cell wall, JA and sucrose biosynthetic and metabolic

process, upregulation: oxygen transport, defence
responses to gram-negative bacteria, lactate and

adenine biosynthetic process, auxin influx

5. Technical Challenges of eDNA Application as an Agricultural Treatment

The use of eDNA as an agriculture treatment could be questionable in terms of the
cost–benefit of extraction, fragmentation, and application of eDNA, even knowing the ideal
treatment concentration. In this section we propose a redefinition of the protocol needed
for DNA extraction suitable for agricultural application by identifying the common steps
in lab DNA extraction protocols and determining which steps are needed for this specific
purpose, having in mind that the conditions needed for this goal are different from the
conditions desired in lab extracted DNA. Usually, the lab DNA extraction aims not only
for the significant quantity of nucleic acids, but for the high integrity and purity of the
molecule, and some of the most expensive steps have these purposes. Otherwise, eDNA
for agricultural treatments has shown a better immune response in plants in a fragmented
state, and a high level of purity may be of lower importance [52].

5.1. DNA Extraction

As Duran-Flores and Heil in 2014 [39] have shown, the simple application of self leaves-
homogenates in plants activates defence responses (similar to the so-called plant-derived
biostimulants or PDBs). Although it has been suggested that eDNA inside homogenates
is one of the main causes of the DAMP effect in treated plants, the homogenates contain
several other molecules that not only lack the DAMP role but can be interfering in the
eDNA sensing or lower eDNA stability. Additionally, the components of PDBs depend
on several factors as plant genotype, organ, and stage of extraction, and environmental
factors, that shape a metabolites expression, making the components highly variable [85].
In contrast, DNA would always be the same in a plant species. Here, we suggest that DNA
extraction for agricultural purposes must be the simplest procedure that still activates
secondary metabolism in plants and remains stable to allow an easy application. Possibly,
the best DNA extraction method is a procedure between simple tissue homogenates and
the traditional lab DNA extraction. We address the most important goals to achieve in
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DNA extraction as the elimination of most cellular debris in the sample that may contain
lytic enzymes, biological contamination, and biological hazard for agricultural application
of eDNA.

Another important factor to consider in the DNA extraction method is the generation
of toxic or special waste disposal residues. In several DNA extraction protocols multiple
chemicals are used and because of their toxicity they require specific waste disposition. For
eDNA agriculture treatment to be a sustainable option, the waste of DNA extraction must
be free of toxic or environmentally hazardous chemicals, as we discuss later.

To meet the agricultural purposes of DNA extraction, it is important to question every
step applied in conventional lab DNA extraction that usually has different specific goals in
terms of DNA integrity and purity. Conventional lab DNA extraction protocols require
large or relatively large quantities of grams of tissue to be ground in a mortar with a pestle,
and kits are generally either expensive or not readily available, particularly for researchers
in developing and under-developed countries [86]. Therefore, extraction techniques have
been diversified to fulfil all needs. Here, we describe the most common extraction methods
divided into three main steps: (1) cell lysis, where different methods can be applied to
achieve the rupture of the cell membrane and release of the cellular content; among several
molecules, the DNA. (2) DNA extraction: consisting of the elimination of membrane
debris and contaminant substances from the sample to reduce co-purification of unwanted
components (proteins, lipids, polysaccharides, and polyphenols) and (3) DNA purification:
in this last step, nucleic acids are isolated from remaining contaminants looking for a higher
level of purity [87].

The first step of DNA extraction, cell lysis, has special importance due to the diversity
of cells to lyse and the diversity of techniques available to achieve this. Initially, we suggest
that the DNA for agricultural treatments may be extracted from decaying biological tissues.
In DNA extraction protocols, younger tissues are advised to be used, this way better
integrity is obtained in DNA results. In terms of the application of DNA in agricultural
treatments, this would mean harvesting young leaves from crops or establishing new
vegetal or microbiological cultures only for DNA extraction. This would increase the cost
and complexity of the treatment. Instead, we suggest extracting DNA from pruning waste
or other agricultural wastes, where tissue contains a level of damage in genetic material.
In this case, extracted DNA would already have a level of damage or fragmentation, likely
reducing the need for fragmentation procedure.

A wide variety of tissue lysis methods are available, usually, the selection is up to
the budget, workflow, purification steps, target molecules of analysis, the quality of final
extraction, and the tissue itself [86]. Islam et al. [88] highlight the importance of the
tissue worked with. For agricultural purposes of DNA extraction, a general tissue lysis
method must be designed, possibly by mixing cell lysing techniques. The most common
cell lysis methods have been reviewed by Islam et al. [88] and Harrison [89], classified
into the categories: mechanical, chemical (alkaline lysis and detergent lysis), physical
(meaning all non-contact methods) and biological (lytic enzymes). The main advantages
and disadvantages of each technique are described in Table 3.
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Table 3. Comparative characteristics of cell lysis techniques.

Technique Advantages Disadvantages

Mechanical
Several devices are already commercially available
at an industrial scale [88]. Suitable for several kind

of tissues with high efficiency [89].

Production of small cell debris so next purification
steps become harder [88]. High capital investment

and energy costs [89].

Physical It has shown high efficiency [90,91]. Some methods are expensive and so it is not
widely used for macroscale application [88].

Chemical Use effective buffers that also protects DNA [90].
Must be coupled with other techniques [90]. Some

chemicals are toxic and need special waste
disposition [92].

Biological High specificity. Use of enzymatical products to
lyse cell wall and membrane components [90].

Must be coupled with other techniques [90].
Depending on the needed enzymes it could be

expensive in bigger scales [89,93].

In this review, we highlight the potential of physical methods coupled with mechanical
and chemical techniques, mainly because of their adaptability to industrial scale and
different tissues. Physical techniques are based on processes where voltage or acoustic
waves are applied to several tissues aiming for the cell lysis. This is a highly versatile
technique since voltage and sonication can cause cell rupture. We consider some factors
that could affect efficiency depending on the kind of tissues treated. These factors may be
adjusted based on specific biological DNA origin. Yield could depend on three factors:

1. The amplitude of the voltage or intensity of sound
2. The diameter of the channel where the fluid with cells is passing
3. The application time of voltage or acoustic stimulus. The time can be managed by the

pump, which varies the velocity of the fluid with cells.

The cell lysis step is commonly performed with the addition of extraction buffers used
to maintain a stable environment and avoid molecule degradation by enzymes and pH
changes. Often, the extraction buffers contain salt and organic compounds as Tris-HCl,
EDTA, NaCl, SDS, as seen in KCl extraction buffer [94], DEB buffer [95], and Dellaporta
buffer [96]. These organic compounds represent no environmental or health hazard accord-
ing to their safety data sheets. Other commonly used components of extraction buffers
are β-mercaptoethanol, a reducing agent that irreversibly denatures proteins, including
degrading enzymes, by reducing disulphide bonds and destroying the native conforma-
tion required for enzyme functionality and Cetyltrimethylammonium bromide (CTAB),
a cationic detergent of low cost that is generally the method of choice in DNA extrac-
tions without kits for a diverse kind of sample, but especially for plant tissues with high
polysaccharides and other inhibitory substances [97–99]. Although very useful, these two
chemicals have been reported as toxic by ecotoxicity tests [100–102] and are established as
hazardous chemicals by their safety data sheet.

Some simple, safe handling methods with low equipment dependence and with the
use of easily available non-toxic reagents have been developed for DNA extraction and
proved to have the same performance as CTAB methods [92]. Briefly, these protocols consist
of mixing the biological sample with an extraction buffer and applying a mechanical cell
rupture technique, after this, a protein, and polysaccharides precipitation by the addition
of salts such as sodium acetate and a centrifugation step, followed by a nucleic acid
precipitation step with cold isopropanol [92]. Additionally, some experimental assays have
successfully been performed to replace toxic chemicals such as β-mercaptoethanol, and this
compound has been replaced by 1% sodium sulphite (NA2SO3) which is also cheaper [99].

Regarding the industrial scale of DNA extraction, we must calculate the scale of
treatment production needed for each case: number of applications along the agricultural
cycle, the desired effect on plants and thus the concentration of eDNA needed, also the
plant species in which the treatment would be applied, how many plants are going to be
treated and the yield of DNA extraction. Once the amount of eDNA needed is determined,
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we could think about the industrial escalation of the process. The two major processes
needed to scale up in DNA extraction are tissue lysis and centrifugation, Piccino et al.
mentioned in their review some industrial processes equivalent to lab-scale processes, such
as rotor-stator type homogenizer or an industrial blender for tissue lysis and industrial
centrifugation [103] and Islam et al. [88] have reviewed a list of commercially available
mechanical cell lysis instruments. These are performed in already available industrial
modules and their cost depends on the volume and power requested.

As an example, if a producer wants to elicit a tomato crop, and after the proper
evaluations, the concentration to apply is 20 ppm of self eDNA, we estimate 10 mL of
eDNA solution sprayed per plant per application. The producer would need about 200 L
of eDNA solution per hectare (20,000 plants). At this concentration, this means we need to
extract 4 g of DNA. Although this sounds simple, it needs a considerable amount of plant
biomass. In the simple extraction protocol reported by Rodrigues et al., the yield is 15 ug of
DNA per 25 mg of tissue and 1.5 mL of extraction buffer. If we use this as an example, the
producer will need 6 Kg of tomato plant tissue and 400 L of extraction buffer to cover one
whole application per hectare. Additionally, the costs can be lower if the eDNA is applied
by normal irrigation systems.

One of the advantages of using plant tissue as the source of eDNA is that agriculture
production has no problem obtaining it, for example, tomato (Solanum lycopersicum) wastes
from greenhouse systems produce about 15 t ha−1 y−1 of fresh plant residues [104], of
which 10.7 t ha−1 y−1 has been calculated to be from leaf biomass only [105]. Although
the number of applications during the cultivation cycle is not established yet, the needed
biomass can be easily covered using greenhouse plant waste. Here is an important logistic
problem to address, because self eDNA would be obtained as the crops generate plant
tissue waste through pruning, according to crop management practices [106], so initial
applications should be made with eDNA obtained from previous crops or other sources, as
reviewed in Section 4.

5.2. DNA Damaging/Fragmentation

As mentioned before, it has been shown that the integrity of the DNA as a molecule
does not represent high importance for agricultural applications. Therefore, here we pro-
pose using decaying sources of DNA, which is likely to already have a considerable level
of damage. This way, the process of fragmentation can be reduced or even eliminated from
protocol. Either way, in recent eDNA agriculture application experiments, the fragmen-
tation of eDNA has been achieved with ultrasound. It can be applied directly to cellular
samples or purified genomic material with very similar results. Salt concentration, expo-
sure time, power, and temperature can be manipulated to control the length and potentially
the form of fragment desired (single- or double-stranded) [107].

6. Perspectives

As we have shown before, nucleic acids have strong biological potential if applied as
treatment in agricultural systems (as DAMP or MAMP/PAMP), depending on the concen-
tration and origin (self or non-self), generating diverse reactions on plants [46,47,52,68].

As reported before [47,60], the plant immune system responds to the detection of
both self and non-self eDNA. Due to the effect on plant metabolism seems to be different
between eDNA sources, these results suggest a role of eDNA different from the suspected
DAMP or MAMP (PAMP) role as a biological plant biostimulant (considering a hormetic
effect), activating several metabolic pathways related to both defence and growth processes
depending on the dose and the opportunity of applications during plant phenology.

Here, we suggest that if eDNA from different sources is applied to plants in the right
concentration, it might induce several biological pathways related on one hand to defence
mechanisms (elicitation effect), and on the other hand with growth and development (bios-
timulant effect), a feature of some elicitors based on hormetic behaviour [108]. Precisely, all



Biology 2021, 10, 1022 14 of 20

these aspects should be studied in more detail to design adequate applications strategies
for eDNA in agriculture.

It would be highly interesting to experimentally evaluate the extraction and appli-
cation of eDNA from different sources and mixtures as a potential or elicitor based on a
hormetic study. As it has been said, vegetable waste in the horticultural industry can be
an important source of macronutrients [109], and its poor management can lead to some
environmental issues. The eDNA can be extracted from agricultural solid wastes making
agricultural production more sustainable and closer to a circular economy system.

Agriculture production is continuously increasing and generates great amounts of
waste annually; in fact, this has been a challenging problem worldwide [110]. World-
wide average production in 2018–2020 rounded 2413.4 Mtons only for maize, wheat, and
rice [111]. From this industry, waste has been estimated as 20% of the entire produc-
tion [112]. Some options for residue management are currently applied around the world,
it has been reported that vegetal residues are commonly used for animal feeding, fungi
cultivation, composting process, industrial uses, bioenergetics, etc. [113]. It has been esti-
mated that around 30–60% of organic waste is collected and reused in the European Union,
but other world areas are still wasting this material, as the United States and Canada reuse
32% and Latin American countries only 7% [114].

Nowadays, worldwide, the level of organic waste treatment and reuse represents a
great opportunity to develop productive technologies from this material. DNA can be
extracted from this kind of waste, especially from the agricultural waste of each production.
Additionally, vegetal waste material would present some level of decay and possibly the
nucleic acids inside are already fragmented in some way, possibly in fragment sizes enough
to satisfy the agricultural purposes as biostimulant/elicitor, lowering the management cost
even more. As shown before, the concentration of applied eDNA in crops represents one
of the most challenging variables to standardize in an agriculture treatment. This increases
the importance to determine the minimum hormetic concentration needed depending on
the application goal. Once several evaluations have covered a wider dose-effect spectrum,
researchers will be able to design different agricultural applications of eDNA concentra-
tions, assuring to stay in the eustress zone of hormetic curve obtaining a biostimulant
effect, as explained by Vargas-Hernandez et al. [27]. This potential application would also
increase the importance of a hazardous biological material-free and toxic chemical-free
DNA extraction; the best strategy would be extraction from organic waste that can be
then coupled with a composting process. The design of a controlled elicitation strategy
in crop production using eDNA must include the study of variables as concentration (for
self eDNA normally the literature reports low concentrations as 2 ppm), methodology of
application (i.e. drench or spraying), plant stage, number of applications during cultivation,
etc. Once we increase the knowledge of the aforementioned strategy for eDNA applications
in agriculture, we could be in a clearer position to apply an industrial scale model as a
perspective for the use of eDNA in agriculture depending on the plant species.

7. Conclusions

The evolution of agricultural practices has significantly increased crop yields by the ap-
plication of improved crops, mechanical ploughing, chemical fertilizers, and pesticides [16],
but recently, a negative face of traditional agricultural systems has been identified, this
related to a negative environmental, ecological and health impact. Later, organic agriculture
has emerged as a group of diverse green techniques with the great challenge of meeting
the needs of an everyday growing world population in a matter of quantity, yield, food
quality, nutritional benefit, efficient management of plant pests, and diseases and reducing
the environmental impact of technological change [6,10].

Recent studies have identified the use of elicitors or plant biostimulants as a sus-
tainable agriculture input that covers all the mentioned needs on some levels [115–120].
These inputs consist of the exposition of plant crops to certain doses of stress that had been
previously evaluated by the determination of hormetic curves [121,122].
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In the present review, we summarized evidence of the great potential that eDNA has
as an elicitor/biostimulant by multiple natural mechanisms. This has been noted before
without facing the technical challenges of practical development of this technology in
agricultural systems. Here we aimed to review the viable protocols for DNA extraction
and fragmentation based on the real needs of agricultural application, setting aside the
traditional lab DNA extraction that immediately comes to mind. Finally, we have identified
some steps of DNA extraction that can be lowered in intensity or even avoided to fulfil
the agricultural needs of eDNA application as we search for fragmented DNA instead of
looking for molecule integrity as commonly intended. We also suggested a more sustainable
application of eDNA extraction: obtaining the nucleic acids from agricultural residues and
applying self eDNA as a DAMP or mixed sources DNA as a general biostimulant/elicitor
(Figure 1). This would allow producers to diminish the costs of treatment and increase the
viability of the upscaling of this technology.
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