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Simple Summary: Intestinal health directly influences the profitability of animal production, and
so growth-promoting antibiotics have been used in the feed or drinking water to reduce the impact
of enteric diseases and improve production parameters. However, these have generated long-term
bacterial resistance. In the search for natural alternatives to antibiotics, various probiotic strains
have been developed to improve intestinal health and biological indicators in farm animals, which is
important to provide the consumer with safe food. This review describes the main probiotic bacteria
and yeasts, their in vitro properties and their impact on the antioxidant capacity and intestinal
environment of animals. Furthermore, this review outlines the role of probiotics in apparently healthy
ruminants, pigs and poultry, including animals with digestive diseases.

Abstract: Antibiotic growth-promoters in animal feeding are known to generate bacterial resistance
on commercial farms and have proven deleterious effects on human health. This review addresses
the effects of probiotics and their symbiotic relationship with the animal host as a viable alternative
for producing healthy meat, eggs, and milk at present and in the future. Probiotics can tolerate the
conditions of the gastrointestinal tract, such as the gastric acid, pH and bile salts, to exert beneficial
effects on the host. They (probiotics) may also have a beneficial effect on productivity, health and
wellbeing in different parameters of animal performance. Probiotics stimulate the native microbiota
(microbes that are present in their place of origin) and production of short-chain fatty acids, with
proven effects such as antimicrobial, hypocholesterolemic and immunomodulatory effects, resulting
in better intestinal health, nutrient absorption capacity and productive responses in ruminant and non-
ruminant animals. These beneficial effects of probiotics are specific to each microbial strain; therefore,
the isolation and identification of beneficial microorganisms, as well as in vitro and in vivo testing in
different categories of farm animals, will guarantee their efficacy, replicability and sustainability in
the current production systems.

Keywords: animal host; animal production; beneficial microorganism; gut health

1. Introduction

It is widely known that the microbiota of the gastrointestinal tract (GIT) is very diverse
and dense, made up of bacteria, archaea, viruses and protozoa. Bacteria are the dominant
group at GIT with at least 500 different bacterial species of the Bacteroidaceae family, among
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them Bacteroids spp., Bifidobacterium spp., Eubacterium spp., Clostridium spp. and Lactobacil-
lus spp. [1,2]. Specifically, these bacteria maintain a symbiotic relationship with the host
intestinal mucosa and coexist within GIT [3]. The composition and concentration of this
microbiota vary depending on the physiological characteristics of the different parts of the
GIT and can be affected by different allogeneic and autogenous factors. Therefore, the mi-
crobiota intercedes in the digestion and absorption of nutrients, in cellular homeostasis, as
a defensive barrier, with antioxidant, antimicrobial and immune properties and producing
enzymes, vitamins and other nutrients that are deficient in diets [4].

Likewise, several studies have recommended intervening in the intestinal microbiota
at an early age as a strategy to improve the productivity and animal health, especially
considering the current production systems on farms [5,6]. These production systems
(intensive) generate high risks of disease outbreaks due to pathogenic microorganisms,
which promotes the use of subtherapeutic antibiotics, supplied on farms with dual purposes:
to reduce mortality from enteric diseases and act as growth-promoters [7]. Antibiotics
inhibit proteins with a broad spectrum for Gram-positive bacteria, in turn interfering with
cell wall synthesis and peptidoglycan. On the other hand, ionospheres (type of soluble
antibiotic) alter the concentration gradients in the cell membrane of Na+, H+ and K+ ions.
However, the action of antibiotics on large Gram-positive bacteria is slower than for those
that are Gram-negative [8,9].

Past indiscriminate use of antibiotics brought about resistance to many bacterial strains,
a process that was enhanced by the ability of bacteria to transfer resistance, even between
different genera and species [10]. Subtherapeutic antibiotics, beyond controlling pathogenic
microorganisms, also affect many beneficial microorganisms, causing disturbances to the
balance of the gastrointestinal microbiota. Many of these antibiotics or their residues can
remain in animal tissues destined for human consumption [8]. Likewise, Iramiot et al. [11]
mentioned that there is a high probability of multidrug-resistance transmission between
humans and animals and that the carriage of multidrug-resistant bacteria between humans
is 93%, followed by 80% between cattle, which represents a public health problem around
the world.

Unquestionably, one of the alternatives to subtherapeutic antibiotics is probiotics; these
natural products have shown efficacy, repeatability and safety in animals [12]. Probiotics
are nutritional supplements made up of live microorganisms that colonize and modify the
GIT microbiota [13], and in adequate amounts [14], they confer a benefit for the health and
physiology of the host [15]. Many benefits of the use of probiotics have been described,
such as protection against physiological stress, modulation of the intestinal microbiota,
improvement of the epithelial barrier in the intestine and stimulation of the antioxidant
capacity and immune system [16,17]. However, as disadvantages of the application of
probiotics in animals, low repeatability of the benefits of some probiotic strains in different
individuals, animal species and productive categories has been found, and in addition,
some strains have a low tolerance to the temperature of feed manufacturing and chlorine
in drinking water. Beyond this, the benefits of some probiotics are mediated by the type
of substrate they receive in the gastrointestinal tract of the host. Hence, more conclusive
studies on the benefits of probiotics in animals are still needed [17].

There are a great variety of microorganisms with probiotic characteristics—mainly
these are lactic acid bacteria (LAB)—which actively participate in fermentation processes
and several metabolic activities [18]. Those most often used are Lactobacillus acidophilus,
L. casei, Pediococcus pentosaceus, L. helveticus, L. lactis, L. salivarius, L. plantarum, Enterococcus
faecium and E. faecalis [17,19].

Furthermore, Bacillus spp.—sporulated Gram-positive bacteria of the Firmicutes di-
vision that do not colonize the GIT—are frequently used in animal production as probi-
otics [20]. The strains most often used are B. subtilis, B. cereus, B. licheniformis, B. coagulans,
B. polyfermenticus, B. pumilus and B. clausii. These probiotics produce enzymes and vitamins
and have antioxidant and microbial properties [21]. Live yeasts of the genus Saccharomyces
have also shown probiotic activity in farm animals, modifying the intestinal microbiota,
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reducing the risk of dysbiosis and producing vitamins and enzymes [22,23]. Those most
often used are Saccharomyces boulardii and Saccharomyces cerevisiae [24].

The microbial succession process shows that microorganisms can almost completely
colonize the GIT weeks after birth [25–27]. Generally, microorganisms with probiotic
characteristics are isolated from the large intestine by invasive methods and from feces
by non-invasive methods in ruminants, poultry and pigs [28–30]. The FAO/WHO [15]
emphasizes the importance of the specificity of the action and not of the source of origin
of the strain. Some studies have recommended that to improve the efficacy of probiotics
we can isolate native strains by region and even the animal species in which the product
will be implemented, as well as use strain mixtures, genetic manipulations and synergistic
components such as prebiotics. This can ensure competitive exclusion in the GIT and
interaction between resident microorganisms [31,32].

However, Dowarah et al. [13] mentioned that not all strains of microbial species are
effective for use as probiotics, meaning success will depend on the in vitro results, which
predict their response in vivo in different experimental environments. The beneficial effects
of probiotics are known to be specific to each microbial strain; therefore, it is important
to identify probiotic strains and obtain reliable in vitro and in vivo results to extend the
remit of these natural products to animal production [33]. Thus, it is necessary to observe
the growth of probiotic candidate bacterial strains under changes in pH, salinity, NaCl,
temperature and bile salts, as well as assess their antagonism with pathogenic bacteria
and sensitivity to the use of antibiotics [34,35]. Likewise, in vitro results do not guarantee
the viability and efficacy of probiotics in vivo as the hostile environments of the GIT may
decrease the efficacy of probiotic strains. Therefore, it is necessary to carry out in vivo
studies with apparently healthy and disease-challenged animals and under different stress
conditions to evaluate whether beneficial microorganisms can colonize the gastrointestinal
tract and/or modify the intestinal microbiota, and in turn, influence the biological indicators
of animals [28].

The aim of compiling this review was to provide an updated summary of the probiotics’
role and their symbiotic relationship with the host animal, with emphasis on in vitro and
in vivo studies in ruminants, pigs and poultry.

2. Methodology
Search History

To conduct this review, which deals with probiotics and their response in animals of
zootechnical interest such as ruminants, pigs and poultry, an electronic search was carried
out in 2020–2021 of scientific articles from the last 10 years published in academic journals
indexed in ISI, Web of Science (WoS) and Scopus.

The strategy for the search for scientific information was divided into four topics
of interest: probiotics in in vitro studies; probiotics’ effect on the intestinal environment,
probiotics’ effect on the antioxidant capacity and probiotics’ effect on the productivity and
health of ruminants, pigs and poultry. The following eligibility criteria were considered:
design of the study, relevance, probiotic candidate, dose, culture medium and variables
determined in vitro and in vivo. Studies were excluded if they: were inconclusive, had low
repeatability, lacked a hypothesis or compliance with it, presented incomplete materials
and methods, gave little information on the strain used or lacked peer review.

Systematic searches were carried out of electronic databases of recognized academic
prestige as such PubMed (https://pubmed.ncbi.nlm.nih.gov/) (accessed on 10 Novem-
ber 2021), Google Scholar (https://scholar.google.com) (accessed on 15 November 2021),
ScienceDirect (https://www.sciencedirect.com/) (accessed on 17 November 2021) and
NCBI-PCM (https://www.ncbi.nlm.nih.gov/pmc/) (accessed on 20 November 2021). The
keywords used for the search were: antibiotic growth promoters, antimicrobial resistance
and alternatives to subtherapeutic antibiotics; in vitro effect of probiotics on the inhibition
of pathogenic bacteria, production of fatty acid chains, autoinduction (Quorum), bacteriocin
production, pH, adherence, agglutination, methane production and immunomodulatory

https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com
https://www.sciencedirect.com/
https://www.ncbi.nlm.nih.gov/pmc/
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activity, as well as the growth of probiotics in different conditions of pH, bile salts, tempera-
ture, NaCl and antagonism; the role of lactic acid bacteria and yeasts in antioxidant activity,
gut health, gut microbiota, immune response, productivity, meat quality, egg quality and
health in ruminants, pigs and poultry.

This review article has 195 references: 192 articles published in peer-reviewed scientific
journals, two chapters of scientific books from prestigious publishers and a reference from
an international organization. For the effect of probiotics in in vitro studies, 20 references
were used [30,36–54], which demonstrate the desirable probiotic characteristics of bacterial
isolates for survival in the gastrointestinal tract, the production of metabolites such as
bacteriocin and its antagonistic effect on pathogens. It is necessary to replicate the in vitro
and in vivo results, as well as to find the specific mode of action (biochemical reactions) of
each proposed probiotic candidate in the animal host. Likewise, 27 references [55–81] were
used that support the importance of the microbiota and its symbiotic relationship with the
host through physical and chemical processes. Likewise, to support this review of the role
of probiotics in reducing free radicals and oxidative stress, 13 bibliographical references
were used [63,82–93].

Likewise, the review covers how it is that some probiotic strains such as Lactobacillus
spp., Propionibacterium spp., Saccharomyces cerevisiae, Enterococcus spp., Bifidobacterium spp.
and Bacillus spp. have a direct influence on the characteristics of the microbiota, immune
response, growth performance and meat quality. The references used to support this review
of the biological function of probiotics in animals were: 27 references [94–121] that state the
role of probiotic strains in ruminal function and in the productive response of ruminants.
(Some studies are inconclusive even when using the same probiotic strains, especially
for mastitis control. Thus, it is essential to continue this line of research to clearly define
the doses of the probiotic and its effects on different production stages in ruminants.)
In addition, 30 bibliographic references [27,29,79,122–147] were used to describe the oral
administration of probiotics and their effect on growth performance, diarrheal syndrome
and the meat quality of pigs. It is important to point out that more studies are still needed
to corroborate the dose, optimal moment (before or after weaning) and the exposure time
of the administration of probiotics in pigs, as well as the influence of probiotics on the
organoleptic characteristics of pork. Our review of the effect of oral administration with
probiotics on competitive exclusion, stimulation of the immune system and improvement
of metabolic processes, such as the production of digestive enzymes and the absorption of
nutrients in poultry, was supported by 49 scientific articles [8,49,148–194]. Despite various
investigations of the use of probiotics in poultry, more research is necessary to establish
the viability of these microorganisms in drinking water and feed, as well as to elucidate
the biological benefits of a blend of strains or a single strain, considering the age, health
condition, production conditions, genetic line and productive purpose.

3. Effect of Probiotics on In Vitro Results

Bacteria with probiotic characteristics have demonstrated bactericidal properties by
producing antimicrobial substances such as organic acids, bacteriocin, lactoferrin and
hydrogen peroxide [36], which is why probiotics are used to inhibit pathogenic bacteria,
based on the results for in vitro methods [37]. Some probiotic bacteria (mainly LAB) can
ferment disaccharides such as lactose and sucrose. That favors short-chain fatty acids’
production, such as acetic, propionic, butyric and lactic acids, which in turn, via photon
emission, reduces the intestinal pH, thus promoting competitive exclusion and a significant
reduction in the proliferation of pathogenic bacteria that do not survive at a relatively low
pH [38,39].

We know that bacteria communicate intercellularly through chemical signals’ secre-
tion. The so-called autoinductors are exacerbated according to the cell density, and this
biochemical process called quorum affects bacterial cells and the host’s behavior. Quorum
has been defined as the communication between bacteria of the same species (intraspecies
communication), which reflects the ability of bacteria to monitor their population den-
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sity through chemical signals and regulate gene expression [40,41]. Such is the case for
probiotics, which can affect the proliferation of pathogenic bacteria through quorum sens-
ing and influence their pathogenicity [42]. The formation of biofilms by probiotic strains
in the GIT contributes to bacterial resistance and improves the exchange of nutrients
among the microbiota and host, also reducing the adherence of pathogenic bacteria in
the intestinal lumen [43]. In this sense, Kiymaci et al. [44] found that probiotic strains of
Pediococcus acidilactici M7 inhibited the connectivity of molecules for quorum detection,
as well as the virulence of the pathogenic strain Pseudomonas aeruginosa. Jiang et al. [45]
also demonstrated that Lactobacillus plantarum intervened in the bacterial communication
system (Quorum), perhaps due to the in vitro results of bile tolerance, antimicrobial effect
and bacterial colonization in the GIT.

Betancur et al. [30] reported that Lactobacillus plantarum CAM6 isolated from the
rectum of a Colombian Creole pig inhibits the in vitro growth of Enterobacteriaceae (Kleb-
siella pneumoniae ATCC BAA-1705D-5, Pseudomonas aeruginosa ATCC 15442, S. enterica
serovar Typhimurium 4.5.12, E. coli strain NBRC 102203) and is resistant to the presence of
growth-promoting antibiotics (ciprofloxacin, trimethoprim, tetracycline and doxycycline).
Furthermore, this probiotic strain grew more than 106 CFU/mL in response to an acidic or
alkaline pH and at different temperatures, concentrations of bile salt and NaCl. Moreover,
García et al. [46] reported that the Lactobacillus pentosus strain LB-31 demonstrated antago-
nistic activity and antimicrobial susceptibility, as well as tolerance to bile salts, pH changes
and hydrophobicity. Furthermore, Abdelbagi et al. [47] reported that probiotic strains
(encapsulated or not) in in vitro studies decreased methane production and increased the
total gas production in relation to the control treatment.

On the other hand, the mode of action for probiotic yeasts is different from that for
bacteria. Thus, in vitro tests must be performed such as those assessing the ability to adhere
and co-aggregate with pathogenic microorganisms, which simulates the possible expulsion
of pathogenic microorganisms from the GIT [48]. In this sense, Rodriguez et al. [49]
reported that an enzymatic hydrolysate from Saccharomyces cerevisiae decreased the in vitro
growth of E. coli, Staphylococcus spp., Salmonella spp. and Klebsiella spp. by producing
bacteriocins. Furthermore, this natural product induced the co-aggregation (adhesion of
bacteria to each other or different types, forming a biofilm on already established bacteria
and facilitating the adhesion of secondary colonizers) of these pathogenic bacteria to the
components of its cell wall [50]. It is important to note that live yeast increases the beneficial
population growth in the gut by stimulating the immune response [51]; however, studies
indicate that some freeze-dried (dead) yeasts decrease the size of their population in the
fermentation process. Unlike live yeasts, the mode of action of dead yeasts is based on
bioactive compounds (β-glucan, chitin and nucleic acids) secreted or isolated from their cell
wall with immunostimulatory properties, which contribute to the morphology of microvilli
and cell differentiation [51,52].

García et al. [53] isolated probiotic yeasts from broiler feces such as Kodamaea ohmeri,
Trichosporon asahii, Trichosporon spp., Pichia kudriavzevii and Wickerhamomyces anomalus.
These strains demonstrated resistance to low pHs and bile salt concentrations, and W.
anomalus had the highest agglutination and adherence capacity, meaning it reduced the
pH and demonstrated an ability to grow under stress conditions. In a similar study,
Fernandes et al. [52] isolated yeasts with probiotic potential such as Magnusiomyces capitatus,
Candida ethanolica, Candida paraugosa, Candida rugosa and Pichia kudriavzevii from ruminal
liquid and obtained positive results in reducing the pH, acid accumulation and neutral
detergent fiber digestibility, which was important for simulating the survival of these
microorganisms in the ruminal environment. Moreover, a new probiotic formulation
based on the yeast Debaryomyces hansenii showed strong immunomodulatory activity
in in vitro studies due to polyamines and wall-like component β-D-glucan [51]. This
modulates the composition of the microbiota and inhibits the proliferation of harmful
bacteria, which improves the phagocytic activity of macrophages and the antimicrobial
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activity of mononuclear cells and neutrophils [54]. The effects of probiotic yeast in in vitro
studies are summarized in Table 1.

Table 1. Effects of probiotic yeasts in in vitro studies.

Yeast Strain(s) Type Effect Reference

Saccharomyces cerevisiae Lyophilized Reduces the growth of E. coli, Staphylococcus spp.,
Salmonella spp. and Klebsiella spp. [49]

Kodamaea ohmeri,
Trichosporon asahii,
Trichosporon spp.
Pichia kudriavzevii and
Wickerhamomyces anomalus

Live yeast

Grows at low pHs and high concentrations of
bile salts [53]

High adherence and agglutination capacity, reduces
intestinal pH and grows under stress conditions

Magnusiomyces capitatus,
Candida ethanolica,
Candida paraugosa,
Candida rugosa and
Pichia kudriavzevii
Saccharomyces cerevisiae

Live yeast
Reduces intestinal pH and acid build-up and
increases the digestibility of neutral detergent fiber

[52]

Lyophilized
commercial yeast Rapidly reduces yeast population during the first

12 h of fermentation (growth test)
Debaryomyces hansenii Live yeast High immunomodulatory activity [51]

4. Effect of Probiotics on Intestinal Environment

The layer of cells that make up the epithelial tissue that covers the GIT represents
the greatest relationship between the interior and exterior of the host [55]. Additionally,
these cells contribute to the symbiotic relationship between host and microbiota through
immunological secretions, bacterial antigens and both physical and chemical mucosal
barriers [56]. The balance of the intestinal environment is rapidly altered due to stress,
medicaments, infections and diet changes, among others [57].

The GI tissue maintains several defense pathways, one of which is via the binding
proteins, made up of many proteins found in the permeable and selective barrier of the
cell membrane. Liu et al. [58] found that a higher genetic expression of zonula-occludens-1
and occludin favored the absorption capacity and reduced diarrheal syndrome in pigs.
We know the relationship between the intestinal barrier and the binding proteins: a de-
crease in the expression of these proteins causes an uncontrolled entry of macromolecules,
undesirable nutrients and microorganisms in the intestinal lumen, which reduces the ab-
sorption of nutrients and the animal response [59]. Thus, probiotics and their metabolites
can regulate the expression of binding proteins and improve the selective capacity of the
intestinal barrier, along with the intestinal health of the host, by inhibiting the effect of
lipopolysaccharides that induce an inflammatory response of cytokines, thus preventing
the destruction of zonula-occludens [60,61]. In this sense, Liu et al. [61] demonstrated
that a probiotic strain Enterococcus faecium HDRsEf1 increased the genetic expression of
binding proteins (especially zonula-occludens-1) by inhibiting the pro-inflammatory re-
sponse mediated by decreased TNF-α production. Moreover, strains of Bacillus spp. (subtilis
and pumilus) on broiler diets raised under stressful conditions increased the expression of
occludin, zonula-occludens-1 and junctional molecule binding [62]. Furthermore, Izuddin
et al. [63] reported that oral administration of probiotics in lambs increased binding pro-
teins such as occludin, claudin-1 and CLDN4, which favor the functioning of the ruminal
barrier. Likewise, studies have shown that probiotics can stimulate the immune system
of the host mucosa through interaction between receptor recognition patterns signaling
from GIT cells and molecular patterns associated with microbes from probiotic strains [64].
According to Yousefi et al. [65], some probiotic strains have immune activity because they
can modulate cytokine production and increase mucin secretion, phagocytosis, natural
killer T cells’ activity and IgA production.
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The morphology of the villi and crypts is also directly related to the intestinal function
and morpho-physiology of animals [66]. A diet based on probiotics possibly improves the
development of the intestinal epithelial tissue, however, the cilia height in the intestine can
change in size depending on the species of microorganism that interact [67]. Probiotics can
increase the villi height (VH) and the crypt depth (CD), and in turn, improve the productive
efficiency and absorption capacity of nutrients and reduce the metabolic requirements [68].
Several studies with probiotic strains such as L. acidophilus [69], L. plantarum 22F and
25F [70] and Pediococcus acidilactici FT28 [71] related the non-antibiotic growth-promoting
effect of these nutraceutical products to the increase in villi height, crypt depth and the
ratio of VH to CD in the small intestine of animals.

The use of probiotics can provide cellular defense mechanisms by inducing anti-
inflammatory cytokines [72]. Furthermore, lipoteichoic acid, as a component of the cell
wall associated with the surface of Gram-positive bacteria such as bifidobacteria and lac-
tobacilli, stimulates NO synthetase and pathogen-infected cell-death mechanisms [73].
Some Lactobacillus strains can incorporate cytokines to act as immunological modulators by
enhancing the activity of macrophages, antibodies and apoptotic cell activation [74]. Like-
wise, Galdeano et al. [75] found that Lactobacillus sakei and Lactobacillus johnsonii changed
the expression of IL-1β, IL-8 and TNF-α and TGF-β, respectively, which stimulated the
production of IgA, IgM and IgG.

The antidiarrheal effect of some probiotic strains has justified their commercial use
in mammals [76]. Diarrhea is known to be caused mainly by Enterobacteriaceae such as
Salmonella spp. and Escherichia coli [77] and exacerbated by stressful situations. A study by
Lee et al. [78] found that probiotic strains of L. plantarum decreased the diarrhea degree in
piglets challenged with enterotoxigenic Escherichia coli (ETEC) due to competitive exclusion
in the GIT. Betancur et al. [79] also reported that oral administration of probiotic strains
reduced the incidence of semi-liquid, liquid and pasty feces in piglets, mainly due to a
higher production of volatile fatty acids and a decrease in intestinal pH.

Furthermore, other studies showed that the use of multispecies probiotics (Pediococcus
acidilactici, Enterococcus faecium, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium
bifidum) decreased the incidence and duration of metabolic diarrhea in young calves, which
has direct implications on gut health. However, these feed products did not affect the
performance of the animals [80]. Likewise, Wu et al. [81] confirmed that a mixture of
multispecies probiotics, at a ratio of 2 g/day/animal during the first four months of life,
decreased the relative abundance of Bacteroidetes and increased the relative abundance
mainly of Bifidobacterium and Lactobacillus, which reduced the diarrhea incidence and
promoted the weight gain of calves.

5. Effect of Probiotics on Antioxidant Capacity

In the modern agricultural system, which is intensive, animals are frequently exposed
to oxidative stress. It is known that the imbalance between oxidants and antioxidants due
to the overproduction of reactive oxygen species (ROS) and nitrogen (RNS) provokes oxida-
tive stress [82,83]. The physiological concentration of ROS is essential to maintain normal
cellular functions [84]. An uncontrolled increase can cause cellular damage [85], but physi-
ologically, the negative effects can generally be neutralized by endogenous antioxidants
such as superoxide dismutase, catalase, ascorbic acid and heat-shock proteins [86]. Added
to this, Izuddin et al. [63] demonstrated in an in vivo study that some probiotic strains
could reduce the excessive concentration of reactive radicals, which contributes to reducing
the risks of various diseases associated with lipid peroxidation and oxidative stress.

Thus, one of the strategies to reduce ROS activity and oxidative stress is oral ad-
ministration with lactobacilli that convert superoxide radicals into oxygen and hydrogen
peroxide [87,88]. Moreover, many of the LAB species produce catalase that scavenges
hydrogen peroxide, which blocks the formation of peroxyl radicals [89]. Likewise, other
bacterial strains (mainly lactobacilli) decrease reactive oxygen intermediates through the
production of glutathione and thioredoxin, considered endogenous antioxidants [90]. Sosa-
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Coccio et al. [34] found that Lactobacillus pentosus LB-31 had an antioxidant response in vivo
by increasing the serum glutathione concentration by 23.85% in broilers.

In this way, Dowarah et al. [91], using Pediococcus acidilactici FT28 and Lactobacillus
acidophilus NCDC15 as probiotic candidates, found increased serum concentrations of
catalase, superoxide dismutase and glutathione peroxidase in weaned pigs. Likewise,
Xiang et al. [92], when testing several probiotic strains such as Clostridium butyricum and
Saccharomyces boulardii, plus Pediococcus acidilactici in laying hens, reported a decrease in the
concentration of malondialdehyde in the serum and reactive oxygen species (ROS) in the
ileum and cecum with the first bacterial strain (C. butyricum). Furthermore, Yang et al. [88]
demonstrated that the genus Lactobacillus as Bifidobacterium longum and L. fermentum can
produce antioxidant compounds in vitro and in vivo, which could counteract oxidative
stress in the host. Moreover, Hou et al. [87] showed that L. reuteri strains cause posi-
tive changes to the concentration of superoxide dismutase and glutathione peroxidase,
which was the scientific justification for their growth-promoting effect in pigs. Likewise,
Amaretti et al. [93] reported that probiotic strains such as Lactobacillus brevis DSMZ 23034,
Lactobacillus acidophilus DSMZ 23033 and Bifidobacterium animalis subsp. lactis DSMZ 23032
have high antioxidant potential in an animal model challenged with doxorubicin. The au-
thors concluded that the colonization of probiotic bacteria promoted intestinal saccharolytic
metabolism and increased the concentration of endogenous antioxidant enzymes.

6. Effect of Probiotics on In Vivo Studies
6.1. Ruminants

Ruminants consume a great variety of substrates in their diet, which are not digestible
by other mammals and poultry. The complex fermentation process mediated by the
ruminal microbiota (108 to 1011 CFU/mL of ruminal content) produces energy, proteins and
vitamins (water-soluble vitamins and vitamin K) of microbial origin, which are essential
for milk production and/or weight gain [94]. A method to manipulate the microbiota of
the rumen during its growth period is to directly provide activators and/or probiotics,
to establish a balance in the microbiota, which is more efficient during growth than in
adults [95]. LAB and yeasts (S. cerevisiae) are used as ruminal activators/probiotics for their
ability to affect the dynamics of the microbiota in the rumen and the way in which nutrients
are decomposed [96,97]. In this sense, Jinturkar et al. [98] confirmed that individual
or combined supplementation with Saccharomyces cerevisiae and Lactobacillus acidophilus
improved the growth performance of growing goats.

Also, Abd El-Trwab et al. [99] demonstrated how probiotics can improve the ru-
minal function due to the proliferation of ruminal microorganisms, which provokes
a tolerable reduction in ruminal pH and a higher concentration of volatile fatty acids.
Maldonado et al. [100] also summarized how the manipulation of the interaction between
the intestinal microbiota and the host (ruminants) results in improvements to the ruminal
activity, nutrient digestibility and animal response. Likewise, LABs and yeasts are used
to increase the population of cellulolytic bacteria (capable of producing cellulase) in the
rumen [101–103], which significantly affects the degradation of cellulose, thus improving
microbial fermentation, and therefore, protein synthesis [104].

In this sense, the use of Lactobacillus casei and Lactobacillus plantarum P-8 improves milk
production and the concentration of lysozyme, lactoperoxidase and lactoferrin, with a no-
table decrease in somatic cells, although without changes to the chemical composition of the
milk and without modifying the bacterial diversity of the rumen [105]. Additionally, studies
by Stein et al. [106] and Stella et al. [107] demonstrated how including Propionibacterium
spp. and Saccharomyces cerevisiae in dairy cows and dairy goats improved the feed conver-
sion rate, milk production and dry matter intake, respectively. Cruywagen et al. [108] also
recommended using 1 mL (5 × 107 CFU) with Lactobacillus acidophilus as a milk substitute
since it does not reduce the body weight, dry matter intake or productive efficiency of
Holstein-Friesian calves at two weeks old. Furthermore, Apás et al. [109] reported that
a compound of several probiotic strains such as Lactobacillus reuteri DDL 19, Lactobacillus
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alimentarius DDL 48, Enterococcus faecium DDE 39 and Bifidobacterium bifidum modified
the microbial environment, and in turn, the acid profile of goat milk, with an increase in
unsaturated fatty acids, mainly linoleic, linolenic and conjugated linoleic, in addition to a
decrease in the atherogenic index. Further to this, Ma et al. [110], using Enterococcus faecalis,
Bacillus subtilis and Saccharomyces cerevisiae as probiotics, found positive responses in terms
of the feed intake, milk production and intestinal microbiota (mainly Succinivibrionaceae) of
Saanen dairy goats.

Ruminal activators/probiotics are effective at improving the health of ruminants [99].
In this sense, probiotic strains used as therapeutics can reduce or almost eliminate the
proliferation of E. coli 0111: NM8 and E. coli 0157: H7 in the GIT of weaned calves, which
reduces the incidence of enterohemorrhagic E. coli [111]. Likewise, Stanford et al. [112]
reported that a microbial activator with Lactobacillus casei, Lactobacillus lactis and Paenibacillus
polymyxa decreased the spread, frequency and prevalence of Escherichia coli O157: H7 in
the stool of cattle. The authors recommended using these beneficial microorganisms up
to two weeks before slaughter to reduce the risk of carcass contamination. Dysbiosis of
the commensal intramammary microbiota and the pathogenic bacteria that cause mastitis
also influence the presence of breast inflammation [113]. Though poorly documented,
it appears that lactic acid bacteria that produce bacteriocin or have the ability to adhere
to cells can change the microbiota of the teat apex and/or decrease the proliferation of
pathogenic bacteria present in it, and in turn, prevent or a gradually treat mastitis, leading
some authors to suggest the direct use of bacteriocin in the teat apex as a treatment for
mastitis [114,115]. In this sense, isolates of the genera Lactobacillus and Lactococcus have been
evaluated based on topical application at the teat apex, showing the inhibitory activities of
S. aureus, S. uberis and E. coli by colonizing the epithelium and competing with pathogenic
bacteria [115].

Other studies did not recommend the use of probiotics as they found that beneficial
bacterial strains induced inflammation of the mammary glands, with a high concentration
of neutrophils in the milk. It seems the effects of probiotics on mastitis depend on the
degree of mastitis, number of somatic cells, degree of inflammation in mammary glands
and type of bacterial strain.

To meet the high nutritional needs of cows during lactation, diets are often low in
physically effective dietary fiber and rich in concentrates, leading to rumen acidosis [116].
Due to the changes produced by probiotics in the ruminal microbiota, these have been used
as natural alternatives to prevent or treat predisposing causes of acidosis [117]. In this spirit,
Lettat et al. [118] administered Propionibacterium P63, L. plantarum and L. rhamnosus strains
through an intraruminal cannula at a rate of 1 × 1011 CFU/animal/day, and managed
to stabilize the pH of the rumen and prevent acidosis in sheep. Han et al. [117] also
found that oral administration of three probiotic yeasts increased the variety of ruminal
microflora and decreased metabolic acidosis and inflammation in sheep. Likewise, oral
induction with a multi-strain probiotic reduced the ruminal pH and concentration of lactic
acid in the ruminal fluid, thus preventing acidosis [119]. Furthermore, Han et al. [117]
found that supplementation with yeast S. cerevisiae stabilized the ruminal pH and acid-base
balance, which increased the diversity of ruminal microflora, with a decrease in intestinal
inflammation and acidosis in sheep. However, other studies with S. cerevisiae cultures
did not find a positive response in ruminal fermentation, nor the possibility of preventing
ruminal acidosis [120]. Some studies suggest that the administration of probiotics helps
the ruminal microbiota to adapt to the presence of lactic acid, in addition to increasing the
population of lactic acid bacteria, which is related to a better capacity for carbohydrate
fermentation and absorption of volatile fatty acids, resulting in an increase in ruminal
pH [121].

It seems the positive effects of probiotics on ruminal acidosis depend on the strain and
concentration of the probiotic, along with the age, diet, acid-base balance, health status and
production technology. The benefits of probiotics in ruminants are summarized in Table 2.
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Table 2. Effects of probiotics on ruminant production.

Strain(s) Cell Count Mode of Adminis-
tration/Dose Host/Duration Effect Reference

Lactobacillus
acidophillus and
Saccharomyces

cerevisiae

Individually (2 g)
and combination

of both in the feed
(1 g of each)

Goats (35 days) Increases the average daily
weight gain [98]

Lactobacillus casei
and Lactobacillus

plantarum
1.3 × 109 CFU/g

Combination of
both in the feed

(50 g/day)

Dairy cows
(30 days)

Increases the milk
production and the contents
of milk immunoglobulin G,
lactoferrin, lysozyme and
lactoperoxidase

[105]

Propionibacterium
spp. and

Saccharomyces
cerevisiae

6 × 1011 CFU/cow
Orally, mixed in

feed

Dairy cows
(25th week of

lactation)

Improves the feed
conversion rate, milk
production and dry matter
intake

[106]

Saccharomyces
cerevisiae 4 × 109 CFU/day

Orally, mixed in
feed (0.2 g/day)

Dairy goats
(15th week)

Improves the feed
conversion rate, milk
production and dry matter
intake

[107]

Lactobacillus
acidophilus

5 × 107 CFU/mL
at each of

two feeds/day

Orally, mixed
in feed

Holstein-
Friesian calves

Regulates body weight
under milk-replacer
conditions

[108]

Lactobacillus reuteri,
Lactobacillus
alimentarius,
Enterococcus
faecium and

Bifidobacterium
bifidum

109 CFU/mL
resuspended

in milk

Orally,
resuspended in

milk
(1 mL/two feeds

per day)

Goats (42 days)

Improves the microbial
environment and intestinal
health, as well as the acid
profile of milk, with an
increase in unsaturated fatty
acids, mainly linoleic,
linolenic and conjugated
linoleic acids, and decrease
in the atherogenic index

[109]

Saccharomyces
cerevisiae, Bacillus

subtilis and
Enterococcus faecalis

5 × 1011 CFU/day
Orally, mixed in
feed (5 g/day)

Saanen dairy goats
(56 days)

Increases the feed intake
and milk production and
improves the intestinal
microbiota

[110]

E. coli 1010 CFU/calf

Peroral
administration (in

200 mL of 10%
skim milk)

Weaned calves
(32 days)

Reduces the incidence of
enterohemorrhagic E. coli [111]

Lactobacillus casei,
Lactobacillus lactis
and Paenibacillus

polymyxa

1.2 × 108 CFU
(direct-fed
microbial)

Oral

Cattle (84-day
fall–winter

growing and
140-day

spring–summer
finishing)

Decreases the spread,
frequency and prevalence of
Escherichia coli O157: H7 in
the stool of cattle

[112]

Saccharomyces
cerevisiae and two

strains of
rumen-derived
Diutina rugosa

1 × 1010 CFU/mL
Oral

administration
(100 mL)

Sheep (30 days)

Stabilizes the ruminal pH,
improves the richness of
rumen microflora, relieves
acidosis and inflammation
and prevents subacute
ruminal acidosis

[117]

Propionibacterium
P63, Lactobacillus

plantarum and
Lactobacillus
rhamnosus

1 × 1011

CFU/animal/day
Intraruminal

cannula (2 g/day)

Sheep (21 days of
adaptation and

3 days of
challenge)

Stabilizes the pH of the
rumen and prevents
acidosis

[118]
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Table 2. Cont.

Strain(s) Cell Count Mode of Adminis-
tration/Dose Host/Duration Effect Reference

Lactobacillus
plantarum strain

220
Enterococcus

faecium strain 26
and Clostridium
butyricum strain

Miyari

9 × 106 CFU/g
9 × 105 CFU/g
9 × 104 CFU/g

Oral
administration

Holstein cattle
(14 days of
challenge)

Reduces the ruminal pH
and the concentration of
lactic acid in the ruminal
fluid, thus
preventing acidosis

[119]

6.2. Pigs

We know that microbial succession occurs via the colonization of the sterile intestine
with microorganisms of vertical and horizontal origin in the weeks after birth [27]. Due
to the intensive production model, weaning in piglets can be a critical period due to
changes in the diet, separation from the mother and the environment [122]. This process
is associated with the development of infections; pathogenic microorganisms can induce
microbial dysbiosis by entering and colonizing the GIT, causing the formation of severe
ulcers, constipation, intestinal inflammation and diarrhea, which causes poor absorption of
nutrients, poor feed conversion and high mortality [123].

Pig feeding represents approximately two-thirds of total production. Therefore, in-
creasing the feed efficiency is vital for production profitability [124]. Since it is necessary to
reduce high costs in production, managing the intestinal microbiota is a potential strategy
to avoid health problems, reduce diarrhea and increase the yield, especially in modern
production systems [125]. Hence, in pig production, supplemented antibiotics in feed and
drinking water have been used to modulate the intestinal microbiota in different stress
situations. However, these provoke a residual effect in animals, trigger antibiotic resistance
in bacteria and provoke the risk of disease in humans [126]. As an alternative to subthera-
peutic antibiotics, probiotics are one of the most viable alternatives in pigs [127,128]. Thus,
probiotics are used in all stages of pig production (with an emphasis on young pigs) such
as reproduction, transition and fattening [129].

Some types of probiotics produce dietary enzymes such as lipase, amylase, protease,
cellulase and phytase, which are important for the absorption of nutrients, including
some that are not digestible by non-ruminant animals; in addition, they promote growth
performance, nutritional efficiency, intestinal health, capacity antioxidant and the immune
system in pigs [130–132]. Further to this, probiotics added to the diet produce beneficial
fermentation that provokes an increase in the concentrations of SCFAs and lactic acid in
the GIT, which lowers the intestinal pH and hinders the growth of opportunistic enteric
pathogens that need a slightly acidic or alkaline medium to grow and multiply [133].

A study in pigs showed that a single oral dose at 5 × 1010 CFU/mL or 5 × 109 CFU/mL
in suckling piglets or at weaning with L. plantarum (DSMV 8862) or L. plantarum (DSMZ
8866), respectively, changed the microbial population with competitive exclusion in the
small and large intestines, which improved the productive response [134]. It seems the oral
administration of probiotics in piglets weaning for between 25 and 28 days could reduce
post-weaning stress, which is provoked by the sudden change from a liquid diet to a solid
diet and the increase in the population of pathogenic bacteria opportunists (Enterobacte-
riaceae) [133,134]. Furthermore, Betancur et al. [135] found that oral administration with
L. plantarum CAM6 (5 × 106), compared to a dietary antibiotic, promoted a better body
weight and feed efficiency, and also increased the serum IgA concentration, although no
significant changes were noted in the hemogram of the weaned piglets.

Microbial genera such as Lactobacillus, Bacillus and Streptococcus benefit the colostrum
quality, milk quality and milk yield [136]. In addition, probiotic action directly influences
the number of weaned piglets and the live weight at weaning, as well as decreasing diar-
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rhea in the lactation process [137]. Alexopoulos et al. [138] showed that Bacillus licheniformis
and Bacillus subtilis spores improved the composition and quality of milk in weaning sows.
In turn, the use of 1010 CFU of Lactobacillus fermentum LFQI6 supplied from day 80 of gesta-
tion decreased the weight loss of the breeders and the mortality of the piglets, as well as
significantly improving the body weight of the litter [139]. Furthermore, Betancur et al. [79]
demonstrated how oral inclusion of Lactobacillus plantarum CAM6 in sows improved the
lactose concentration in milk and decreased diarrhea and piglet mortality, which promoted
a better body weight and increased the Na+, D-β-hydroxybutyrate, leukocytes and lym-
phocytes in the blood. In addition, Ayala et al. [140], in a study with Bacillus subtilis and its
endospores, found an increase in milk production and plasma proteins, as well as lower
weight loss after lactation, in breeding Yorkshire-Landrace × L35 sows.

Swine production systems are intended to favor the carcass yield with fast-growing
pigs by emphasizing aspects that indicate the state of health and metabolism of the ani-
mal [141]. Yet, modern pig production systems are frequently exposed to oxidative stress
and damage that can affect the meat quality [29]. Fattening pigs maintain a higher immunity
than piglets, which is why they resist problems related to intestinal pathologies. Even so,
we know that using probiotics can enhance the growth and improve the performance and
meat quality [142]. Tufarelli et al. [143] reported that the oral inclusion (100 mg/kg of body
weight) of a probiotic blend (Streptococcus thermophilus DSM 32245, mixture of two strains
Bifidobacterium animalis ssp. lactis DSM 32246 and DSM 32247, Lactobacillus acidophilus DSM
32241, Lactobacillus helveticus DSM 32242, Lactobacillus paracasei DSM 32243, Lactobacillus
plantarum DSM 32244 and Lactobacillus brevis DSM 27961) in fattening pigs increased the
concentrations of polyunsaturated fatty acids (ΣPUFA) and protein in pig meat, perhaps
due to better gut health, digestibility and nutrient translocation, while other meat indica-
tors did not change for the experimental groups. A probiotic strain based on Pediococcus
acidilactici FT28 directly influenced the meat quality by improving the 2-thiobarbituric acid
reactive substances, water retention capacity and pH of pork [91].

Likewise, Meng et al. [144] found that probiotic groups led to higher meat colorimetry,
mainly in terms of the redness values and marbling scores. Černauskienė et al. [145] also
demonstrated how consuming probiotics (Enterococcus faecium) improved the meat quality
and organoleptic properties such as the colorimetry, fat infiltration and the firmness of
the meat. Likewise, Suo et al. [146], using L. plantarum (1 × 109 CFU/day), a probiotic
isolated from the feces of weaned piglets, found an improvement in the meat pH and in
various indices of meat texture such as chewiness, restoring force, hardness, stickiness and
gumminess. The authors justified these results as stemming from competitive exclusion
due to colonization of the probiotic strain and an increase in the villi height, which favor the
absorption of nutrients. Furthermore, Chang et al. [147] revealed how oral administration
of Lactobacillus plantarum (2.2 × 108 CFU/mL) in the Longissimus dorsi muscle increased the
concentrations of ascorbic acid, thiamine, amino acids such as serine, lysine, histidine and
arginine, monounsaturated and polyunsaturated fatty acids, linolenic acid, linoleic acid
and muscle yellowness (b*). Likewise, the probiotic group reduced the redness (a*), shear
force, ashes and pH of pork meat. Currently, certain strains of probiotics are marketed
with a focus on how they improve the intestinal physiology, immune system, intestinal
health, productivity and swine reproduction. Table 3 indicates the functional properties of
probiotics in pig production.
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Table 3. Effects of probiotics on swine production.

Strain(s) Cell Count Mode of Adminis-
tration/Dose Host/Duration Effect Reference

Lactobacillus
plantarum 5 × 1011 CFU/kg Mixed with the feed Weaned piglets

(28 days)

Improves feed efficiency
and decreases rate of
diarrhea. Increases
serum concentrations of
lysine, arginine, serine,
glutamate, glycine and
alanine, and decreases
tyrosine concentration

[127]

Lactobacillus
plantarum (DSMV

8862) and L.
plantarum (DSMZ

8866)

Single dose at
weaning or
suckling of

5 × 109 CFU/mL
or

5 × 1010 CFU/mL

Oral administration
Piglets (25 and

28 days,
respectively)

Improves body weight
and feed conversion
ratio

[134]

Lactobacillus
plantarum CAM6 5 × 106 CFU/mL

Oral administration
(5 mL)

Weaned piglets
(28 days, from 21st

to 49th day
post-weaning)

Promotes body weight
and feed efficiency and
increases serum IgA
concentration

[135]

Bacillus
licheniformis and
Bacillus subtilis

spores

1.28 × 106 viable
spore/g

Mixed with the feed
(400 mg/kg of feed)

Weaned piglets
(14 days prior to

farrowing)

Improves composition
and quality of milk in
weaning sows

[138]

Lactobacillus
fermentum LFQI6 1010 CFU/animal Oral administration Sows

Decreases weight loss of
breeders and mortality
of piglets and improves
body weight of the litter

[139]

Lactobacillus
plantarum CAM6 109 CFU/mL

Oral administration
(10 mL) Sows

Improves lactose
concentration in milk
and decreases diarrheal
syndrome and piglet
mortality

[79]

Bacillus subtilis and
its endospores 108 CFU/g Mixed with the feed Sows (28 days)

Increases production of
milk and plasma
proteins and decreases
weight loss after
lactation

[140]

Probiotic blend Oral administration
(100 mg/kg)

Fattening pigs
(12 weeks)

Improves concentration
of protein and essential
fatty acids in pork,
without changes to other
meat indicators

[143]

Pediococcus
acidilactici FT28 2 × 109 CFU/g

Oral administration
(200 g/day)

Fattening pigs
(28 days)

Improves meat quality
with changes to
2-thiobarbituric acid
reactive substances,
water holding capacity
and pH of pork

[91]

Bacillus subtilis
endospore and

Clostridium
butyricum
endospore
complex

(B. subtilis) 1010

viable spores/g
(C. butyricum)

1.0 × 109 viable
spores/g

Mixed with the feed Growing/finishing
pigs (10 weeks)

Increases feed efficiency
and meat pigmentation,
mainly in redness values
and marbling scores

[144]

Enterococcus
faecium

0.3 × 109 CFU/kg
feed

Mixed with the feed Fattening pigs

Improves meat quality
and organoleptic
properties such as
colorimetry, fat
infiltration and meat
firmness

[145]
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Table 3. Cont.

Strain(s) Cell Count Mode of Adminis-
tration/Dose Host/Duration Effect Reference

Lactobacillus
plantarum 1 × 109 CFU/day Oral administration Weaned pigs

(60 days)

Improves meat pH and
various indices of meat
texture such as
chewiness, restoring
force, hardness,
stickiness and
gumminess

[146]

Lactobacillus
plantarum 2.2 × 108 CFU/mL

Mixed with the feed
(20 mg/kg)

Fattening pigs
(42 days)

Change pH, fatty acid
and amino acid profile,
along with ash, shear
force and palatability of
the pork

[147]

6.3. Poultry

The GIT of poultry has specific characteristics, such as crop, proventriculus, gizzards,
two cecum and cloaca (reproductive, excretory and productive functions). Moreover,
the gastrointestinal transit is shorter than that of mammals and is highly colonized by
microorganisms that interact directly with the host [148,149]. Fermentation takes place
in the ceca of poultry [150] because a complex microbiome is housed in this part of the
GIT, which is densely populated with beneficial bacteria [151]. Hence, manipulating the
microbiota by orally administering nutrients/supplements directly affects the intestinal
morphology, nutrient digestibility and metabolic processes [152]. In the case of poultry, their
GIT is not sterile; it is immature and must undergo important changes to its morphology
and biochemistry, the most important being in the first 24 h of life [153]. This is since at the
time of birth, the microbiota colonize it via various routes such as: transfer from the mother
through the oviduct and through the pores in the eggshell [154]. Chickens are capable of
inoculating microorganisms such as Lactobacillus, Clostridium and Propionibacterium prior to
shell formation [155].

Poultry in intensive production, unlike birds in alternative production systems, do
not have a sufficiently colonized intestinal tract [156]. Therefore, inoculation of the mi-
crobiota occurs after hatching and when exposed to the environment by going through
incubation, transport, handling and vaccination processes, where pathogens can be har-
bored [157]. While wild animals have extensive production systems, their GIT is colonized
by microorganisms from the environment, generating a beneficial symbiotic process [158].
The possibility of obtaining native microorganisms in intensive production systems is very
low due to the high incidence of Enterobacteriaceae such as E. coli and Salmonella spp.
These harmful microorganisms provoke infections and inflammatory responses, with sig-
nificant economic losses [153,158]. A significant change occurs when poultry are exposed
to a different environment in terms of the farm and diet, whereby the initial composition
of the microbiota is mainly Lactobacillus. In the second week, the GIT matures, with a
greater number of microorganisms in the intestine and cecum, due to the pH, anaerobiosis
and bacterial metabolites such as short-chain fatty acids. Finally, at 21 days, there is an
exponential growth of Lactobacillus spp. in the digestive tract, above 1010 CFU/g [159].

Growth-promoting antibiotics can reduce the intestinal microbiota by inhibiting the
production of catabolic mediators that are activated by metabolic stress processes, which
induce intestinal inflammation. On the contrary, the use of probiotics increases the beneficial
microbiota by improving the intestinal barrier, which in turn, stimulates the immune
system and competitive exclusion, thus improving the performance by absorbing nutrients
properly [160,161]. Many studies have tested probiotics in broilers, laying hens, pullets and
breeders, focused on improving the intestinal health, nutrient digestibility and productivity
response and preventing bacterial infection in stressful situations. Probiotics have also
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been used to a lesser extent as a clinical treatment [162]. In this sense, Jin et al. [163],
using Lactobacillus acidophilus and a mixture of 12 Lactobacillus spp., found improvements
in the body weight and feed conversion ratio versus the control group. Yet, despite the
improvement in yield, it is estimated that the use of multiple strains potentially increases
the production costs beyond those lost due to mortality [8].

Furthermore, Afsharmanesh et al. [164] found that the use of 1 g/kg of a probiotic
(8 × 105 CFU of Bacillus subtilis/g) in broilers increased the height of the villi in the duode-
num (1.40 vs. 1.51 mm), without changes to the morphometry of the jejunum and ileum.
These results demonstrate that nutrient absorption and transport can be more efficient
when probiotics are supplied, mediated by increased enzyme activity and a reduction of
toxic chemicals [164,165]. Trials were carried out by adding probiotics to the diet (with
B. subtilis, L. salivarius, P. parvulus [166] and E. faecium [167,168]), as a result, an increase in
the villi height and proportion of villi/crypt depth in the ileum was observed in broilers,
which resulted in a higher absorption capacity of the intestinal lumen, and in turn, a better
productive performance of the host [169].

Birds are known to have the ability to mix urine with feces because the cloaca has
three folds: the coprodeum, urodeum and proctodeum [170]. Denbow [171] demonstrated
that probiotic strains can contribute to nitrogen metabolism by stimulating retrograde
peristalsis in the host’s rectum. GIT bacteria can also represent an important source of
non-essential amino acids. These beneficial microorganisms use biochemical reactions to
produce amino acids from non-specific nitrogen stimulated by energy from endogenous
fermentable carbohydrates [172]. According to Vispo and Karasov [173], Lactobacillus casei
can convert uric acid into ammonia, which can be used by the host to synthesize some
amino acids such as glutamine. Furthermore, it was reported that microbial diversity due
to oral administration of Bacillus spp. influenced several metabolic pathways such as B6
metabolism, retinol metabolism and phosphonate metabolism [174].

Likewise, the colonization of certain bacteria such as Bifidobacterium and Lactobacillus
in the GIT could increase the activity of the digestive enzyme; however, the proliferation
of Escherichia coli can affect the secretion of these enzymes and damage the villi of the
mucosa [175]. Manipulation of the gut microbiome by oral administration of probiotics
may influence the antibody-mediated immune response. In this sense, probiotics contain-
ing Streptococcus faecalis, Bifidobacterium bifidum and L. acidophilus improved the systemic
antibody response to red blood cells [176]. In addition, Khochamit et al. [177] reported
that a mixture of probiotics with lactic acid bacteria increases the immune response due to
increased genetic expression of IL-1β, IL-2 and IFNγ.

Some strains such as Lactobacillus salivarius NRRL B-30514 isolated from chicken ceca
have been used to produce bacteriocin, and the results showed a reduction in the presence
of Campylobacter jejuni in the intestine, while the use of Enterococcus durans managed to
reduce the Campylobacter spp. to undetectable levels [178]. Furthermore, probiotics decrease
the expression of IL-12 and IFN-γ and increase gut protection in broilers challenged with
Salmonella enterica serovar typhimurium (TNF-α) [179]. The acidification of the intestinal
environment by probiotics, achieved by producing compounds such as lactic and acetic
acid, maintains an environment incapable of allowing the growth of enteropathogens [180].

Probiotics have also sparked interest in research on in ovo administration. Pender et al. [181]
found no improvement in hatchability indicators when they used probiotics in ovo, al-
though one week after hatching, productivity increased due to modulation of gene ex-
pression in the ileum. Likewise, in ovo injection with Bacillus subtilis stimulated microbial
diversity in the GIT and increased amniotic fluid, and in turn, the genetic expression of
MUC2 in the ileum, although without benefits for the productivity or immune response in
broilers [182]. In ovo administration with probiotics in chickens challenged with coccidia
decreased macroscopic lesions and mortality in broilers, which could represent a strategy
to reduce the negative impact of this parasitic disease [183].

Although probiotics have been used less widely in laying hens than in broilers because
the latter’s productive category is more susceptible, studies have shown that the use of
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probiotics (Bacillus subtilis) has a positive effect on production and egg quality for laying
hens [184]. In this spirit, Macit et al. [185] found that probiotic strains increased the egg
production, yolk color and monounsaturated fatty-acid profile. In a meta-analysis study,
probiotics were reported to positively influence the shell thickness, shell weight and yolk
color (p <0.01), as well as the total cholesterol, low-density lipoproteins and serum high-
density lipoproteins [186]. Furthermore, in other economically important poultry species
such as quail, the use of probiotics was shown to improve the enzyme activity, productivity,
egg quality, fertility and hatchability [187].

On the other hand, one of the natural alternatives to the indiscriminate use of sub-
therapeutic antibiotics in poultry production is yeasts [188]. There are approximately
2500 species of yeast in nature. Those most used either in a liquid or dry form in poultry
nutrition are torula yeast and Saccharomyces cerevisiae [189]. Researchers consider that
live yeasts play a probiotic role and dead yeasts have a prebiotic effect (mainly due to
the cell wall) [190]. In poultry, oral administration of yeasts can reduce the proliferation
of Enterobacteriaceae in the GIT, stimulate the immune system and improve metabolic
processes, such as the production of digestive enzymes and absorption of nutrients [191].
In this sense, Feye et al. [192] found that yeast-fermentation products can reduce the
virulence of some bacteria and improve antibiotic resistance, and this effect also can change
the phenotypic characteristics of the pathogen. Moreover, in a study with Saccharomyces
cerevisiae yeasts in young turkeys, the authors showed that the body weight increased from
the first experimental week to the end of the experiment, as well as there being a decrease
in the number of goblet cells, although without changes to the structure of the villi [193].

Likewise, interestingly, the yeasts could be used as part of the animal ration. In this
spirit, Rodríguez et al. [49], using up to 20% dry torula vinasse yeast rich in protein (43.24%),
amino acids, ash (7.15%) and B complex vitamins (mainly B12), with low percentages of
crude fiber (1.20%) and with 2811 kcal/kg of metabolizable energy corrected for N, replaced
19.92% and 20% of soybean meal in the diets of broilers in the starter (0–21 days) and finisher
(22–42 days) staged, respectively, without notable changes to the feed conversion ratio or
yield of edible portions between experimental treatments. Similar results were reported by
Rodríguez et al. [194] when they recommended the use of 20% dried torula yeast vinasse in
layer pullets, which improved the feed efficiency relative to the control diet. The role of
probiotics in poultry production is summarized in Table 4.

Table 4. Effect of probiotics on poultry production.

Strain(s) Cell Count Mode of Adminis-
tration/Dose Host/Duration Effect Reference

Lactobacillus
acidophilus and a
mixture of 12
Lactobacillus spp.

0.1% dried culture Oral, mixed in diet Broilers Improves body weight
and feed conversion ratio [163]

Bacillus subtilis 8× 105 CFU/g
Oral, mixed in diet

(150 mg/kg) Broilers

Improves yield traits and
increases villus height and
villus height/crypt depth
ratio in the duodenum

[165]

Bacillus subtilis 106 CFU/chick Oral, mixed in diet Broilers
Increases villus height and
villus/crypt depth ratio in
the ileum

[166]

Enterococcus
faecium

109 CFU/kg of
feed

Oral
administration
with challenge

with E. coli K88+

Broilers

Improves feed efficiency
with beneficial changes to
intestinal morphology and
cecal microflora

[168]
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Table 4. Cont.

Strain(s) Cell Count Mode of Adminis-
tration/Dose Host/Duration Effect Reference

Lactobacillus
acidophilus, Bacillus
subtilis,
Saccharomyces
cerevisiae,

0.03 mg/kg of feed Oral, mixed in diet Broilers
Improves nutrient
digestibility, cecal traits
and gut morphology

[169]

Streptococcus
faecalis,
Bifidobacterium
bifidum and
Lactobacillus
acidophilus

105 CFU/mL

Oral inoculation
(0.5 mL phosphate-

buffered saline
(PBS))

Broilers
Improves systemic
antibody response to red
blood cells

[176]

Probiotics with
lactic acid bacteria
(Enterococcus
faecium, durans,
Lactobacillus
salivarius and E.
faecalis)

1 × 107 CFU/12 g
of yeast additives

Oral, mixed in diet Layinghens

Improves immune
response due to increased
genetic expression of
IL-1β, IL-2 and IFNγ.
Increases yolk color and
thickness of eggshell.
Promotes production of
jumbo and
extra-large-sized eggs

[177]

Enterococcus durans 1 × 107 CFU/feed
Oral inoculation
(250 mg/kg of

feed)
Broilers

Reduces undetectable
levels of
Campylobacter spp.

[178]

Lactobacillus
acidophilus,
Bifidobacterium
bifidum and
Streptococcus
faecalis

Two doses of
1 × 105 and
1 × 106 CFU

Oral inoculation
(0.5 mL PBS on day

two post-hatch)
Broilers

Decreases expression of
IL-12 and IFN-γ and gut
protection in broilers
challenged with Salmonella
enterica serovar
Typhimurium

[179]

Lactobacillus
acidophilus,
Lactobacillus casei,
Enterococcus
faecium and
Bifidobacterium
bifidum

1 × 106 CFU In ovo inoculation Broilers

One week after hatching,
productivity increases due
to the modulation of gene
expression in the ileum.
Decreases macroscopic
lesions and mortality
in broilers

[181,183]

Bacillus subtilis 1 × 107 CFU
In ovo inoculation

(0.5 mL/egg) Broilers

Stimulates microbial
diversity in the GIT and
increases amniotic fluid,
and in turn, the genetic
expression of MUC2 in
the ileum

[182]

Bacillus subtilis 0.05% dried
culture Oral, mixed in diet Laying hens Improves the performance

and egg quality [184]

Enterococcus
faecium 10 × 109 CFU/g Oral, mixed in diet Laying hens

Increases egg production,
yolk color and
monounsaturated fatty
acid profile

[185]

Bacillus toyonensis
and Bifidobacterium
bifidum

5 × 108 and
6 × 108 CFU/mL

Oral, mixed in diet Quails
Improves enzyme activity,
productivity, egg quality,
fertility and hatchability

[187]

Saccharomyces
cerevisiae

0.02% dried
culture Oral, mixed in diet Poultry

Increases body weight and
decreases number of
goblet cells, although
without changes for
structure of villi

[193]
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Studies have shown that probiotics will likely be part of preventive and therapeutic
treatments applied as part of future health services. Therefore, it is necessary to focus our
research on enhancing the ability of probiotics to modify the intestinal microbiota and
improve the intestinal health and biological activity of the host. Currently, health challenges
continue to increase, and probiotics could play a decisive role in increasing resistance to
damage from pathogens that commonly inhabit the intestinal microflora and from other
external microorganisms. It has further been suggested that probiotics could be used as
part of the treatment against some emerging diseases in animals and against COVID-19
infection, which triggers an immune response in humans [195].

7. Conclusions

Probiotics unquestionably represent effective alternatives to the indiscriminate use of
promoter antibiotics on animal farms. They have beneficial effects for health and production
in the host animal by modulating the host microflora, inhibiting antimicrobial action,
wielding antioxidant and immunological effects and affecting the intestinal morphology.
Probiotic effects depend on the strain used, concentration, health state, diet, age, animal and
productive category. Oral administration of probiotics improves the growth performance,
feed conversion rate, nutrient utilization, gut microbiota and gut health and reduces
diarrheal syndrome and bacterial infections in ruminants and non-ruminants.
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