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OBJECTIVE—Obesity in pregnancy significantly increases the
risk of the offspring developing obesity after birth. The aims of
this study were to test the hypothesis that maternal obesity
increases oxidative stress during fetal development, and to
determine whether administration of an antioxidant supplement
to pregnant Western diet-fed rats would prevent the development
of adiposity in the offspring.

RESEARCH DESIGN AND METHODS—Female Sprague
Dawley rats were started on the designated diet at 4 weeks of
age. Four groups of animals were studied: control chow (con-
trol); control � antioxidants (control�Aox); Western diet (West-
ern); and Western diet � antioxidants (Western�Aox). The rats
were mated at 12 to 14 weeks of age, and all pups were weaned
onto control diet.

RESULTS—Offspring from dams fed the Western diet had
significantly increased adiposity as early as 2 weeks of age as
well as impaired glucose tolerance compared with offspring of
dams fed a control diet. Inflammation and oxidative stress were
increased in preimplantation embryos, fetuses, and newborns of
Western diet-fed rats. Gene expression of proadipogenic and
lipogenic genes was altered in fat tissue of rats at 2 weeks and 2
months of age. The addition of an antioxidant supplement
decreased adiposity and normalized glucose tolerance.

CONCLUSIONS—Inflammation and oxidative stress appear to
play a key role in the development of increased adiposity in the
offspring of Western diet-fed pregnant dams. Restoration of the
antioxidant balance during pregnancy in the Western diet-fed
dam is associated with decreased adiposity in offspring.
Diabetes 59:3058–3065, 2010

O
besity is one of the most pervasive and burden-
some public health problems in modern times.
The steady increase in overweight reproduc-
tive-age women is correlated with increases in

rates of childhood and infant obesity. A possible link
between the abnormal intrauterine environment and ab-
normal growth and development of offspring must be
considered (1). The period from conception to birth is a
time of rapid growth, cellular replication and differentia-
tion, and functional maturation of organ systems. These
processes are very sensitive to alterations of the nutri-

tional milieu, and the abnormal intrauterine metabolic
milieu associated with obesity in pregnancy can have long
lasting effects on the development of obesity and diabetes
in offspring (2,3). Maternal obesity significantly increases
fetal and neonatal adiposity in humans; thus, enhanced
adipocyte development per se must play an important role
in the genesis of obesity in the offspring (2).

It has been shown that obesity in the nonpregnant and
pregnant state is associated with inflammation and
oxidative stress (2–15). Obese individuals have higher
plasma levels of 8-epi-prostaglandin F2� (PGF2�), an
index of lipid peroxidation, and acute-phase proteins
and proinflammatory cytokines such as tumor necrosis
factor TNF-� and interleukin IL-6 (13–15). Recently,
Hauguel-de Mouzon and colleagues (9,10) reported that
expression of cytokines, inflammation-related genes,
and genes linked to oxidative stress are markedly
elevated in placenta of obese women. These studies
demonstrate that not only does adipose tissue release
inflammatory molecules, but that the placenta also
contributes to the inflammatory/oxidant state and the
stimuli favoring fetal fat accretion derived from mater-
nal or placental sources. Thus, maternal obesity in
pregnancy creates a very abnormal milieu in which the
embryo and fetus develop. Further, a normal redox state
is critical for embryonic stem cell differentiation (16).
However, it is not known whether the offspring of obese
mothers have an increased oxidant load or whether
increased oxidative stress is linked to the development
of obesity. The hypothesis that oxidative stress is caus-
ally linked to the development of obesity in offspring
can be tested by determining whether antioxidants
prevent increased adiposity in the offspring of obese
mothers.

The beneficial effects of antioxidant vitamins supple-
mentation are attributed to their ability to scavenge free
radicals, control nitric oxide synthesis or release, inhibit
reactive oxygen species generation, and upregulate anti-
oxidant enzyme activities that metabolize these molecules
(17). Vitamins A, C, and E are nonenzymatic antioxidants
that have properties of free radical scavengers. Vitamin C
administration has been shown to reduce the adiposity
induced by the intake of a high-fat diet in rats (18,19).
Vitamin E has a particularly important role in preventing
the oxidation of LDLs and thus has been the recent subject
of investigation for use in cardiovascular disease. The
antioxidant properties of zinc and selenium have also been
demonstrated. Zinc directly inhibits the formation of O2�

by inhibiting the NADPH oxidase complex that catalyzes
its formation, and indirectly, by inducing the production of
metallothionein, a free radical scavenger. Selenium, in the
form of selenoproteins (most notably selenocysteine),
directly catalyzes the reduction of H2O2 and various other
peroxides.

Studies performed to evaluate the effectiveness of anti-
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oxidant supplementation in obese human adults have had
mixed results. Of the many studies, only two have shown
any positive effects (20,21). However, since adiposity
significantly increases early in life, it is likely that there is
a critical window of vulnerability early in development
such that interventions given at this stage may have
greater success in preventing the development of obesity.

Several investigators have used animal models of high-
fat or Western style diet-induced obesity (a diet that has
increased fat and carbohydrate content) and have shown
that maternal over-nutrition induces increased adiposity
and permanent changes in metabolism in offspring (20–
33). The aims of this study were to test the hypothesis that
a Western-style diet fed during pregnancy increases oxi-
dative stress, thereby potentiating adipogenesis in the
offspring, and to determine whether administration of an
antioxidant supplement to pregnant Western diet-fed rats
would prevent the development of increased adiposity in
offspring.

RESEARCH DESIGN AND METHODS

Female Sprague Dawley rats were started on the designated diet (Table 1) at
the time of weaning at 4 weeks of age. Four groups of animals were studied:
control chow (control); control � antioxidants (control�Aox); Western diet
(Western); and Western diet � antioxidants (Western�Aox). All diets were
custom made by Harlan Teklad (please see data in the supplementary
appendix (available online at http://diabetes.diabetesjournals.org/cgi/content/
full/db10-0301/DC1 for details of the diets). The control and Western diets had
the same micronutrient composition and differed only in the macronutrient
and caloric content. The antioxidant supplement did not alter the caloric
content of the chow. The Western diet had �300% fat (as saturated fat), 150%
carbohydrates (mainly as simple carbohydrates), and 95% protein compared
with the control diet (Table 1). Offspring were weaned onto standard rat
chow. The amounts of the antioxidant supplements in the Aox groups are
shown in Table 1.

The female rats were bred with Sprague Dawley male rats between 12–16
weeks of age and were allowed to deliver spontaneously. Thus, female rats
were 4 weeks old when they were started on the diets, 10–12 weeks old when
they were bred, and 13–15 weeks old at the end of pregnancy. For studies in
the offspring, at weaning, all diets were changed back to a control diet and this
control diet was continued throughout life. All litters were culled to 8 pups.
Studies were performed only in male rats.

For experiments in blastocysts, female rats were treated with 30 IU of
pregnant mare serum gonadotrophin (PMSG) intraperitoneally. Ovulation was
induced with 50 IU intraperitoneally of human chorionic gonadotrophin (hCG)
48 h later. Female rats were then caged overnight with a proven male.
Between 10–12 embryos were flushed from the oviduct from pregnant rat
donors killed 5 days after mating (blastocyst stage). Although there tended to

be a lower number of blastocysts in the offspring of the obese dams, this was
not statistically significant. The antioxidant supplement did not affect embry-
onic viability. Reduced (GSH) and oxidized (GSSG) glutathione levels were
measured in groups of 10 to 16 blastocysts by high-performance liquid
chromatography separation (C-18 reversed-phase column) combined with
fluorescence detection after derivatization with O-phthaldehyde.

For fetal studies, pregnant rats were killed on gestational day 18. The
number of pups in each litter was recorded. Trunk blood was collected in
heparinized tubes and centrifuged, and the plasma was stored at �80°C for
hormone and substrate analyses. Fetal blood from all of the fetuses in the
same litter was pooled, and their plasma was stored as indicated above.

All animal protocols were submitted to and approved by The Children’s
Hospital of Philadelphia Animal Care Committee.
Glucose tolerance tests. Studies were done in offspring at 2 months of age.
Animals were fasted for 18 h before study. At 0 min, blood was obtained from
the dorsal tail vein for measures of blood glucose and plasma insulin, and then
an intraperitoneal bolus of glucose (2 mg glucose per gram of body weight)
was given and serial blood glucose measurements were done using the
Hemacue glucose analyzer (Angelholm, Sweden).
Metabolic measurements. The following were measured in plasma in the
fasted state (for pregnant animals, measures were done at day 21 gestation)
using commercially available kits: free fatty acids (Zen-Bio, Research Triangle
Park, NC), leptin (IBL-America, Minneapolis, MN). thiobarbituric acid reactive
substances ([TBARS] Cayman Chemical, Ann Arbor, MI), glutathione peroxi-
dase ([GSH] Biovision, Mountain View, CA), and C-reactive protein (CRP)
(IBL). Plasma insulin was measured by radioimmunoassay (Penn Diabetes
Core at the University of Pennsylvania).

To determine the quantity of reactive oxygen species (ROS) produced by
blastocysts, the relative intensity of ROS production was measured using
2�,7�-dichlorodihydrofluorescein diacetate (DCHFDA; Sigma). The nonfluores-
cent dye generates a fluorescence signal after reacting with ROS. Embryos
were harvested, incubated in InVitroCare medium (KSOM/AA medium con-
taining 0.2 mmol/l glucose, 0.2 mmol/l pyruvate, and 10 mmol/l lactate) 5% CO2

in 95% air, 37°C, and then incubated for an additional hour in medium
containing 10 �mol/l DCHFDA, and then washed in fresh InVitroCare medium
before being placed on a glass slide and covered with a cover slip. Fluores-
cence was determined in the culture medium using a fluorescence plate reader
with excitation wavelength at 505 nm and emission wavelength at 540 nm.
Real-time PCR. Total RNA was isolated from starting material (stored at
�80°C) using one of three commercially available kits: RNAqueous Micro kit
(Ambion) for blastocysts; RNA easy lipid kit (Quiagen) for adipose tissue; and
RNA easy tissue kit (Quiagen) for placenta. Complimentary DNA was synthe-
sized using the ThermoScript RT-PCR system (Invitrogen). Real-time PCR was
performed on a LightCycler using the FastStart DNA MasterSYBER Green I
(Roche Diagnostics) according to the protocol provided by the manufacturer.
All real-time PCR data were normalized to the housekeeping gene � actin. All
primers (TaqMan) were obtained from Applied Biosystems (Carlsbad, CA).
Fat mass. Body fat was measured using dual emission X-ray absorptiometry
(PIXImus DEXA, General Electric, Madison, WI) and reported as the ratios of
fat mass and body weight. The DEXA scanner was specialized for small
animals. The instrument settings used were as follows: a scan speed of 40
mm/s, a resolution of 1.0 � 1.0 mm, and automatic/manual histogram width
estimation. The coefficient of variation, as assessed by three repeated mea-
surements (with repositioning of the rat between each measurement), was
less than 5%. Measures were done on day 21 of pregnancy (n 	 5 animals each
group), and at 2 weeks, 2 months, and 6 months of age in the offspring (a total
of 7 animals from different litters from each group).
Statistical analysis. The significance of differences among groups was exam-
ined using a two-way ANOVA analysis and Tukey-Kramer for post hoc analysis.
All values are presented as means 
 SE. A P value of � 0.05 was considered
significant. All data were analyzed using Prism data analysis software.

RESULTS

Body weights at the initiation of the study (at 4 weeks of
age) were not different (Fig. 1); however, at the time of
breeding, dams fed the Western and the Western�Aox
diets were significantly heavier than the two control
groups (Fig. 1) and had a significantly higher rate of weight
gain and fat mass before pregnancy compared with those
fed a control diet (Table 2). Addition of the antioxidant
supplement to the Western diet did not significantly affect
weight gain or body composition (Table 2). The daily
energy intake was increased in dams fed the Western
diets; however, there was no difference in food consump-

TABLE 1
Diet composition per weight of chow and per kcal

Control
Control
�Aox Western

Western
�Aox

Protein (% per 100 g) 15.9 15.9 21.6 21.9
Protein (% per kcal) 20.1 20.1 19.9 19.9
Carbohydrate (% per

100 g) 45 45 50.2 50.2
Carbohydrate (% per

kcal) 56.7 56.7 46.3 46.3
Fat (% per 100 g) 8.2 8.2 16.2 16.2
Fat (% per kcal) 23.1 23.1 33.7 33.7
Total vitamin A (IU/kg) 4,600 23,000 8,900* 32,000**
Total vitamin E (IU/kg) 86 260 118* 360**
Total vitamin C (g/kg) 0 5.6 0 5.6
Total selenium (mg/kg) 0.165 0.5 0.225* 0.675**

*Indicates that this vitamin or mineral is present in the same absolute
amount as the control on an energy basis (per kcal). **Indicates that
this mineral is present in the same absolute amount as in the
control�Aox chow per kcal.
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tion between the four groups, which averaged 5g/100 g
body weight daily.

Glucose levels did not differ between groups. However,
insulin concentrations were significantly higher in the
Western diet-fed dams and were decreased by the antiox-
idant supplement (Table 2). As expected, leptin levels
were also higher in the Western diet-fed dams compared
with control and control�Aox-fed dams (Table 2).
Weights and fat content of offspring. Birthweights of
the pups did not differ among the four groups and aver-
aged 5.09 
 0.05; 5.11 
 0.05; 5.11 
 0.04; and 5.12 
 0.04
(controls, control�Aox, Western, Western�Aox, respec-
tively; n 	 5 litters from each group). There were no
differences in litter size among the four groups at birth. By
2 weeks of age, offspring of Western diet-fed dams had
increased fat mass, which was ameliorated in the offspring
of the Western diet dams given the antioxidant supplement
(Fig. 2A). There was no effect of the antioxidant supple-
ment on birth weight or fat mass in the control chow group
(Fig. 2A). At 2 months of age, total and central fat mass of
the offspring of the Western diet-fed dams remained
significantly increased compared with offspring of control
diet-fed dams (Fig. 2B). In contrast, total fat content was
significantly reduced in the adult Western�Aox offspring
compared with the Western-diet group and did not differ
from the control groups.

Metabolic parameters. In the fetus (day 18 gestation),
there were no significant differences in plasma levels of
glucose, insulin, free fatty acids, or leptin among the four
groups. However, at birth and at 2 weeks of age, free fatty
acids, insulin, and leptin, but not glucose levels, were
significantly increased in the offspring of Western diet-fed
dams (Table 3). At 2 months of age, insulin and leptin
levels remained elevated (Table 3) and glucose tolerance
tests demonstrated mildly impaired glucose tolerance in
the offspring of Western diet-fed dams compared with
controls (Fig. 3). The degree to which insulin resistance or
ß-cell dysfunction impair glucose tolerance and whether
this worsens with age remain to be determined. Of note, in
a slightly different model of obesity in pregnancy, offspring
do develop ß-cell dysfunction later in life (34).

The Western�Aox animals demonstrated marked im-
provement in glucose homeostasis (Table 3 and Fig. 3).
Together, these data show that the addition of an antiox-
idant supplement during pregnancy is associated with
decreased adiposity in the offspring and its associated
complications of glucose intolerance in the offspring of
Western diet-fed dams.
Oxidative stress. Maternal obesity induces a marked
inflammatory response (9,10), which in turn causes mito-
chondrial dysfunction resulting in increased production of
reactive oxygen species (35,36). To determine whether
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FIG. 1. Weights of female dams in the four study groups. Animals were started on the diets at weaning at 4 weeks of age. The negative numbers
refer to weeks before pregnancy, 0 is at breeding, and the positive numbers refer to weeks during pregnancy; n � 10 dams in each group. *P <
0.05 Western and Western�Aox versus control diet.

TABLE 2
Endocrine-metabolic parameters in normal and Western diet-fed pregnant rats at day 21 gestation

Control Control�Aox Western Western�Aox

Leptin (ng/ml) 1.00 
 0.64 2.15 
 0.42 4.97 
 0.42* 2.11 
 0.38
FFA (�Eq/ml) 925 
 128 854 
 75 1,298 
 101* 877 
 235
Blood glucose (mg/dl) 129 
 14 122 
 15 134 
 15 127 
 10
Insulin (ng/ml) 0.51 
 0.02 0.53 
 0.03 0.82 
 0.03* 0.60 
 0.03
Total fat mass (% body mass) 14.2 
 2.5 15.8 
 3.8 20.4 
 1.8* 20.7 
 2.2*
Food consumption (g/100g body weight/day)# 5.1 
 1.2 5.3 
 0.4 4.9 
 1.5 4.8 
 1.6

Data are means 
 SE. *P � 0.05 vs. control diet. #Measurement of food consumption was started on day 1 of pregnancy. FFA, free fatty acid.
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and when exposure to a Western diet induces oxidative
stress in the offspring during development, we measured
indexes of oxidative stress in preimplantation embryos,
fetuses, and newborns.

GSH and GSSG levels were measured in blastocysts
from dams of all four groups (experiments were repeated
in three separate litters of each group). GSH levels were
modestly decreased in embryos from Western diet-fed
dams compared with controls (P � 0.05 vs. controls) (Fig.
4A and B). Antioxidant supplementation normalized GSH
and GSSG content in Western diet blastocysts, but had no
effect on controls (Fig. 4A and B).

Decreased levels of GSH suggested that exposure to a

Western diet during pregnancy induced oxidative stress
in the embryo. Therefore, we measured ROS levels in
blastocysts from all four groups. As expected, ROS
levels as determined by DCHFDA fluorescence detec-
tion were significantly higher in blastocysts of Western
diet-fed dams compared with controls, controls�Aox,
and Western�Aox (Fig. 4C).

Similarly, measures of oxidative stress were signifi-
cantly elevated in fetal and newborn offspring of Western
diet-fed dams. Serum levels of the inflammatory marker, C
reactive protein (Fig. 5A), and TBARS (Fig. 5B) were
significantly elevated, whereas serum levels of GSH were
significantly reduced (Fig. 5C). Antioxidant supplementa-
tion reduced these measures of inflammation and oxida-
tive stress in the Western�Aox offspring to levels that
were significantly different from Western diet-fed offspring
(Fig. 5A–C).
Adipogenesis. There is a rapid and dramatic expansion of
the adipose lineage that occurs during the first month of
postnatal life in the rodent, and our data demonstrate that
exposure to a Western diet during development accentu-
ates this process. We found that mRNA levels of Pref1,
Wisp2, and PPAR� were markedly elevated in fat tissues
from 2-week-old and 2-month-old offspring of Western
diet-fed dams compared with controls (Fig. 6A). Pref1 and
Wisp2 maintain the adipocyte precursor cell in a commit-
ted but undifferentiated state. Interestingly, expression of
BEST5, a gene that promotes differentiation of mesenchy-
mal stem cells into bone (37), was markedly reduced in fat
tissue of offspring of obese dams (Fig. 6A). Thus, exposure
to a Western style diet during development increases
expression of genes that promote expansion of adipocyte
precursor pools and lipid storage in fat tissue.

Expression of genes regulating lipogenesis, including
SREBP1c, Acyl CoA Synthase 1, fatty acid synthase (FAS),
and fatty acid translocase was also significantly increased
in fat tissue from offspring of Western diet-fed dams
compared with controls (Fig. 6B). Thus, Western diet
induced maternal adiposity not only expands the adipo-
cyte precursor pool, but also promotes lipid storage in fat
tissue of their offspring. Most importantly, antioxidant
supplementation before and during pregnancy nearly nor-
malized gene expression in Western diet offspring (Fig. 6A
and B). Thus, our data suggest that one of the underlying
mechanisms of increased adiposity in offspring of obese
dams is related to oxidative stress promoting adipogenesis
and lipid storage.

DISCUSSION

There are a number of critical periods during development
that appear to influence the later development of obesity.
It is likely that the risk of developing obesity in the
offspring of an obese mother is caused by a continuum of
exposure from the prepregnant state (possibly affecting
oocyte quality) to the exposure of the offspring during
lactation. In the present study we have demonstrated that
a Western-style diet before and during pregnancy and
lactation results in increased fat mass and glucose intol-
erance in offspring. These results are in agreement with
several studies showing that offspring of dams fed a
high-fat diet or a Western-style diet (high in fat and
carbohydrate) have increased body fat and glucose intol-
erance in the offspring (22–33,38–40).

Of major importance is our finding that exposure to a
Western-style diet before and during pregnancy alters the
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FIG. 2. A: Maternal antioxidant supplement normalizes body fat in
2-week-old offspring of Western diet-fed rats. At 2 weeks of age, total
and visceral fat were measured by Dexa scanning. White bar represents
total fat and black bar represents visceral fat. Data shown are ratio of
fat mass and body weight (percentage of total and visceral fat � SEM),
n � 5 animals in each group; *P < 0.05 Western diet versus control,
control�Aox, and Western�Aox; **P < 0.05 Western�Aox versus
Western diet. B: Maternal antioxidant supplement normalizes body fat
in 2 month-old offspring of Western diet-fed rats. At 2 months of age,
total and visceral fat were measured by Dexa scanning. White bar

represents total fat and black bar represents visceral fat. Data shown
are percentages of total and visceral fat � SEM; n � 5 animals each
group, *P < 0.05 Western diet versus Control, Control�Aox, and
Western�Aox; **P < 0.05 versus Western�Aox versus Western diet.
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redox state as early as preimplantation development,
leading to mild oxidative stress. This altered state persists
throughout gestation and early life—critical stages for
adipogenesis. Our finding that administration of an antiox-
idant supplement given to the dam reverses oxidative
stress and completely prevents the development of adipos-
ity and glucose intolerance in the offspring suggests that
oxidative stress plays an important role in the develop-
ment of obesity.

In support of the link between oxidative stress and the
development of adiposity are two recent studies that
showed that ROS are involved in the regulation of fat
development (40,41). Preventing the accumulation of
P66SHC generated free radicals decreases fat mass and
promotes resistance to diet-induced obesity (41).

A number of studies in humans have demonstrated that

obesity is associated with an inflammatory state, which in
turn induces oxidative stress (4,9–11,42,43). Recently,
several studies reported that expression of cytokines,
inflammation-related genes, and genes linked to oxidative
stress are markedly elevated in the placenta and serum of
obese women (2,8–13,44,45). These investigators hypoth-
esize that not only does adipose tissue release inflamma-
tory molecules, but that the placenta also contributes to
the inflammatory/oxidant state and the stimuli favoring
fetal fat accretion derived from maternal or placental
sources. Thus, exposure to a Western-style diet in preg-
nancy creates a very abnormal milieu in which the embryo
and fetus develop. We postulate that before placentation,
maternal adipose tissue is the primary source for inflam-
matory molecules and oxidants. Once the placenta devel-
ops, the fetus is further exposed to oxidative stress,
creating a vicious cycle. It is likely that exposure of
newborn offspring to a Western-style diet during lactation
further potentiates this process.

Offspring of Western diet-fed dams exhibit increased fat
mass very early in life, suggesting that adipocyte develop-
ment per se plays an important role in the genesis of
obesity in the offspring. Further, fetuses and newborns of
obese women have increased adiposity (44). This is not to
say that increased maternal adiposity does not program
appetite or energy expenditure later in life—it likely does
(46,47). However, our data implicate an important role for
the potentiation of adipogenesis in early life as a causal
mechanism for the later development of obesity.

Adipocyte precursor cells isolated from fat express high
levels of mesenchymal stem cell markers such as Pref-1,
Wisp2, extracellular matrix genes, and antiangiogenic fac-
tors (48,49). In our studies, we have found that exposure to
a Western-style diet in utero and during lactation signifi-
cantly increases expression of similar genes in the fat
tissues of young offspring. Many of these genes maintain
the adipocyte precursor cell in a committed but undiffer-
entiated state. Our finding that altered expression of these
genes persists in the fat tissues of older offspring of
Western diet-fed dams suggests that the adipocyte precur-

TABLE 3
Endocrine-metabolic parameters in offspring of normal and Western diet-fed pregnant rats at birth

Control Control�AOX Western Western�AOX

Fetal d (18) (n 	 5 litters)
Leptin (ng/ml) 2.2 
 0.2 1.9 
 0.2 2.1 
 0.1 2.3 
 0.2
FFA (�Eq/ml) 35.3 
 2.8 27.9 
 3.1 33.2 
 4.6 30.2 
 4.9
Blood glucose (mg/dl) 54.4 
 6.7 57.9 
 5.9 61.6 
 7.7 58.14 
 6.3
Insulin (ng/ml) 1.49 
 0.07 1.51 
 0.08 1.58 
 0.09 1.55 
 0.08

Birth (n 	 5 litters)
Leptin (ng/ml) 2.8 
 0.3 2.9 
 0.2 3.8 
 0.1* 3.0 
 0.3
FFA (�Eq/ml) 64.8 
 6.9 57.9 
 5.1 105.7 
 9.9* 76.6 
 7.5
Blood glucose (mg/dl) 88.2 
 8.8 77.4 
 9.4 81.0 
 8.3 86.6 
 9.4
Insulin (ng/ml) 0.47 
 0.06 0.49 
 0.06 0.68 
 0.07* 0.47 
 0.07

2 weeks (n 	 5 litters)
Leptin (ng/ml) 4.2 
 0.6 3.9 
 0.7 7.8 
 0.9* 4.1 
 0.8
FFA (�Eq/ml) 38.5 
 4.2 41 
 4.3 52.5 
 5.5* 43 
 5.6
Blood glucose (mg/dl) 93.6 
 10.4 97.2 
 11.5 104.4 
 9.7 95.4 
 9.5
Insulin (ng/ml) 0.81 
 0.05 0.84 
 0.04 1.9 
 0.02* 0.92 
 0.01

2 months (n 	 8)
Leptin (ng/ml) 14.7 
 1.5 13.2 
 2.5 25 
 1.9* 14.5 
 1.9
FFA (�Eq/ml) 15.7 
 1.3 12.4 
 1.4 13.4 
 1.6 12.9 
 1.5
Blood glucose (mg/dl) 118.8 
 10.8 117 
 11.9 120.6 
 14.0 122.0 
 14.4
Insulin (ng/ml) 1.4 
 0.06 1.8 
 0.04 2.9 
 0.09* 1.9 
 0.05

Data are means 
 SE. *P � 0.05 vs. control diet. FFA, free fatty acid.
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FIG. 3. Maternal antioxidant supplement improves glucose tolerance in
2-month-old offspring of Western diet-fed rats. At 2 months of age,
offspring were given 2 g glucose/kg intraperitoneally and glucose was
measured 15, 30, 60, and 120 min after injection. Data shown are �
SEM; n � 5 for each group; *P < 0.05 Western diet versus control,
control�Aox, and Western�Aox.
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sor pool continues to expand albeit at a much slower rate,
which may be one explanation for the progressive increase
in fat mass in the offspring.

Our results suggest that the mechanisms underlying
enhanced adipogenesis in the offspring are related to
oxidative stress. Exposure to increased levels of reactive
oxygen species has been shown to facilitate adipocyte
differentiation in vitro (50). Our data suggest that oxidative

stress enhances adipocyte differentiation in vivo in addi-
tion to increasing the adipocyte precursor pool.

Although it is well established that obesity is associ-
ated with increased oxidative stress, it is also possible
that exposure of the pregnant dam to a high-fat diet per
se (independent of obesity) results in oxidative stress in
the offspring. Further, it is also possible that increased
levels of free fatty acid independent of obesity could
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result in changes in gene expression in the offspring. It
is of note that the antioxidant supplement decreased
free fatty acid levels in the Western diet-fed dams.

As obesity begins to affect large numbers of women of

reproductive age, the role of the adipocyte as a meta-
bolically active participant in fetal programming has
come to the forefront. Although it is known that obesity
is associated with inflammation, this study suggests that
inflammation plays a role in intergenerational obesity
and implicates oxidative stress as a central factor in
fetal programming of obesity in the offspring.
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