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Abstract

Background

Behçet’s disease (BD) is a chronic multi-systemic vasculitis with a considerable prevalence

in Asian countries. There are many genes associated with a higher risk of developing BD,

one of which is endoplasmic reticulum aminopeptidase-1 (ERAP1). In this study, we aimed to

investigate the interactions of ERAP1 single nucleotide polymorphisms (SNPs) using a novel

data mining method called Model-based multifactor dimensionality reduction (MB-MDR).

Methods

We have included 748 BD patients and 776 healthy controls. A peripheral blood sample was

collected, and eleven SNPs were assessed. Furthermore, we have applied the MB-MDR

method to evaluate the interactions of ERAP1 gene polymorphisms.

Results

The TT genotype of rs1065407 had a synergistic effect on BD susceptibility, considering the

significant main effect. In the second order of interactions, CC genotype of rs2287987 and

GG genotype of rs1065407 had the most prominent synergistic effect (β = 12.74). The men-

tioned genotypes also had significant interactions with CC genotype of rs26653 and TT

genotype of rs30187 in the third-order (β = 12.74 and β = 12.73, respectively).

Conclusion

To the best of our knowledge, this is the first study investigating the interaction of a particular

gene’s SNPs in BD patients by applying a novel data mining method. However, future stud-

ies investigating the interactions of various genes could clarify this issue.
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Introduction

Behçet’s disease (BD) is a chronic vasculitis presented with multi-systemic signs and symp-

toms; however, it is majorly separated from other autoimmune diseases by characteristic bipo-

lar aphthosis [1]. With a wide range of prevalence worldwide (from 0.64 per 100,000 in the UK

to 420 per 100,000 in Turkey), BD is mostly distributed in countries alongside the Silk Road

[2]. According to the considerable prevalence and morbidity of BD in Asian countries, under-

standing BD’s pathophysiology might lead to new therapeutic options and increasing patients’

quality of life. Years of research have proven that similar to many other rheumatic disorders,

genetic factors have a significant role in BD’s course [3].

HLA region has been proven to have a pivotal contribution to the genetic component of

BD [4]. BD’s association with HLA-B�51 is proved by several influential studies, including a

meta-analysis on 4800 patients that has shown individuals with this allele have an odds ratio of

5.78 for developing BD [5]. In addition to HLA-B�51, studies have suggested a link between

BD and other genes such as interleukin 10 (IL-10) and IL-23 receptor (IL-23R), some of which

are associated with HLA-B�51 [6]. In our previous study, we have shown that the endoplasmic
reticulum aminopeptidase-1 (ERAP1) gene polymorphisms are associated with HLA-B�51,

resulting in higher BD susceptibility [7]. ERAP1 is an amino-peptidase responsible for the N-

terminal trimming of peptides, which is a critical step in peptides processing and their presen-

tation by MHC-I [8].

Furthermore, ERAP1 takes part in cleaving proinflammatory cytokine receptors such as

tumor necrosis factor receptor (TNFR1) from the cell membrane [9]. Polymorphisms of

ERAP1 might alternate the activity of the protein and subsequently changing the structure of

peptidome available to HLA-B�51. However, the association of ERAP1 single nucleotide poly-

morphisms (SNPs) and BD susceptibility is not entirely clear, and some studies suggest contra-

dictory findings, which need to assess by more comprehensive studies [7, 10, 11].

Up to now, logistic regression for high dimensional and sparse data, parameter estimation

is a costly and non-accurate procedure that introduces significant standard errors because

sample sizes are too small compared to the order of interaction size. Also, conventional

approaches (e.g., logistic regression) used for the analysis of genomic data are oversimplified

and usually cannot consider all possible associations between multiple polymorphisms and

gene-gene interactions [12]. Multifactor Dimensionality Reduction (MDR) approach is now a

reference in the epistasis and SNPs interactions detection field. However, MDR suffers from

some significant drawbacks, including that crucial interactions could be missed owing to pool-

ing too many cells together or that proposed MDR analysis will only reveal at most one signifi-

cant epistasis model, the selection being based on computationally demanding cross-

validation and permutation strategies. To overcome the aforementioned hurdles, model-based

multifactor dimensionality reduction (MB-MDR) is a flexible framework to detect gene-gene

or SNP-SNP interactions. MB-MDR is a non-parametric data mining method that has suffi-

cient power and is capable of investigating the interaction of the unlimited number of genes

and polymorphisms [13]. Therefore, we aimed to use the MB-MDR method to identify the

interactions of ERAP1 polymorphisms and their association with BD susceptibly.

Methods

Study participants

The present study included 748 BD patients who were referred to the outpatient BD clinic in

the Rheumatology Research Center, Shariati Hospital, Tehran, Iran. The International Criteria

confirmed patients’ diagnosis for Behçet’s Disease (ICBD), and patients who were less than 16
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years old or related to each other were excluded from the study [14, 15]. For the control group,

we have included 776 healthy individuals with no clinical presentation or family history of any

rheumatic disorders or autoimmune diseases, who were matched for sex, age, and ethnicity

[16]. Written informed consent was obtained from all individuals themselves or their parents

in cases with the age of under 18. The ethical committee of Tehran University of Medical Sci-

ences approved the study protocol, and the relevant university guidelines did all experiments.

DNA preparation and SNP genotyping

A peripheral blood sample was collected from all participants into EDTA-anticoagulated tubes

using venipuncture. Genomic DNA was extracted using the standard phenol/chloroform

method, and the extracted DNA samples were stored at −20 ˚C. Approximately 20 ng of the

genomic DNA in each sample was used for genotyping. We assessed 10 common missense

SNPs from our previous study [7] that were identified in the super-population of the 1000

Genomes project and had a minor allele frequency of more than one percent (Table 1). We

have also included an intronic SNP (rs1065407) that has been associated with BD in another

study [17]. MGB-TaqMan Allelic Discrimination technique was used for SNP genotyping

(Applied Biosystems, Foster City, CA, USA). Ten μl of reaction volumes, containing 0.25 μl of

distilled water, 4.5 μl of genomic DNA, 0.25 μl of TaqMan genotyping assay mix, and 5 μl of

the TaqMan genotyping master mix was used for amplification. The StepOnePlus Real-Time

PCR System (Applied Biosystems) and the manufacturer’s protocol were used for genotyping

the patients and healthy individuals’ samples. The allelic call was done using SDS v.1.4 software

(Applied Biosystems) and the analysis of allelic discrimination plots. Finally, the genetic

makeup of SNPs for each subject was considered as the genotype of that SNP.

Statistical methods

The continuous variables were indicated as mean ± SD. Allelic and genotypic frequencies of

the ERAP1 SNPs were mentioned as N (%). The genotype distributions of SNPs were tested

for deviation from Hardy-Weinberg equilibrium (HWE) in the control group. P-values were

corrected for multiple comparisons by the Benjamini-Hochberg approach [18]. Since calcula-

tions of the main effect of ERAP1 SNPs were not available by the model-based multifactor

dimensionality reduction (MB-MDR), multiple logistic regression has been used to obtain the

main effects of ERAP1 SNPs, simultaneity. To adjust for main effects, main effects should be

Table 1. Allele frequencies of 11 ERAP1 SNPs.

SNP Position on chromosome five Alleles Amino acid changes Minor allele

frequency, %

P value Odd ratio (95% confidence interval)

cases controls

rs1065407 96,776,379 T > G Intronic 36.6 32.5 0.018 1.20 (1.03–1.39)

rs27044 96,783,148 C > G Glu730Gln 28.5 29.1 0.74 0.97 (0.83–1.14)

rs17482078 96,783,162 C > T Arg725Gln 12.6 10.3 0.052 1.25 (1.00–1.56)

rs10050860 96,786,506 C > T Asp575Asn 12.5 10.1 0.039 1.27 (1.01–1.59)

rs30187 96,788,627 C > T Arg528Lys 40.1 39.7 0.82 1.02 (0.88–1.18)

rs2287987 96,793,832 T > C Met349Val 12.5 10.2 0.040 1.27 (1.01–1.59)

rs27895 96,793,840 C > T Gly346Asp 9.8 9.9 0.98 1.00 (0.79–1.26)

rs26618 96,795,133 T > C Ile276Met 20.1 22.9 0.059 0.85 (0.71–1.01)

rs26653 96,803,547 G > C Pro127Arg 40.2 39.7 0.75 1.02 (0.89–1.18)

rs3734016 96,803,761 C > T Glu56Lys 1.9 2.4 0.40 0.81 (0.50–1.32)

rs72773968 96,803,892 G > A Thr12Ile 9.8 9.9 0.88 0.98 (0.77–1.25)

https://doi.org/10.1371/journal.pone.0227997.t001
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calculated. MB-MDR has been proposed by Calle et al. as a dimension reduction method for

exploring SNP-SNP interactions with disease susceptibly in case-control association studies

[19]. MB-MDR method has proven to be more potent than multifactor dimensionality reduc-

tion (MDR) in the presence of genetic heterogeneity [20]. MB-MDR can unify the best of both

nonparametric and parametric machine learning algorithms.

On the other hand, characterization, and identification SNP-SNP interactions lack perfor-

mance in the absence of proper statistical methods and large sample sizes. Logistic regression,

as a standard tool for modeling effects and interactions with binary response data, lacks power

in the identification of gene interactions in high-order levels due to sparsity and separation

[21]. Thus, in this study, SNP-SNP interactions were calculated by the MB-MDR algorithm.

MB-MDR shows high power in the presence of all types of noises, such as missing data, geno-

typing error, genetic heterogeneity, and low sample size [22]. This algorithm was performed

by “mbmdr” R package version 3.5.1. To assess the significance in MB-MDR, permutation test

with 1000 replications has been done, which corrects for multiple testing (overall marker

pairs) and adequately controls the family-wise error rate at α = 0.05.

Results

In this case-control study, 748 patients and 776 age-, sex-, and ethnicity- matched healthy

controls were included according to the inclusion and exclusion criteria [16]. In BD patients,

the mean age was 40.26 ± 10.88 years, and in the control group was 38.88 ± 11.54 years (P-

value = 0.076). Out of 748 patients and 776 healthy individuals, 448 (59.9%) and 476 (61.3%)

were male, respectively (P-value = 0.599). Based on the results of assessing the main effects of

ERAP1 SNPs, the TT genotype of rs1065407 SNP (β = 0. 23, and adjusted P-value = 0.034) had

a significant synergistic effect on BD. The synergistic effect of an allele is described as the allele

increasing the disease risk, and the antagonistic effect is described as the allele having a protec-

tive effect regarding the disease susceptibility. In contrast, TT genotype of rs30187 SNP (β =

-0.26 and adjusted P-value = 0.041) and AA genotype of rs469876 SNP (β = -0.20 and adjusted

P-value = 0.046) had significant antagonistic effects on BD (Table 2). Other ERAP1 SNPs do

not have significant main effects concerning BD susceptibly.

Table 2 summarizes the results of SNP-SNP interactions for six important SNPs

(rs1065407, rs30187, rs469876, rs2287987, rs17482078, and rs26653). Based on the results of

second-order interaction effects, there were only six significant 2-locus models. For instance,

CC genotype of rs2287987 and GG genotype of rs1065407 (β = 12.74 and adjusted P-value =

2.12×10−10) had a significant synergistic effect on BD susceptibility. rs30187 and rs1065407,

CT, and TT genotype (β = -0.39 and adjusted P-value of 1.98×10−3) had a significant antago-

nistic effect on BD. Synergistic effects of rs469876 (AA and GG) genotypes with rs1065407

(GG and GT) genotypes were significant as well (β = 0.32, adjusted P-value = 4.73×10−3).

Effects of rs30187 and rs469876 (CC vs. AA) and (TT vs. AG) were also significantly synergis-

tic (β = 0.32 adjusted P-value = 2.39×10−2). rs26653 (CC) with rs1065407 (GG) had a signifi-

cant synergistic effect on BD (β = 0.76, adjusted P-value = 2.49×10−2). However, the results of

rs26653 (CT) and rs469876 (AG) showed a significant negative association with BD susceptibly

(β = -0.42, adjusted P-value = 7.38×10−2).

Considering third-order interaction effects, we had five 3-locus models for SNP-SNP

interactions of ERAP1 SNPs. For example, the GG genotype of rs1065407, CC genotype of

rs2287987, and CC genotype of rs26653 had a significant synergistic effect on BD by a 3-locus

model (β = 12.74, adjusted P-value = 2.13×10−10). However, the 3-locus model (rs1065407,

rs2287987, rs26653) did not have any significant antagonistic effect on BD. Considering

rs1065407, rs2287987, and rs30187, results reveal that the synergistic effect of (GG, CC, and
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TT) genotypes and the antagonistic effect of (TT, CT and CT) genotypes on BD, were signifi-

cant as well. Besides, rs1065407 (TT), rs30187 (CT) and rs469876 (AG) had a significant antag-

onistic effect on BD (β = -0.67, adjusted P-value = 1.26×10−3). In addition, rs1065407 (TT),

rs2287987 (CT) and rs469876 (AG) interaction had a significant antagonistic effect on BD (β =

-0.92, adjusted P-value = 3.18×10−2). In contrast, (rs1065407: GG, rs30187: TT, rs469876: AG),

(rs1065407: GG, rs2287987: CC, rs469876: GG), and (rs30187: CC, rs1065407: GG, rs26653:

CC) had significant synergistic effects on BD. More details are shown in the third-order inter-

action section of Table 2.

Results of fourth-order interaction effects indicated that (rs1065407: GG, rs2287987: CC,

rs30187: CC, rs26653: CC) and (rs1065407: GG, rs2287987: CC, rs26653: CC, rs469876: GG)

had significant synergistic effects on BD. In contrast, (rs1065407: TT, rs2287987: TT, rs30187:

CT, rs26653: GG) and (rs1065407: TT, rs2287987: TT, rs26653: CG, rs469876: AG) had

significant antagonistic effects on BD. Based on the results of five-order interaction effects,

(rs1065407: GT, rs2287987: TT, rs30187: CC, rs26653: CC, rs17482078: TT) had a significant

synergistic effect on BD (β = 0.32, adjusted P-value = 3.93×10−1). However, (rs1065407: TT,

rs2287987: CT, rs30187: CT, rs26653: GG, rs17482078: CT) had a significant antagonistic

effect on BD (β = -0.89, adjusted P-value = 7.25×10−3). In six- order interaction effects, no sig-

nificant effects were observed (Table 2).

Table 2. Model-based multifactor dimensionality reduction algorithm for assessing the main and interaction effects of 11 ERAP1 SNPs on Behçet’s disease risk

(748 Iranian BD patients and776 healthy individuals).

Order Significant Effects Synergistic Effect Antagonism Effect Permutation

Test

N.

levels

Genotypes Coefficient Adj. P-

value

N.

levels

Genotypes Coefficient Adj. P-

value

Perm. P-value

Main Effects rs1065407 1 TT 0.23 0.034 0 NA NA NA 0.019

rs30187 0 NA NA NA 1 TT -0.26 0.041 0.18

rs469876 0 NA NA NA 1 AA -0.20 0.046 0.054

#2 order

interactions

rs2287987+rs1065407 1 CC+GG 12.74 2.12×10−10 0 NA NA NA 0.065

rs30187+rs1065407 0 NA NA NA 1 CT+TT -0.39 1.98×10−3 0.053

rs469876+rs1065407 2 AA+GG GG+GT 0.32 4.73×10−3 0 NA NA NA 0.181

rs30187+rs469876 2 CC+AA TT+AG 0.32 2.39×10−2 0 NA NA NA 0.091

rs26653+rs1065407 1 CC+GG 0.76 2.49×10−2 0 NA NA NA 0.210

rs26653+rs469876 2 CC+AA GG+AG 0.54 2.83×10−2 1 CT+AG -0.42 7.38×10−2 0.193

#3 order

Interaction

rs1065407+rs2287987

+rs26653

1 GG+CC+ CC 12.74 2.13×10−10 0 NA NA NA 0.243

rs1065407+rs2287987

+rs30187

1 GG+CC+ TT 12.73 2.15×10−10 1 TT+ CT+ CT -0.39 5.95×10−2 0.230

rs1065407+rs30187

+rs469876

3 GG+TT+AG GT

+CT+AA

0.43 2.87×10−2 1 TT+ CT+ AG -0.67 1.26×10−3 0.169

rs30187+ rs1065407

+rs26653

4 CC+GG+CC TT

+GT+GG

0.77 2.36×10−2 0 NA NA NA 0.137

rs1065407+rs2287987

+rs469876

2 GG+CC+GG GT

+TT+AA

0.04 9.77×10−1 1 TT+CT+AG -0.92 3.18×10−2 0.229

#4 order

Interaction

rs1065407+rs2287987

+rs30187+rs26653

7 GG+CC+ CC+CC

GT+CT+ TT+CG

0.53 1.94×10−1 2 TT+TT+CT+ GG

GT+CT+TT+CG

-0.88 7.50×10−3 0.184

rs1065407+rs2287987

+rs26653+rs469876

5 GG+CC+ CC+GG

GT+CT+ GG+AA

0.66 4.49×10−1 2 TT+TT+ CG+AG

GT+CT+GG+AG

-0.65 1.18×10−2 0.219

#5 order

Interaction

rs1065407+rs2287987

+rs30187+rs26653

+rs17482078

11 GT+TT+ CC+CC

+ TT TT+CT+TT

+CG+ CT

0.32 3.93×10−1 2 TT+CT+ CT+GG

+ CT GT+TT+ TT

+CG+ TT

-0.89 7.25×10−3 0.032

https://doi.org/10.1371/journal.pone.0227997.t002

ERAP1 polymorphisms interactions and susceptibly to BD

PLOS ONE | https://doi.org/10.1371/journal.pone.0227997 February 5, 2020 5 / 10

https://doi.org/10.1371/journal.pone.0227997.t002
https://doi.org/10.1371/journal.pone.0227997


More details of the results of 11 ERAP1 SNP-SNP interactions are presented in the supple-

mentary Table. Also, the entropy-based interaction network of 11 ERAP1 SNPs was shown in

Fig 1 by using MDR. To assess the sensitivity and cross-validity of the results of MB-MDR,

permutation results are shown in the last column of Table 2.

Discussion

In this study, we aimed to investigate the interactions of the ERAP1 gene polymorphisms and

their associations with BD susceptibility in an Iranian cohort. Using the MB-MDR package, we

have found plenty of synergistic and antagonistic significant interactions between ERAP1 poly-

morphisms and BD development. Considering the main effects, the TT genotype of rs1065407

had a synergistic effect on BD susceptibility. In the second-order interactions, CC genotype of

rs2287987 and GG genotype of rs1065407 had the most prominent synergistic effect (β = 12.74).

Furthermore, the mentioned genotypes also had significant interactions with CC genotype of

rs26653 and TT genotype of rs30187 in the third-order (β = 12.74 and β = 12.73, respectively).

Hence, we propose that the genotypes, as mentioned earlier of rs2287987, rs1065407, rs26653,

and rs30187, could have prominent interactions resulting in a higher risk of developing BD.

ERAP1 gene is located in the 5q15 chromosome, and its expression has been observed in

many tissues [23]. There are two main processes that ERAP1 is proposed to have a role in

them. First, this amino-peptidase is involved in optimizing the length of peptides to bind with

MHC-class I molecules by trimming their N-terminal in the endoplasmic reticulum (ER) [23].

Moreover, ERAP1 is involved in the cleavage process of various cytokine receptors such as

TNFR1, Interleukin 1 receptor II (IL-1RII), and Interleukin 6 receptor α (IL-6 α), which

results in receptor shedding [24, 25]. Previous studies have shown that the ERAP1 gene is asso-

ciated with other autoimmune disorders such as ankylosing spondylitis (AS) and psoriasis [26,

27]. Homozygosity of ERAP1 polymorphisms is proposed to be correlated with a lower risk of

AS and psoriasis, whereas it might be associated with a higher risk of developing BD [28, 29].

Fig 1. SNP-SNP entropy-based interaction network of 11 ERAP1 SNPs in 748 Iranian BD patients.

https://doi.org/10.1371/journal.pone.0227997.g001
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These differences could be justified by the fact that loading different peptides on MHC-class I

molecules can alter the subsequent immune response.

Our results indicated that the homozygous genotypes of minor alleles of rs2287987,

rs1065407, rs26653, and rs30187 had the most prominent interactions causing BD susceptibil-

ity. In this regard, it has been demonstrated that the frequencies of the homozygous alleles of

the ERAP1 gene are higher among BD patients [11]. As it was shown in further studies, these

combinations of homozygote ERAP1 SNPs could result in alternations in the surface electro-

static potential of the protein [30]. These changes might alter the trimming activity of ERAP1,

resulting in an altered composition of peptidome that is available for binding to HLA-B�51.

This claim could support the higher risk of developing BD observed in individuals carrying the

mentioned genotypes. Furthermore, some SNPs such as rs30187 (Arg528Lys) are placed proxi-

mal to the entrance pocket of the protein [28]. Amino acid changes in such positions could

modify the ideal structure of the protein and alter the enzyme activity.

Although several studies have investigated the association of ERAP1 polymorphisms and

BD, there have been some contradictory findings that motivated us to utilize a more complex

statistical method for addressing this issue. Zhang et al. evaluated 930 Chinese patients and

proposed that rs1065407 and rs10050860 might be associated with increased risk of BD [17].

Sousa and colleagues studied another Iranian cohort and proposed that rs10050860 and

rs13154629 might contribute to the genetic susceptibility of BD [15]. Moreover, Conde-Jaldón

et al. found that homozygous genotypes for the minor alleles of rs27044, rs10050860, rs30187,

and rs2287987 could be considered as risk factors for BD [10]. Takeuchi and colleagues found

a haplotype consisting of 10 SNPs (five of which were non-ancestral), which was associated

with a higher risk of developing BD, especially in those individuals who carry HLA-B�51 [30].

Interestingly, our results indicated that homozygote genotypes of minor alleles of rs30187 and

rs2287987 are associated with a higher risk of BD. rs30187 and rs2287987 are among those five

SNPs that their non-ancestral alleles were mentioned in Takeuchi’s study. Finally, the previous

study by our team and the study on the Turkish population revealed that ERAP1 polymor-

phisms have epistatic interactions with HLA-B�51 contributing to BD risk [7, 30].

In conclusion, this is the first study investigating the interaction of a particular gene’s SNPs

in BD patients by applying a novel data mining method (MB-MDR package). Model-Based

MDR as a flexible framework and a reference method to detect gene–gene or SNP-SNP inter-

actions has adequate power even the presence of genotyping errors, missing genotypes, and

genetic heterogeneity in this study compare with traditional methods (e.g., logistics regres-

sion). Finally, a significant interaction between minor genotypes of ERAP1 polymorphisms

was observed in BD patients in comparison to healthy individuals. rs2287987, rs1065407,

rs26653, and rs30187 interactions had the strongest association with developing BD in our

study population. Taken together, these findings imply the contribution of ERAP1 polymor-

phisms in BD pathogenesis. However, further studies investigating the interactions of different

genes could shed more light on this issue.
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