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Abstract: Liver fibrosis is the most significant prognostic factor in chronic liver disease (CLD).
Clinical practice guidelines recommend the use of non-invasive techniques, such as two-dimensional
shear-wave elastography (2D-SWE), to assess liver stiffness as a marker of fibrosis. Several other
factors influence liver stiffness in addition to liver fibrosis. It is presumed that changes due to
necro-inflammation modify the propagation of shear waves (dispersion). Therefore, new imaging
techniques that investigate the dispersion properties of shear waves have been developed, which can
serve as an indirect method of measuring liver viscosity (Vi PLUS). Defining the reference values in
healthy subjects among different age groups and genders and analyzing the factors that influence
these values is essential. However, published data on liver viscosity are still limited. This is the first
study that aimed to assess the normal range of liver viscosity values in subjects with healthy livers
and analyze the factors that influence them. One hundred and thirty-one consecutive subjects with
healthy livers were enrolled in this prospective study. The results showed that Vi PLUS is a highly
feasible method. Liver stiffness, age and BMI influenced the liver viscosity values. The mean liver
viscosity by Vi PLUS in subjects with healthy livers was 1.59 Pa·s.

Keywords: liver fibrosis; two-dimensional shear-wave elastography; liver inflammation; viscosity;
healthy subjects

1. Introduction

An estimated 2 million deaths each year are attributed to chronic liver diseases (CLD),
making it a global public health problem [1]. Considering the high rates of treatment
response in patients infected with hepatitis C virus (HCV) and improved management of
patients infected with hepatitis B virus (HBV) treated with analogues, hepatologists have
switched their focus to non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver
disease (ALD), as their incidence in developed countries is increasing. Regardless of etiol-
ogy, liver injury causes a series of inflammatory events that lead to chronic inflammation.
Chronic inflammation is a dynamic process that induces the development of liver fibrosis
(LF), eventually prompting the progression to cirrhosis and hepatocellular carcinoma. As it
marks a turning point in the evolution of CLD, LF is considered one of the most significant
prognostic factors [2]. Although liver biopsy is the gold standard for diagnosing and
grading LF, it has significant drawbacks: it is invasive and is prone to sampling errors
in addition to posing the risk of significant complications [3]. Therefore, there has been
a shift toward non-invasive techniques (NITs). Currently, the two main types of NITs
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to assess LF are serological biomarkers and imaging-based elastography methods. The
imaging techniques include transient elastography (TE), shear-wave elastography (SWE)
and magnetic resonance elastography (MRE) [4–6].

The newest of the SWE techniques is two-dimensional SWE (2D-SWE), which is an
ultrasound-based method that allows a real-time tissue examination. Liver stiffness (LS)
as a marker of fibrosis is assessed by measuring the propagation speed of shear waves
generated into the tissue by ultrasound (US) pulses. Elasticity is illustrated as a color-coded
elastogram, enabling both a qualitative and quantitative LS estimation. Several studies
ascertained the usefulness of 2D-SWE in assessing the stiffness of different organs such as
the liver, spleen, or thyroid [5,7–10].

LS is influenced by several other factors in addition to LF. Necro-inflammation,
cholestasis, liver venous congestion, and food ingestion may influence LS, consequently
acting as confounding factors [11–13]. Steatosis, cholestasis, and venous congestion are
easily determined by standard ultrasound, but necro-inflammation remains the only one of
these factors assessable only by liver biopsy.

Ideally, the hepatic shear-wave speed would increase uniformly with increasing fibro-
sis in a simple and precise manner not influenced by other factors. However, biological
soft tissues are rather viscoelastic, and LS is influenced by both elasticity and viscosity. In
rheological models of viscoelastic material, viscosity (Pa·s) is represented as a damper, and
elasticity is represented as a spring (kPa). Viscosity is the measure of resistance to shearing
motion. The tissue shows movement under gradual deformation instead of sudden defor-
mation. It is presumed that changes due to necro-inflammation modify the shear-wave
propagation (viscosity) [14]. However, the current algorithms used for assessing LS neglect
the viscosity properties of different tissues. Several studies showed that LS increases sig-
nificantly in early non-alcoholic steatohepatitis or alcoholic liver disease even if fibrosis
has not yet developed; therefore, an overestimation of LF can appear [12,15]. Thus, a more
accurate assessment of liver pathology would be attained by evaluating both the elasticity
and the viscosity [14].

US manufacturers have recently developed new imaging techniques that investigate
the dispersion properties of shear waves that can serve as an indirect method for measuring
viscosity. The Hologic SuperSonic Mach 30 equipped with the new UltraFast software
enables the simultaneous real-time quantification of LS by shear-wave elastography (2D-
SWE) and of liver viscosity by Viscosity Plane Wave UltraSound (Vi PLUS). However,
published data on liver viscosity are still limited. Therefore, establishing the normal liver
viscosity values and their normal variability in healthy subjects is a necessity in order to
differentiate normal from pathological [16,17]. To our knowledge, this is the first study
that aims to assess the normal ranges of liver viscosity values and to analyze the effects of
gender, age, and body mass index (BMI) in a large cohort of subjects with healthy livers.

2. Materials and Methods
2.1. Study Population

In this prospective monocentric study conducted between October 2019 and October
2021 in a tertiary Gastroenterology and Hepatology center, 131 consecutive subjects with
healthy livers were enrolled.

All subjects agreed to undergo elastographic measurements as well as clinical, ul-
trasound and biological examinations and provided written consent before study entry.
The study was approved by the local research ethics committee and the review board
of our university (042/10 December 2018). It was performed in accordance with the
last revised version of the World Medical Association Declaration of Helsinki (revised in
2000, Edinburgh).

The inclusion criteria were: age older than 18 years, normal abdominal US exami-
nation, normal LS values evaluated by TE (LS < 6 kPa), normal Controlled Attenuation
Parameter (CAP) value (lower than 248 dB/m) [18,19], without obesity (BMI lower than
30) [20], normal blood count, normal liver function tests (ALT (alanine transaminase):
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0–55 U/L, AST(aspartate transaminase): 5–34 U/L, albumin: 3.4–5 g/dL, total bilirubin:
0.2–1.2 mg/dL), normal INR (International Normalized Ratio): 0.8–1.07, and negative
HBV/HCV infection (negative hepatitis B antigen/negative anti-hepatitis C virus anti-
body), no oncological history, no history of chronic hepatopathy, no history of alcohol abuse
(defined as ≥3 drinks/day for men, ≥2 for women) [21], and no cardiovascular disease
and/or heart failure [22].

Exclusion criteria were: pregnant women and subjects who refused to provide in-
formed consent.

Data collected included age, gender, BMI, abdominal circumference, complete blood
counts, international normalized ratio, total bilirubin concentrations, and aminotrans-
ferases levels.

2.2. Examination Protocol

The subjects fasted for a minimum of 4 h before examinations. Firstly, TE and
CAP measurements were performed with a FibroScan® Compact 530 device (EchoSens®,
Paris, France). If the TE measurements were below 6 kPa, the CAP values were below
248 dB/m and the participants met the other inclusion criteria, the subjects were furtherly
examined using the Supersonic MACH® 30 US system (Hologic® SuperSonic® Imagine,
Aix-en-Provence, France). Gray-scale US, as well as 2D-SWE and Vi PLUS measurements,
were performed. All measurements were made by physicians with at least three years’
experience in US and US-based elastography, blinded to the patient’s clinical data. Subjects
were examined in the supine position with the right arm in maximal abduction after they
had rested for at least 10 min. The probe was placed between the ribs parallel to the
intercostal space.

2.3. Transient Elastography and Controlled Attenuation Parameter

TE and CAP measurements were performed in all subjects using FibroScan® Compact
530, using the standard M (3.5 MHz frequency) probe or the XL (2.5 MHz frequency) probe.
The automatic probe selection tool was used to choose the appropriate probe. Reliable
results (the median value of 10 valid measurements) were considered those with an in-
terquartile range interval (IQR) to the median ratio (IQR/M) < 30% [23]. The measurements
were expressed in kilopascals (kPa) with values ranging between 2.5 and 75 kPa for liver
stiffness and between 100 and 400 dB/m for steatosis.

2.4. Shear-Wave Elastography

A C6-1X single-crystal curved transducer (1 MHz to 6 MHz frequency) was used to
perform the 2D-SWE measurements. The 2D-SWE mode displays tissue elasticity in the
form of an easy-to-interpret color-coded image (Figure 1) and quantitative data. Local
estimation of tissue stiffness is expressed in kPa or m/s over a wide range of values. The
2D-SWE measurement box was placed at least 1 cm below the liver capsule in an area free
of other structures. Once the 2D-SWE map was appropriate, the patient was asked to hold
his breath while an image acquisition was performed. Then, the Q-Box™ was placed over
an area of relative homogeneous elasticity at a 3–5 cm depth. A reliable result was defined
as the median value of five 2D-SWE measurements (obtained from five frames at a stability
index SI > 90%) with an IQR/M < 30%.

2.5. Viscosity PLUS

Since Vi PLUS (Figure 1) is an additional parameter obtained at the same time as the
2D-SWE measurement, the same acquisition protocol and same US probe as in 2D-SWE
was used. Vi PLUS analyzes the propagation speed of the shear wave at several frequencies
and delivers information regarding the tissue shear-wave dispersion. The variations of the
shear waves’ velocity among frequencies are illustrated in the form of a color-coded map
as well as a numerical value, which is expressed in pascal-second (Pa·s) over a range of
values from 1.0 to 5.0 Pa·s.
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Figure 1. Illustration of a two-dimensional shear-wave elastography (2D-SWE) and a viscosity (Vi 
PLUS) measurement made in a healthy subject. Two-color scale maps are shown. In the upper half 
of the image, the 2D SWE map is displayed. Low stiffness is color-coded with blue, while red signi-
fies high stiffness. The viscosity map is illustrated in the lower part of the image. Colors close to red 
indicate low viscosity, while yellow–white represents high viscosity. Quantitative results of 2D-
SWE (expressed in kPa) and Vi PLUS (expressed in Pa·s) are displayed in the right part of the image. 
The mean, median, minimum, maximum, and standard deviation (SD) of the measurements, along 
with the depth, the diameter of the region of interest (ROI), and the Stability Index (SI) are also 
presented. 
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tion of numerical variables. Continuous variables were presented as mean and standard 
deviation (SD), while categorical variables were presented as frequency and percentages. 
Group comparisons of categorical variables were performed using Pearson’s x2-test.  

The individual impact of several parameters on the variance of Vi PLUS measure-
ments was assessed by using linear regression analysis and multivariate regression mod-
els. The predictors, in the final regression equations, were accepted according to a re-
peated backward-stepwise algorithm (inclusion criteria p < 0.05, exclusion criteria p > 0.10) 
in order to obtain the most appropriate prediction model. Then, 95% confidence intervals 

Figure 1. Illustration of a two-dimensional shear-wave elastography (2D-SWE) and a viscosity (Vi
PLUS) measurement made in a healthy subject. Two-color scale maps are shown. In the upper half of
the image, the 2D SWE map is displayed. Low stiffness is color-coded with blue, while red signifies
high stiffness. The viscosity map is illustrated in the lower part of the image. Colors close to red
indicate low viscosity, while yellow–white represents high viscosity. Quantitative results of 2D-SWE
(expressed in kPa) and Vi PLUS (expressed in Pa·s) are displayed in the right part of the image. The
mean, median, minimum, maximum, and standard deviation (SD) of the measurements, along with
the depth, the diameter of the region of interest (ROI), and the Stability Index (SI) are also presented.

2.6. Statistical Analysis

The statistical analysis was performed using MedCalc Version 19.4 (MedCalc Software
Ltd., Ostend, Belgium) and Microsoft Office Excel 2019 (Microsoft®, Redmond, Washington,
DC, USA). Descriptive statistics were applied for demographic, anthropometric and lab-
oratory findings. The Kolmogorov–Smirnov test was used for testing the distribution of
numerical variables. Continuous variables were presented as mean and standard deviation
(SD), while categorical variables were presented as frequency and percentages. Group
comparisons of categorical variables were performed using Pearson’s x2-test.

The individual impact of several parameters on the variance of Vi PLUS measure-
ments was assessed by using linear regression analysis and multivariate regression models.
The predictors, in the final regression equations, were accepted according to a repeated
backward-stepwise algorithm (inclusion criteria p < 0.05, exclusion criteria p > 0.10) in
order to obtain the most appropriate prediction model. Then, 95% confidence intervals
(CI) were calculated for each predictive test, and a p-value below 0.05 was considered to
concede statistical significance.

3. Results
3.1. Baseline Characteristics

One hundred and thirty-one consecutive adult subjects without known liver pathol-
ogy who underwent multiparametric US-based measurements were enrolled. Of these,
8/131 (6.1%) patients had invalid or unreliable US-based measurements; 123 subjects were
included in the final analysis. The baseline characteristics, demographic data, laboratory
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parameters, and LS values of the patients with reliable measurements are presented in
Table 1.

Table 1. Characteristics of subjects with reliable measurements.

Parameter Normal Subjects
n = 123

Mean age (years) 41.23 ± 13.40

Gender
Males 48/123 (39%)

Females 75/123 (61%)

Mean BMI (kg/m2) 24.02 ± 3.48

Abdominal circumference (cm) 84.70 ± 12.06

AST (UI/L) 29.99 ± 12.90

ALT(UI/L) 32.17 ± 16.60

GGT (mg/dL) 63.21 ± 42.57

Cholesterol (mg/dL) 190.16 ± 39.93

Triglyceride (mg/dL) 135.96 ± 43.29

Platelet count (×109 /L) 245.20 ± 68.32

LS by TE (kPa) 4.24 ± 1.18

2D-SWE (kPa) 4.98 ± 0.99

Vi PLUS (Pa·s) 1.59 ± 0.20

CAP (dB/m) 179.99 ± 51.65
Data are presented as numbers and percentages or mean ± standard deviation. ALT = alanine aminotransferase,
AST = aspartate aminotransferase, BMI = body mass index, GGT = gamma-glutamyl transferase, LS = liver
stiffness, TE = transient elastography, 2D-SWE = two-dimensional shear-wave elastography by SuperSonic
Imagine, Vi PLUS = viscosity plane wave ultrasound.

3.2. Feasibility of 2D-SWE and Vi PLUS

Using 2D-SWE and Vi PLUS, valid measurements were obtained in 93.9% (123/131).
Failure to acquire valid measurements with 2D-SWE and Vi PLUS in 2/8 patients was due
to an inhomogeneous filling of the color map (no or little signal). The rest of the unreliable
measurements were considered as such because of IQR/M > 30% or of the SI < 90%.

Abdominal circumference mean values were significantly higher for patients with un-
reliable measurements as compared to those with reliable measurements (95.75 ± 6.26 cm
vs. 84.70 ± 12.06 cm, p = 0.0115), while no significant differences were found for BMI mean
values (25.35 ± 2.73 kg/m2 vs. 24.02 ± 3.48 kg/m2, p = 0.2410).

The feasibility, defined as the likelihood of obtaining a valid measurement, was
analyzed. The combination of 2D-SWE and Vi PLUS had a very good feasibility of 93.9%.

3.3. Vi PLUS Values in Subjects with Healthy Livers and the Influence of Subjects’ Characteristics
on Vi PLUS

The mean liver Vi PLUS value obtained in subjects with healthy livers (n = 123) was
1.57 ± 0.20 Pa·s for females and 1.62 ± 0.21 Pa·s for males, respectively. No significant
differences between Vi PLUS mean values were found (p = 0.1872) (Figure 2).
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Table 2. Vi PLUS mean values according to age subgroups.

Age Subgroups Vi PLUS Mean Values
(Pa·s)

18–30 years: 44/123 1.49 ± 0.14

31–40 years: 18/123 1.58 ± 0.15

41–50 years: 27/123 1.61 ± 0.20

51–60 years: 20/123 1.70 ± 0.17

61–80 years: 14/123 1.72 ± 0.31
Data are presented as number or mean ± standard deviation; Vi PLUS = Viscosity Plane Wave Ultrasound.

Vi PLUS mean values increased with each decade of age (Figure 4). Mean values were
significantly lower in the 18–30 years subgroup compared to all the other subgroups (all
p < 0.05). In addition, significant differences were found between the 31–40 years group
and the 51–60 years group (p = 0.0276). No differences were found between Vi PLUS mean
values for subjects in the 41–50 years subgroup compared to those from the 51–60 and
61–80 years subgroups (p = 0.1115 and p = 0.1759, respectively), nor between subjects from
the 51–60 years subgroup and those from the 61–80 years one (p = 0.8102).

Diagnostics 2022, 12, x 7 of 12 
 

 

Figure 3. The distribution of Vi PLUS values in normal subjects. Approximately 88% of Vi PLUS 
values were in the range (1.4–1.8). 

Vi PLUS mean values according to age subgroups are summarized in Table 2.  

Table 2. Vi PLUS mean values according to age subgroups. 

Age Subgroups 
Vi PLUS Mean Values 

(Pa·s) 
18–30 years: 44/123 1.49 ± 0.14 
31–40 years: 18/123 1.58 ± 0.15 
41–50 years: 27/123 1.61 ± 0.20 
51–60 years: 20/123 1.70 ± 0.17 
61–80 years: 14/123 1.72 ± 0.31 

Data are presented as number or mean ± standard deviation; Vi PLUS = Viscosity Plane Wave Ul-
trasound. 

Vi PLUS mean values increased with each decade of age (Figure 4). Mean values were 
significantly lower in the 18–30 years subgroup compared to all the other subgroups (all 
p < 0.05). In addition, significant differences were found between the 31–40 years group 
and the 51–60 years group (p = 0.0276). No differences were found between Vi PLUS mean 
values for subjects in the 41–50 years subgroup compared to those from the 51–60 and 61–
80 years subgroups (p = 0.1115 and p = 0.1759, respectively), nor between subjects from the 
51–60 years subgroup and those from the 61–80 years one (p = 0.8102).  

 
Figure 4. Box-and-whisker distribution plots comparing Vi PLUS values according to five different 
age subgroups. VI PLUS values slightly increased with each decade of age. 

According to BMI (kg/m2), 73/123 (59.4%) were normal weight subjects (BMI (kg/m2) 
< 25), while 50 /123 (40.6%) were overweight subjects (25 ≤ BMI (kg/m2) < 30). Mean Vi 

Figure 4. Box-and-whisker distribution plots comparing Vi PLUS values according to five different
age subgroups. VI PLUS values slightly increased with each decade of age.

According to BMI (kg/m2), 73/123 (59.4%) were normal weight subjects (BMI (kg/m2) < 25),
while 50 /123 (40.6%) were overweight subjects (25 ≤ BMI (kg/m2) < 30). Mean Vi PLUS
values were significantly lower in subjects with normal weight (1.53 ± 0.19 Pa·s) compared
to overweight subjects (1.67 ± 0.19 Pa·s) (p = 0.0001) (Figure 5).
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In univariate regression analysis, the following parameters were associated with Vi
PLUS values: age (p < 0.001), BMI (p < 0.001), abdominal circumference (p < 0.001), LS
values by FS (p < 0.001) and LS values by 2D-SWE (p < 0.001), respectively. Multivariate
regression analysis was used to evaluate the independent factors associated with Vi PLUS
values. The regression model was built based on the forward stepwise method, and Akaike
information criteria (AIC) were used to appreciate the best model. The model including
age (p = 0.0043), BMI (p = 0.0023), and LS values by 2D-SWE (p < 0.0001) was associated
with Vi PLUS values. In addition, a good correlation between Vi PLUS measurements and
LSM by 2D-SWE (r = 0.66, 95%CI: 0.55–0.75, p < 0.0001) was found in normal subjects.

4. Discussion

The stage of fibrosis is known to be a factor associated with mortality in CLD. Al-
though liver biopsy is the gold standard for diagnosing and grading LF, it has important
drawbacks [3]. Therefore, there has been a shift toward non-invasive techniques (NITs) [24].
A substantial number of studies using LB as a reference have shown good accuracy of the
old 2D-SWE technique developed by SuperSonic Imagine to predict different stages of
fibrosis in CLD [25–27]. To date, many clinical guidelines recommend using non-invasive
tests for the detection and staging of liver fibrosis [5].

Ideally, the hepatic shear-wave speed would increase uniformly with increasing fi-
brosis in a simple and precise manner that is not influenced by other factors. However,
biological soft tissues are rather viscoelastic than entirely elastic [28]. Therefore, the role of
cofactors can be major. In addition to liver fibrosis, several factors, such as the presence
of steatosis or necro-inflammation, influence the viscoelastic properties of the liver tissue.
Given that these pathological conditions often coexist, it is crucial to determine if the LS
is increased due to inflammation or fibrosis. Therefore, US producers have developed
new parameters which are aiming to better assess CLD patients. Such a parameter is liver
viscosity, which is an imaging technology based on the shear-wave dispersion, and it is
considered to be a surrogate of necroinflammation [11,16,29].
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Several clinical studies have sought to evaluate the role of liver viscosity in the assess-
ment of CLD. Deffieux et al. were the first to publish data evaluating liver viscosity using
the SuperSonic US device. The clinical prospective study, which included 120 patients with
various CLD, showed that viscosity was less efficient in staging liver fibrosis than 2D-SWE
and also was a modest predictor of disease activity [30]. Chen et al. evaluated both stiffness
and viscosity in a study that included 45 patients. The results showed that viscosity is less
efficient in evaluating liver fibrosis compared with 2D-SWE [29]. Sugimoto et al. revealed
that stiffness was more useful than viscosity for predicting the stage of fibrosis. However,
in contrast with Deffieux’s study, viscosity was found to be useful for predicting the degree
of necroinflammation [16,31]. Moreover, a recently published study found higher Vi PLUS
liver values in COVID-19 patients with pulmonary injury compared to COVID-19 patients
without pulmonary injury [32].

When new techniques are introduced on the market, the feasibility analysis is essential
to establish their clinical applicability. Two-dimensional elastography techniques that are
already in use have shown to be very useful for liver fibrosis assessment. Several studies
have revealed that reliable LSMs can be obtained in 90–98% of patients [33–35]. This study
showed that the simultaneous measuring of liver viscosity and stiffness using the new
software embedded into SuperSonic Mach 30 is highly feasible, with 93.9% feasibility. A
clinical prospective study, which included 120 patients, published by Deffieux et al. showed
that the viscosity measurement technique from SSI had a 97.5% feasibility [30].

To properly understand these new US-based parameters, defining the reference values
in subjects with healthy livers among different age groups and genders and analyzing
the factors that influence these values is essential. Nevertheless, to our knowledge, no
other clinical study focused on defining the reference values of liver viscosity in subjects
with healthy livers. In our study, the mean viscosity value in subjects with healthy livers
was 1.59 ± 0.36 Pa·s. Consequently, a Vi PLUS measurement of around 1.59 Pa·s can be
considered as indicative of a normal liver without liver fibrosis or inflammation. Vi PLUS
mean values increased with age but were not influenced by gender. A study published by
Sabira et al. in 2021 showed that an age-associated increase in necroptosis contributes to
chronic inflammation in aging liver “inflammaging” [36,37]. Inflammaging refers to the
chronic, low-grade macrophage-centered inflammation of different tissues including the
liver that characterizes aging [38].

In order to reduce the confounding by hepatic steatosis or fibrosis on viscosity values,
subjects with fatty liver were excluded using B-mode ultrasound and CAP; also, subjects
with significant fibrosis were excluded using TE. However, the mean Vi PLUS values
obtained in subjects with normal weight were significantly lower compared to those
obtained in overweight subjects. A studied published by Luo et al. in 2021 concluded that
obesity is accompanied by a high level of inflammatory factors that can lead to steatosis
development. Another article published by Casagrande et al. in 2020 showed that hepatic
inflammation preceded hepatic steatosis [39]. Therefore, changes in shear-wave dispersion
due to liver inflammation could precede the changes due to steatosis development. The
univariate regression analysis shows that LS has a strong and significant effect on viscosity
values (r = 0.73, p < 0.001). As mentioned at the beginning of the discussions section, several
clinical reports published uncovered a similar effect [16,30,31].

However, further studies on patients with chronic hepatopathies, using liver biopsy
as a reference method, are needed for a better understanding of the various factors that
influence liver viscosity. The lack of LB in the present study is one of the main limitations.
Still, the present study included volunteers with no previous liver disease, and obtaining a
liver biopsy in this category of patients is challenging [5–7].

In addition to these limitations, the study is the first study to analyze the values of
hepatic viscosity in a large cohort of subjects with healthy livers and provides essential
information in this regard.
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5. Conclusions

Vi PLUS by SSI is a highly feasible method. Liver stiffness, age and BMI influenced the
liver viscosity values. The mean liver viscosity determined by Vi PLUS was significantly
higher in overweight individuals than in normal-weight subjects (1.67 vs. 1.53 Pa·s). Vi
PLUS values increased with age. The overall mean value of liver viscosity in the cohort of
participants with healthy livers was 1.59 Pa·s.
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