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ARTICLE INFO ABSTRACT

Objective: To construct a clinical diagnostic biomarker using state-of-the-art microstructural MRI in the motor
cortex of people with amyotrophic lateral sclerosis (ALS).

Methods: Clinical and MRI data were obtained from 21 ALS patients (aged 54 *+ 14 years, 33% female) and 63
age- and gender-matched controls (aged 48 + 18 years, 43% female). MRI was acquired at 3T and included T1-
weighted scan (for volumetrics), arterial spin labelling (for cerebral blood flow), susceptibility-weighted an-
giography (for iron deposition) and multiband diffusion kurtosis imaging (for tissue microstructure). Group
differences in imaging measures in the motor cortex were tested by general linear model and relationships to
clinical variables by linear regression.

Results: The ALS group had mild-to-moderate impairment (disease duration: 1.8 + 0.8 years; ALS functional
rating scale 40.2 + 6.0; forced vital capacity 83% + 22%). No age or gender differences were present between
groups. We found significant group differences in diffusion kurtosis metrics (apparent, mean, radial and axial
kurtosis: p < .01) and iron deposition in the motor cortex (p = .03). Within the ALS group, we found significant
relationships between motor cortex volume, apparent diffusion and disease duration (adjusted R* = 0.27,
p = .011); and between the apparent and radial kurtosis metrics and ALS functional rating scale (adjusted
R? = 0.25, p = .033). A composite imaging biomarker comprising kurtosis and iron deposition measures yielded
a maximal diagnostic accuracy of 83% (81% sensitivity, 85% specificity) and an area-under-the-curve of 0.86.
Conclusion: Diffusion kurtosis is sensitive to early changes present in the motor region in ALS. We propose a
composite imaging biomarker reflecting tissue microstructural changes in early ALS that may provide clinically
valuable diagnostic information.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a rapidly-progressive neuro-
degenerative disorder characterized by death of the upper and lower
motor neurons (Kiernan et al., 2011). Most people survive for only two
to four years after diagnosis; however, survival can be extended by
several months with medications and optimal clinical support. There-
fore, making a definite diagnosis of ALS as early as possible is of the

utmost importance. Accurate early recognition of ALS and classification
into disease subtypes would greatly facilitate faster triage of appro-
priate care, and would also enable trials of new interventions. Early
diagnosis is also especially important in ALS because the early stages of
the disease are when the patient has the greatest potential to benefit
from treatment (Turner et al., 2009).

Current ALS diagnosis is based on a combination of neurological
examination and qualitative radiological evaluation (Brooks, 1994;
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Miller et al., 1999). However, this paradigm is fundamentally limited:
ALS is primarily a neurodegenerative disorder and clinical observations
represent the “downstream” changes caused by the disease rather than
the disease process per se. Similarly, conventional imaging signs of ALS
used in current clinical radiology (e.g. white matter hyperintensities
and atrophy of the corticospinal tracts) are highly non-specific and
represent late phase changes (Turner and Modo, 2010). It is therefore
pertinent to investigate ways of more directly detecting the micro-
structural changes occurring in the early stages of ALS. If measurable,
such signals may lead to an earlier and/or more definite diagnosis and
may also provide more accurate and specific ways to track disease
progression over time. In turn, this would enable more timely and ef-
fective institution of management strategies and earlier enrolment into
clinical trials.

Currently, the main role of conventional MRI is in differentiation of
ALS from mimic disorders (Vucic et al., 2014). Some consistent cohort-
level findings have been made but these lack the sensitivity and spe-
cificity for meaningful clinical use. The most robust findings include
focal atrophy of cortical grey matter (GM) predominantly in the motor
cortex and in temporal and frontal lobes, depending on phenotype
(Chang et al., 2005; Filippini et al., 2010; Grieve et al., 2015; Turner
et al., 2007); hyperintensity of the corticospinal tracts on T2-weighted
images (Hecht et al., 2001; Rajagopalan and Pioro, 2017) and; changes
to diffusion tensor properties and directionality in the corticospinal
tracts and other white matter tracts (Bartels et al., 2008; Sach et al.,
2004; Sage et al., 2007).

MRI is a rapidly changing field, and some recent advanced MRI
acquisition and analysis techniques are yet to be fully evaluated in ALS.
Diffusion kurtosis imaging (DKI) is a new technique capable of mea-
suring the microstructural complexity of tissue (Steven et al., 2014).
DKI is thought to be primarily impacted by glial activity, including
reactive astrogliosis (Zhuo et al., 2012), but is yet to be applied in ALS.
In comparable studies of neurodegenerative disease (Li et al., 2018;
Struyfs et al., 2015), diffusivity is generally increased, while diffusion
kurtosis is decreased. Another technique, quantitative susceptibility
mapping (QSM), is sensitive to changes in local susceptibility due to the
presence of diamagnetic (calcium) and paramagnetic (iron) materials.
Iron deposition was reported to be elevated in the motor cortex in ALS
but did not correlate with disease severity (Schweitzer et al., 2015;
Costagli et al., 2016). A single study has applied arterial spin labelling
(ASL) to measure tissue perfusion, finding correlations with disease
severity in cingulate and frontal cortices, however this study did not
image the motor cortex and used very low image resolution
(9.0 X 5.0 x 2.5mm) (Rule et al., 2010). Such advanced MRI techni-
ques could potentially generate signal relating to disease processes
occurring “upstream” of more macroscopic or indirect measures like
atrophy or T2 signal, and may therefore be better able to detect early
disease or sub-clinical involvement of upper motor neurons in at-risk
individuals (Turner and Modo, 2010). In particular, DKI may improve
our ability to characterise grey matter abnormalities, which has pre-
viously been difficult because of the isotropic diffusion profile of grey
matter (Zhuo et al., 2012).

The preliminary technical aim of the present study was to test
whether there are abnormalities in state-of-the-art MRI measures in the
motor cortex grey matter of people with ALS and whether they reflect
disease severity. Our primary clinical objective was to design a trans-
latable composite metric for diagnosis based on these findings. We
hypothesised that in the motor cortex of people with ALS: (a) iron
concentration would be higher, (b) blood flow would be lower and (c)
kurtosis-based measures would be decreased compared to controls,
while diffusion-based metrics would be increased. We proposed that
these measures would be associated with disease severity and that a
biomarker based on these outcomes would be sensitive to ALS diag-
nosis.
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2. Materials and methods
2.1. Subjects

Twenty-one people with ALS and 61 matched healthy control sub-
jects underwent MRI and neurological assessment at Macquarie Medical
Imaging, Macquarie University Hospital, New South Wales, Australia.
Clinically-definite diagnosis of ALS was made according to the El
Escorial criteria (Brooks, 1994; de Carvalho et al., 2008). ALS subjects
were recruited from the Multidisciplinary Motor Neurone Disease Clinic
at Macquarie University. Participants had no history of a psychiatric or
cardiac disorder and no contraindication to MRI scanning. The ALS
functional rating scale revised version (ALSFRS-R) was scored by DBR
during clinical review at time of MRI scanning. Disease duration be-
ginning at the first date of definite diagnosis was recorded from medical
records. Forced Vital Capacity (FVC) was obtained via spirometry
testing in the standing position (EasyOne Spirometer, Medizintechnik
AG, Switzerland). Three trials were performed with the best FVC result
recorded.

2.2. Standard protocol approvals and patient consents

Written informed consent was obtained from all study participants
and the study had institutional ethical approval.

2.3. Image acquisition

A 3 Tesla GE Discovery MR750w MRI scanner (GE Healthcare,
Milwaukee, WI) with DV25.0 software and 32-channel Nova head coil
(Nova Medical, Wilmington, MA) were used to acquire the following:

e Contiguous sagittal MPRAGE T1-weighted image with prospective
motion correction. The parameters were as follows: TR = 8.39 ms,
TE = 3.17ms, TI = 900 ms, flip angle = 8°, matrix = 256 X 256,
198 slices, voxel dimensions = 1 mm isotropic, acquisition time:
4:32.

e Pseudo-continuous 3D enhanced arterial spin labelling (eASL). The
parameters for the labelled (perfusion-weighted) image were as
follows: TR =6592ms, TE =12.18ms, TI=1000ms, flip
angle = 111°, matrix = 128 x 128, 48 slices, voxel dimen-
sions = 1.875 x 1.875 X 3.000 mm, post-label delay = 1000 ms,
label duration = 4000 ms, acquisition time: 5:42. The image volume
was positioned to cover at least one slice above the most superior
portion of the cortex and the labelling plane approximately 2cm
below the imaging slab. A proton density (PD) image with the same
resolution and voxel dimensions was acquired for cerebral blood
flow (CBF) quantification.

o 3D multi-echo gradient-echo T2* enhanced susceptibility-weighted

angiography (eSWAN). The parameters were as follows:
TR = 58.1 ms, TE = 12.74 ms, flip angle = 15°, ma-
trix = 512 X 512, 50 slices, voxel dimen-

sions = 0.47 x 0.47 x 3.00 mm, acquisition time: 3:55. Real and
imaginary components for each echo were exported for post-pro-
cessing.

Diffusion data were acquired using a multi-shell multi-band pulse
sequence with a phase offset applied to each multiband component.
A multiband factor of three was used resulting in 66 acquired slices.
A further diffusion-weighted sequence was also acquired (six di-
rections) along with a reversed phase-encoded (blipped) non-diffu-
sion (b = 0) volume. The protocol comprised three shells with b-
values of 700, 1000, and 2800 mm/s?, respectively and 140 unique
gradient directions. Other parameters were as follows:
TR = 4323 ms, TE = 91.80 ms, flip angle = 90°, ma-
trix = 128 x 128, voxel dimensions = 2mm isotropic, acquisition
time: 11:42. This scheme was based on those proposed by Jones,
Horsfield et al. (Jones et al., 1999), in which data points are evenly
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distributed over a unit sphere in Q-space.
2.4. Image analysis

A transit time corrected CBF map was quantified based on the ASL
data (Dai et al., 2012) and motion artefacts in the perfusion data were
reduced with a preparation sequence using adiabatic pulses (Dai et al.,
2012). Phase and magnitude components from each echo of the eSSWAN
were processed in the Morphology-Enabled Dipole Inversion (MEDI)
toolbox (Liu et al., 2012) to reconstruct QSM images that may reflect
iron concentration. Raw diffusion data were unaliased using an in-
house MATLAB script. The first volume (b = 0) from the first blipped
sequence and the reverse-blipped sequence were extracted and pro-
cessed using TOPUP followed by Eddy to correct geometric distortions
and subject motion (Andersson and Sotiropoulos, 2016; Andersson
et al., 2003).

FreeSurfer (version 6; http://surfer.nmr.mgh.harvard.edu) was used
to automatically segment the T1-weighted image into grey-matter ROIs
based on gyral and sulcal landmarks. The FreeSurfer-measured motor
cortex volumes were extracted from each subject's “aparc.a2009s” stats
file from the Destrieaux atlas (Destrieux et al., 2010) and normalised to
(divided by) the subject's total brain volume, as extracted from the
“BrainSegVol” FreeSurfer routine. Within each subject, the same ROIs
were used for both DKI and diffusion scalars. These ROIs were perso-
nalised (based on the FreeSurfer output) and therefore different for
each subject. Brain parenchymal fraction was measured as the ratio of
brain parenchymal volume to intracranial volume.

A rigid (6 degrees of freedom) transformation between the T1-
weighted brain from FreeSurfer and the perfusion-weighted image was
created using FSL FLIRT and applied to the motor cortex ROIs so that a
low-resolution version of the mask was overlaid on the perfusion data.
The transformed mask was thresholded at 0.7 to include only voxels
which contained a high proportion of GM. The mean values of voxels
within the masks on the CBF image were used as our estimates for
motor cortex CBF. A similar process was used to estimate the suscept-
ibility of the motor cortex from the QSM images. Relative iron con-
centration was inferred as the susceptibility of the motor cortex with
respect to the susceptibility of a region of no involvement (as in
Schweitzer et al. (2015) and Costagli et al. (2016)), for which we chose
the calcarine sulcus. The calcarine sulcus was chosen because it is re-
latively distant from the motor cortex geographically, it is distinct
functionally, and is not conventionally thought to be involved in ALS
pathology.

Diffusion kurtosis scalars were calculated using the GNC pipeline
(version 3.3; GE Global Research, Niskayuna, NY, USA). In short, head
motion and eddy current corrections were performed by means of rigid
and cubic image registration of each diffusion volume to the non-dif-
fusion-encoded image using Elastix (Klein et al., 2010). Gradient non-
linearity correction of diffusivity (Tan et al., 2013) was performed.
Then, model-based denoising (Sperl et al., 2017) was applied to effec-
tively remove outliers in the multi-shell diffusion data and diffusivity
maps, including kurtosis maps were generated (Sprenger et al., 2016).
These included the following conventional diffusion scalars: fractional
anisotropy of diffusion (FA), apparent diffusion coefficient (ADC), axial
diffusion (AD), radial diffusion (RD), mean diffusion (MD) and; the
kurtosis scalars: FA of kurtosis (FAK), apparent kurtosis coefficient
(AKQ), axial kurtosis (AK), radial kurtosis (RK) and mean kurtosis (MK)
(Qi et al., 2009; Tuch, 2004). The software included correction for
nonlinearity intrinsic to the MRI gradients (Tan et al., 2015). An ex-
ponential ADC image was registered to the FreeSurfer brain and the
resulting transformation was applied to the motor cortex masks. To
limit partial volume effects, we applied two thresholds: first, a
threshold of 0.7 was applied to the registered mask (thus, retaining only
voxels with 80% or more overlap with the original mask) and, second,
we rejected voxels with an FA = 0.2 (i.e., those containing a substantial
CSF component (Shahim et al., 2017)). Finally, the mean values of the
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diffusion and kurtosis scalars within the thresholded cortical masks
were recorded as above.

2.5. Statistics

We classified FA/FAK and ADC/AKC as “primary” diffusion/kur-
tosis metrics given their wide application and accessibility. We classi-
fied the mean, radial and axial diffusivity/kurtosis metrics as “sec-
ondary” metrics which are less biologically intuitive and validated but
which are still of potential value to explore.

Because ALS symptoms tend to present unilaterally, we dis-
tinguished between symptomatic and non-symptomatic sides, rather
than left and right (with symptoms presenting on the left side of the
body corresponding to death of the right upper motor neurons and vice-
versa). The laterality of initial symptom presentation, as recorded in the
patients' medical documentation was used to determine this. For con-
trols, the average of left and right hemispheres was used.

Frequency distributions for all variables were tested for normality
using Shapiro-Wilk tests. Duration of disease was the only variable to
deviate significantly from a normal distribution.

Comparison of imaging measures in the symptomatic and non-
symptomatic hemispheres was performed by paired two-tailed t-test.
We also compared left and right hemisphere CBF scores in controls to
test for systematic left-right effects due to variation in the B1 + field to
which the ASL is sensitive.

To assess differences in imaging measures between ALS and control
groups while controlling for demographic variables, a multivariate
general linear model was applied, with the clinical variables as the
dependent variables, the imaging measures (for the symptomatic
hemisphere motor cortex) as the independent variables and age and
gender as covariates. For each, we calculated the required sample size
for significance in a two-tailed t-test, assuming equally sized groups, a
power of 0.9 and an alpha of 0.05.

Based on the results of the group comparison, we formed a com-
posite variable to combine the strongest effects, an “early diagnostic
predictor”. We then tested the sensitivity and specificity of this variable
by analysis of the receiver operating characteristic curve to assess its
ability to classify individuals into patient or control groups over a range
of thresholds. Over the full range of relevant thresholds, we calculated
the true positive and false positive rates. The threshold with the max-
imal sum of these two was determined as the optimal threshold.

To test relationships among the imaging measures, we performed
Pearson correlation tests for the main imaging measures in the symp-
tomatic hemisphere of the ALS group. These were brain parenchymal
fraction, volume, CBF, iron concentration, ADC, AKC, FA, FAK and the
diagnostic predictor variable. Ignoring tests between variables derived
from the diffusion data (which were all strongly intercorrelated), this
amounted to 26 tests. We first defined “significance” against the un-
corrected alpha level, 0.05, then against the Sidak-adjusted alpha level
for 26 tests, 0.00197 (Sidak, 1967).

Variables were included or excluded in linear regression models
based on an exploratory univariate analysis with a p-value threshold of
0.1. Relationships between imaging measures and clinical variables
were tested, independent of age, gender and whole-brain volume, by
backwards stepwise linear regression with disease duration, ALSFRS-R
and predicted FVC as the dependent variables and using 0.10 and 0.15
as the inclusion and exclusion thresholds, respectively. We confirmed
that the residuals were normally-distributed for each regression.

2.6. Data availability statement
Anonymised group data and analysis algorithms can be made

available upon reasonable request from a qualified investigator for the
purpose of replicating procedures and results.
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Table 1
Demographic and clinical information for amyotrophic lateral sclerosis (ALS)
and control groups.

ALS Control

N % N %
Number 21 - 61 -
Number of females 7 33 28 43
Number with left-symptomatic limb® 7 33 - -

Mean SD Mean SD

Age (years) 54 14 48 18
Age of symptom onset (years) 54 13 - -
Disease duration (years) 1.8 0.8 - -
ALSFRS-R 40.2 6.0 - -
FVC (% of predicted) 83 22 - -
BPF 0.725 0.029 0.738 0.031

ALS, amyotrophic lateral sclerosis; ALSFRS-R, amyotrophic lateral sclerosis
functional rating scale (revised), scored from 0 (most impaired) to 48 (no im-
pairment); FVC, forced vital capacity; SD, standard deviation; BPF, brain par-
enchymal fraction.

# One with bulbar-only symptoms and the remaining 13 with symptoms in
the right limb.

3. Results
3.1. Sample characteristics

Table 1 shows the demographic and clinical information for each
group. Fig. 1 shows example slices of the kurtosis and QSM data. The
ALS group was predominantly male (67%), with the laterality of onset
in the limbs being predominantly on the right (67%). The control group
was matched for mean age (two-tailed t-test: t = —1.60, p = .112) and
number of females (chi-squared test: x2 = 0.80, p = .371). Most ALS
subjects were imaged within 2 years of diagnosis (mean disease dura-
tion at time of imaging: 1.8 years). Average ALSFRS-R was 40.2 *= 6.0
(out of a maximum 48, with higher scores indicating less impairment).
Subject brains were not atrophied in either group, with brain par-
enchymal fractions of 0.725 and 0.738 for the ALS and control groups,
respectively (compared to a sample-size-weighted mean brain par-
enchymal fraction from normative data of 0.714 (Vagberg et al.,
2017)). Frequency distributions were weakly right-tailed for ALSFRS-R
and predicted FVC (more patients being less impaired), left-tailed for
disease duration (more patients having ALS for a shorter duration) and
normal for age. Duration of disease and ALSFRS-R were non-normally

Mean Kurtosis Axial Kurtosis Radial Kurtosis Kurtosis FA

~-

/

-~

Mean Diffusivity Radial Diffusivity
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distributed (Shapiro-Wilk test: W =0.75, p < .001; W = 0.85,
p = .016). Our study was powered at 0.9 for large effect sizes (for a
two-tailed t-test: nz > 0.14, Cohen's d = 0.82).

3.2. Symptomatic versus non-symptomatic hemisphere

Within the ALS group, paired t-tests revealed significant hemi-

spheric differences for motor cortex volume (symptomatic
mean = 5.0 mL, non-symptomatic mean = 5.5mL, 10%, t= —2.84,
p = .010) and relative iron concentration (symptomatic mean = —6.9,

non-symptomatic mean = —13.8, t = 2.70, p = .015), with the symp-
tomatic hemisphere cortex having smaller volumes and greater iron
concentrations. In contrast, no significant hemispheric differences were
found for perfusion, diffusion or kurtosis measures. In controls, no
hemispheric differences were detected for any imaging measure except
for non-significant trends toward lower ADC (t = —2.00, p = .052) and
lower AD (t = —1.98, p = .055) in the left hemisphere. Comparison of
the left and right hemisphere CBF values in controls revealed no sig-
nificant difference (paired t-test: t = —0.31, p = .761).

3.3. Between-group differences in imaging measures

Table 2 summarises the group differences for the imaging measures.
The diffusion kurtosis measures, AKC, MK, AK and RK, were all sig-
nificantly lower in the ALS group, whereas the corresponding conven-
tional diffusion measures were not significantly different. The ALS
group showed greater iron concentrations in the motor cortex. No sig-
nificant motor cortex perfusion differences were detected. Accordingly,
the number of subjects needed to observe a significant difference in a
two-tailed t-test at a power of 0.9 was substantially reduced in all
kurtosis measures compared to standard diffusion tensor metrics; for
example, the performance improvement from ADC to AKC as a test
translates to a 79% reduction in the required sample size from 220
subjects to 46 subjects.

Based on these findings, we reasoned that ALS diagnosis would be
strongly predicted by a simple translatable metric which combined
multiple imaging outcomes. We therefore defined an “early diagnostic
predictor” composite variable. To do this, we first decided to include
only the variables that were significant in the group comparison ana-
lysis. Because the group difference for the kurtosis metrics (MK, AK, RK
and AKC) was in the same direction, they were multiplied together
(each one as the average of both hemispheres to minimise biological
noise because we previously showed that they were symmetric). Then,
the relative iron concentration was introduced as the numerator, be-
cause its relationship in the group comparison was opposite to that of

Quantitative Susceptibility Mapping Motor Cortex Masks

Fig. 1. Example axial slices from each of the diffusion kurtosis scalars, quantitative susceptibility mapping images and 3D motor cortex regions of interest from one

control subject.
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Table 2
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Differences in imaging measures in the motor cortex between ALS (contralateral to the symptomatic limb) and control group (average of left and right). Results are
from a multivariate GLM controlling for age and gender.

ALS Mean (SD) Control mean (SD) F p Effect size (n2) Required sample size for a t-test at 0.9 power
Non-diffusion measures
Motor cortex volume (mm®) 4.79 x 1073 (3.08 x 10~ %) 509 x 1073 (4.72 x 10™%) 297  0.092 0.066 78
Blood flow (mL/100 g/min)  50.1 (9.6) 48.3 (10.2) 0.77 0.385 0.018 1276
Relative iron concentration 8.7 (7.9) —-12.5 (20.9) 5.24 0.030 0.168 26
Primary diffusion/Kurtosis measures
Apparent diffusion/Kurtosis coefficient
ADC 8.44 x107%(3.17 x 107% 8.33x 107 *(1.58 x 107°%) 3.89 0.055 0.085 220
AKC 0.953 (0.049) 0.988 (0.053) 10.03 0.003 0.193 46
Fractional anisotropy of diffusion/Kurtosis
FA 0.169 (0.010) 0.168 (0.017) 1.52 0.225 0.035 8178
FAK 0.149 (0.012) 0.140 (0.010) 3.61 0.064 0.079 66
Other diffusion/Kurtosis measures
Mean diffusivity/Kurtosis
MD 8.62 x 107*(2.06 x 10™% 9.60 x 107* (2.04 x 10™% 0.55  0.464 0.013 160
MK 0.744 (0.039) 0.775 (0.034) 12.28 0.001 0.226 76
Axial diffusivity/Kurtosis
AD 9.93x 107 (3.94 x107°) 9.78 x 107* (1.69 x 107°) 2.36  0.132 0.053 216
AK 0.674 (0.041) 0.706 (0.026) 16.29 < 0.001 0.280 62
Radial diffusivity/Kurtosis
RD 7.69 x 107%(2.93 x 1075  7.61 x 10~ #(2.01 x 107°) 3.88  0.056 0.085 516
RK 0.811 (0.038) 0.841 (0.040) 11.29 0.002 0.212 90

ALS, amyotrophic lateral sclerosis; ADC, apparent diffusion coefficient; AKC, apparent kurtosis coefficient; FA, fractional anisotropy of diffusion; FAK, fractional
anisotropy of kurtosis; MD, mean diffusivity; MK, mean kurtosis; AD, axial diffusion; AK, axial kurtosis; RD, radial diffusion; RK, radial kurtosis; SD, standard

deviation.
* p < 0.05.
= p < 0.01.

the kurtosis metrics. For this reason, the early diagnostic predictor was
constructed as a ratio of these variables, with a larger value consistent
with a greater probability of disease. A negative value in the diagnostic
predictor indicates a low value for relative iron concentration and a
high value for kurtosis measures. Because the relative iron concentra-
tions were often negative (i.e. the motor cortex had less iron than the
calcarine sulcus), it is possible for the diagnostic predictor to also be
negative.

Early Diagnostic Predictor

_ Symptomatic Hemisphere Relative Iron Concentration
™ [ Right AKC + Left AKC Right MK + Left MK Right RK + Left RK
2 X 2 x 2

< ( Right AK + Left AK )
2

The early diagnostic predictor was strongly significantly different
between ALS and control groups (two-tailed t-test: t = 3.86, p < .001;
Mann-Whitney U test: U = 196, p < .001; Fig. 2). Post-hoc sensitivity
and specificity analysis revealed a good classification performance
using this measure (area-under-the-curve; AUC = 0.86). The optimal
discrimination threshold (maximal sum of true positive and false ne-
gative rates) was a score of 0.013 (corresponding to a z-score of 0.3).
This threshold conferred a classification performance of 81% sensi-
tivity, 85% specificity and an accuracy of 83%. One hundred percent of
cases with a score below —0.111 were controls, while 100% of cases
with a score above 0.091 had ALS.

3.4. Relationships between imaging measures and clinical status

3.4.1. Disease duration

In the ALS group only, supra-threshold linear univariate relation-
ships were present between disease duration and the following symp-
tomatic hemisphere motor cortex imaging measures: volume
(r= —0.37, p=.095), ADC (r = 0.42, p = .065) and FAK (-0.42,
p = .067). No associations between relative iron concentration or per-
fusion and disease duration were detected. A regression model was
formed to evaluate the relationship among these variables and disease
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Early Diagnostic Predictor

Fig. 2. Histograms comparing amyotrophic lateral sclerosis (ALS) and control
groups on the early diagnostic predictor composite variable. This variable had a
normal distribution for both control and ALS groups.

duration independent of age, gender and whole-brain volume. The final
model was significant and contained only motor cortex volume, FAK
and ADC (adjusted R2 = 0.35, F = 4.46, p = .019). The magnitude of
this relationship corresponded to a 1 mL lower motor cortex volume for
every year of disease duration post-diagnosis, with similarly-weighted
changes in FAK and ADC (standardized coefficients: —0.35, 0.39 and
—0.30, respectively).

3.4.2. Disease severity
For ALSFRS-R, the following variables had supra-threshold uni-
variate relationships: ADC (r = —0.38, p =.097), AKC (r = 0.42,
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p = .068) and RK (r = 0.44, p = .050). We confirmed that no other
imaging measures were associated with disease severity by inspection
of scatter plots. Backwards linear regression of ADC, AKC and RK found
a good fit for a model retaining only AKC and RK (adjusted R* = 0.25,
F = 4.18, p = .033), with both variables being positively related to
ALSFRS-R and having similar contributions to the model (standardized
coefficients: 0.37 and 0.40, respectively). The magnitude of the re-
lationship corresponded to reductions of Z = 0.41 (absolute change:
0.020) in AKC and Z = 0.42 (absolute change: 0.022) in RK per point
reduction on the ALSFRS-R.

3.4.3. FVC

For predicted FVC, there were no supra-threshold linear univariate
tests. Inspection of scatter plots for non-linear trends did not identify
any candidate independent variables.

3.5. Relationships among imaging measures

An exploratory analysis of relationships among the main imaging
measures (ALS group symptomatic hemisphere motor cortex) revealed
significant correlations between whole-brain parenchymal fraction with
CBF (r=0.25, p=.039), FA (r= —0.25, p=.045) and FAK
(r = —0.34, p = .006). Volume was significantly correlated with AKC
(r = 0.29, p = .020). Iron concentration was not significantly corre-
lated with any other imaging measure. However, none of the above
correlations were significant when considering multiple comparisons.

4. Discussion

Earlier and more definite diagnosis of ALS is critical for providing
more effective care, subtyping and trial enrolment. MRI has the po-
tential to provide information about the underlying microstructural
changes in the brain that may precede the gross radiological signs
currently used in diagnosis. We applied a cutting-edge MRI protocol in
a sample of newly-diagnosed ALS patients, finding strong group-level
abnormalities in multiple diffusion kurtosis-based microstructural
imaging measures and relationships to disease severity. Our data in-
formed the design of a promising composite diagnostic biomarker,
which has a clinically-meaningful accuracy but which requires further
validation.

The proposed early diagnostic predictor successfully distinguished
ALS from control participants with a maximal accuracy of 83% and an
AUC of 0.86. This compares well to a meta-analysis of imaging studies
in ALS, which showed a sample size weighted mean AUC of 0.75 across
11 studies and a total of 221 patients (CL: 0.66-0.83) (Foerster et al.,
2013). Our biomarker had a higher sensitivity than previous studies of
81% versus 68% (CI: 62-75%), and was comparable to the most specific
test previously published by Roccatagliata, Bonzano et al.
(Roccatagliata et al., 2009), who created a marker combining FA with
ADC (83%, CI: 63-103%; n = 14). Relatively few studies have in-
corporated metrics derived from the motor cortex grey matter into
biomarkers (Bede et al., 2017; Schuster et al., 2016). The proposed
biomarker requires further investigation in larger and more clinically
heterogeneous samples.

The DKI measures, AKC, MK, AK and RK (but not FAK), were ab-
normal in ALS, consistent with our hypothesis, and were superior to
conventional tensor-based diffusion measures in differentiating ALS and
control groups. The radial measures may relate to axonal diameters and
the axial measures to axonal degeneration (Alexander et al., 2007),
although these may be less meaningful in GM, where the axonal volume
fraction is lower. That the direction and magnitude of differences varied
between kurtosis and their corresponding tensor-based measures con-
firms that DKI provides an entirely different type of imaging metric
(Steven et al., 2014). The lack of group difference in either FA or FAK
suggests that the isotropic property of GM is not altered by the early
effects of ALS. Kurtosis imaging allows assessment of isotropic
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structures (i.e., grey matter; previously a major limitation of diffusion
imaging (Steven et al., 2014)), which may explain why the kurtosis-
based metrics outperformed diffusion-based metrics in this study. We
found no significant differences in diffusion or kurtosis metrics between
symptomatic and non-symptomatic hemispheres. In the context of the
significant group differences, this indicates that abnormal diffusion
kurtosis is present in the motor cortex in early ALS bilaterally.

The iron concentration and blood flow measurements were also
compared between groups. We hypothesised that there would be a
measurable increase in motor cortex iron concentration in ALS, thought
to result from cell death (Andersen et al., 2014). In agreement with two
previous studies, we found significantly greater iron concentrations in
ALS compared to controls (Schweitzer et al., 2015; Costagli et al.,
2016). We hypothesised a reduced blood flow in the motor cortex re-
flecting reduced metabolic demand or dysregulation of flow but did not
observe any significant difference. This may indicate either that flow is
not altered in early ALS, that it is altered by too small of a magnitude to
confer a significant difference in our sample or that we could not ob-
serve a significant difference for methodological reasons; e.g., partial
volume effects or the relatively short post-label delay. Previous studies
of glucose metabolism and CBF in ALS using PET have been equivocal,
reporting reductions in flow not specific to the motor cortex (Dalakas
et al., 1987) or mild hypometabolism in small samples (Hatazawa et al.,
1988), which are less-evident with shorter disease durations (Endo
et al., 2017).

Imaging measures were only mildly related to disease severity,
which may be partly ascribed to the relatively small spread and non-
normal distributions of clinical variables in our sample. There was a
trend toward an association between ALSFRS-R scores and a linear
combination of the AKC and RK metrics, which were both decreased in
more severely-impaired patients. While further interpretation of this
relationship is not substantiated, we note that previous studies have
shown relationships between disease status and kurtosis metrics in GM
(Hori et al., 2014; Cauter et al., 2012; Bester et al., 2015). For disease
duration, a strong linear relationship was found with motor cortex
volume, at a rate of 1 mL GM loss per year in early ALS. A second strong
relationship was found between disease duration and ADC, which has
not been previously measured in the motor cortex GM in ALS, to our
knowledge. This is consistent with a higher magnitude of overall dif-
fusion without respect to directionality, indicating a general lack of
cellularity and reduced integrity of membranes. We were not able to
replicate the finding of decreased blood flow in a previous study (Rule
et al., 2010), although the authors did not fully assess the motor cortex
involvement. Nor did we find any significant relationships between FVC
and any of the imaging measures. However, it should be considered that
microstructural changes in the brain tissue represent multiple inter-
acting processes that may be non-linear with respect to disease pro-
gression. Thus, a more detailed understanding is warranted of both the
underlying cellular changes in neurodegeneration and how a future
biophysical diffusion kurtosis model might reflect them, specifically in
GM.

One limitation of our data was that the ASL acquisition used to
measure CBF was suited to applications in brain regions with low ar-
terial transit times. Since the sequence had a relatively short post-label
delay and long label duration, it underestimated perfusion in regions
with a long transit delay, such as in the motor cortex (Cercignani et al.,
2018). While this underestimation was systematic and consistent across
our sample, it does mean that our CBF values appear low in comparison
to other similar studies. On the other hand, our ASL images were of a
much greater spatial resolution than previous studies (Rule et al.,
2010), allowing for more precise delineation of structures and a re-
duced partial volume effect. A short post-label delay was required to
achieve a good SNR at such a high resolution. Future studies will apply
a more refined experimental approach in order to improve these mea-
surements.

Improved correction of partial volume effects may be obtained using
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pulse sequences specifically designed for that purpose, rather than post-
hoc correction. For example, a FLAIR-prepared diffusion acquisition or
choice of a non-zero minimum b-value to suppress CSF (Salminen et al.,
2016). While these approaches may improve accuracy of diffusion and
kurtosis scalar measurements, our data acquisition was optimised to-
ward reduced scan times and patient comfort over advanced partial
volume correction techniques.

The generalisability of our findings depends on the extent to which
our sample represents the early ALS population. Within the ALS group,
ALSFRS-R scores indicated mild-to-moderate impairment, with a mean
score of 40.2. The difference of this mean from the maximum possible
score is comparable to reported minimal clinically-important differ-
ences of 6.7 (Miano et al., 2004) and 4.0 (Castrillo-Viguera et al., 2010).
The ALS group's mean predicted FVC of 83% was in accordance with a
previous study reporting predicted FVC at initial clinical presentation
(80%; (Fallat et al., 1987)) but was also within the expected normal
range for our sample's age group of ~70-130% (Stanojevic et al.,
2008). Symptom onset was mostly in the right limb (which may be
expected for the upper-limb onset patients, given that the cohort were
all right-handed (Turner et al., 2011)) and the cohort was mostly male
(expected given reported ALS prevalence (McCombe and Henderson,
2010)). We conclude from this that the sample is representative of
early-to-middle stage ALS patients in general.

Finally, while we only report on GM changes here, it will also be
important to test DKI changes in white matter. While the degenerative
process is thought to begin in the cell bodies (Blizzard et al., 2015), the
subsequent effects may be more accurately measured in white matter
due to its more isotropic and less-noisy diffusion profile. Further in-
terrogation of DKI changes in the CSTs is ongoing.

We conclude that state-of-the-art MRI measurements may be useful
in providing complimentary information about tissue microstructure in
early ALS. Translation of these techniques requires testing in larger
samples and development of interpretable metrics informed by bio-
physical models in order to conduct studies of diagnostic accuracy.
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