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Dopamine-grafted heparin as an 
additive to the commercialized 
carboxymethyl cellulose/styrene-
butadiene rubber binder for 
practical use of SiOx/graphite 
composite anode
Kukjoo Lee1,2, Sanghyun Lim   1,2, Nakgyu Go3, Jaemin Kim3, Junyoung Mun3 & Tae-Hyun Kim1,2

Graphite is used commercially as the active material in lithium ion batteries, frequently as part of a 
graphite/SiOx composite. Graphite is used in conjunction with SiOx to overcome the limited energy 
density of graphite, and to lessen the adverse effects of volume expansion of Si. However, electrodes 
based on graphite/SiOx composites can be made with only 3–5 wt % SiOx because of the increased 
failure of electrodes with higher SiOx contents. Here, we developed a new polymer binder, by 
combining dopamine-grafted heparin with the commercial binder carboxymethyl cellulose (CMC)/
styrene butadiene rubber (SBR), in order to more effectively hold the SiOx particles together and 
prevent disintegration of the electrode during charging and discharging. The crosslinking using acid-
base interactions between heparin and CMC and the ion-conducting sulfonate group in heparin, 
together with the strong adhesion properties of dopamine, yielded better physical properties for the 
dopamine-heparin-containing CMC/SBR-based electrodes than for the commercial CMC/SBR-based 
electrodes, and hence yielded excellent cell performance with a retention of 73.5% of the original 
capacity, a Coulombic efficiency of 99.7% at 150 cycles, and a high capacity of 200 mAh g−1 even at 20 C. 
Furthermore, a full cell test using the proposed electrode material showed stable cell performance with 
89% retention at the 150th cycle.

Lithium-ion secondary batteries are being intensively studied due to their potential uses as large-scale energy 
storage devices in applications such as electric vehicles as well as energy storage systems1–4. However, currently 
available lithium-ion secondary batteries use graphite as the anode material, and as a result do not have sufficient 
energy density to efficiently power such high-energy applications.

Much effort is hence being devoted to increasing the energy density levels of lithium-ion batteries. To achieve 
this, materials based on Li alloys, such as lithium-tin and lithium-silicon, have attracted much recent attention as 
alternate anode materials due to their high capacities5–9. For example, the silicon electrode has a high theoretical 
capacity, more than ten times greater than that of the currently used anode material for lithium-ion batteries 
(i.e., graphite), which has a theoretical capacity of only about 372 mAh g−1. However, silicon has inherent prob-
lems due to volume expansion and shrinkage of about 400% during the charge-discharge process of Si + 4.4Li 
⇆ Li4.4Si5,6. When such changes in volume are repeated, mechanical stresses build up that damage the anode, 
induce its components (e.g., conducting agents and binders) to separate from one another, and cause loss of elec-
trical pathways by isolating Si particles having insulation properties, leading to rapid deterioration of the battery 
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system9–12. Thus, many researchers have examined modified forms of silicon, for example, nano-sized particles, in 
order to reduce the stress caused by the volume expansion of Si13,14. The preparation of these nano-architectured 
silicon anode materials, however, inevitably increases the production costs.

Silicon oxides (SiOx), on the other hand, are relatively inexpensive to produce and have been commonly used 
as composite materials with Si to lessen the adverse effects of the volume expansion of Si. In these composites, 
either crystalline or amorphous Si cores are uniformly dispersed in a SiO2 matrix, and the stable lithium-silicates 
formed after lithiation of this material have been shown to reduce the magnitude of the changes in the volume 
of Si during cycling12,15–17. Indeed, in currently used and commercialized active materials based on graphite, 
replacing some of the graphite with SiOx has been found to be the most practical way of overcoming the limited 
energy density of the graphite. The SiOx content of the active material, however, has been limited to at most 3–5 
wt.% due to the rapid increase in electrode failure with increasing SiOx content as a result of the above-mentioned 
side reactions of Si.

Aside from the problems directly related to the silicon itself, developing a strong polymer binder that can 
endure large volume changes of Si and prevent electrodes from rupturing has also been widely pursued recently. 
Polymers such as poly(acrylic acid) (PAA) that consist of many carboxylic acid functional groups18,19 and poly-
saccharides such as alginates20,21, Xanthan gum22 and Pullulan23 have been shown—due to their excellent physical 
properties resulting from their strong interactions with OH groups on silicon particles—to be of use for increas-
ing the lifespan of Si anodes. These polymers may thus be good candidates as polymeric binders for Si as well as 
other high-capacity anode materials such as Sn and Ge, and may even be a viable substitute for carboxymethyl 
cellulose (CMC)/styrene butadiene rubber (SBR), the binder currently used in commercial graphite anodes. In 
addition, cross-linkages via covalent bonds24–26 or even noncovalent ones such as hydrogen bonds27–31 have been 
exploited to further improve the physical properties of these polymer binders, yielding markedly improved cell 
performance.

We report herein a new polymer binder based on dopamine-functionalized heparin/CMC/SBR, in which 
dopamine-grafted heparin was used as an additive in the commercially available CMC/SBR binder, and show that 
it improves the performance of SiOx/graphite composite-based anodes. Heparin is a highly sulfonated, biocom-
patible, water-soluble, and naturally derived polysaccharide. It has various functional groups, which have con-
tributed to its effectiveness and hence wide use as an anticoagulant and inhibitor of both angiogenesis and tumor 
growth32. Although heparin is difficult to apply directly as a binder to Si anodes due to its poor physical proper-
ties when used alone33, the many functional groups of heparin allow it to interact with CMC. These functional 
groups include amines, which can reversibly interact with the acid groups in CMC through hydrogen bonding, 
and sulfonates, which can further contribute to Li+ conduction. In addition, dopamine, inspired by its role as an 
adhesive in mussel foot protein, was further incorporated onto heparin due to dopamine’s well-known excellent 
adhesion to various surfaces including Si anodes34. Therefore, we produced dopamine-functionalized heparin and 
added it to the CMC/SBR binder in order to (1) mechanically strengthen this binder by crosslinking, (2) improve 
the adhesion property of the corresponding binder to Si and hence suppress the volume expansion of Si, and (3) 
endow the crosslinked binder system with the ability to conduct ions.

Results
Electrochemical performance and failure mode analyses.  The addition of dopamine to heparin was 
accomplished via the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) coupling reac-
tion, as shown in Fig. 1. To prevent the oxidation of dopamine, the pH was maintained at 6.0 using a phosphate 
buffer solution (PBS) while the reaction proceeded.

A structural analysis of the dopamine-functionalized heparin (dopamine-heparin, 1) was carried out by per-
forming UV-Vis and FT-IR spectroscopy investigations. The UV-Vis spectrum of 1 (Fig. 2a) showed a charac-
teristic absorption peak at a wavelength of about 280 nm, confirming that the catechol moiety of dopamine was 
successfully grafted onto heparin32,34. In addition, the absence of any additional peaks at wavelengths greater than 
300 nm indicated that no undesired oxidation of dopamine occurred32. The amount of dopamine incorporated 
was measured to be 11 wt.% of the total weight of dopamine-heparin 1, as determined by carrying out a UV-Vis 
spectroscopic quantitative analysis using dopamine standard solutions (see Supplementary Fig. S1)32.

Further analyses of 1 using FT-IR spectroscopic investigations confirmed the structure (Fig. 2b): the C = O 
stretching peak of heparin at 1620 cm−1 shifted to 1640 cm−1 after conjugation of dopamine due to the for-
mation of amide bonding. In addition, a peak corresponding to the secondary amide NH bending appeared 
at 1560 cm−1 32,35, indicating that an amide bond successfully formed between the dopamine and heparin. 
Furthermore, a new peak corresponding to the aromatic OH stretching of the catechol moiety appeared at 
1376 cm−1.

Preparation of electrodes and analyses of the mechanical properties.  Electrodes were fabricated 
using a composite of SiOx and graphite as the active material, Super-P as the conducting agent, and CMC/SBR, 
heparin/CMC/SBR or dopamine-heparin/CMC/SBR as the polymer binder in a ratio of active material: conduct-
ing agent: binder of 80:10:10 by weight. The weight ratio of CMC to SBR was 1:2, and 10 wt.% of heparin or 1 rel-
ative to CMC was added to CMC/SBR for the fabrication of the heparin/CMC/SBR- or dopamine-heparin/CMC/
SBR-based electrode, respectively. The results were compared with those obtained using the electrode containing 
only CMC/SBR as the polymer binder.

The binding affinities for the three electrodes (CMC/SBR, heparin/CMC/SBR and dopamine-heparin/CMC/
SBR) were then investigated by carrying out 180-degree peel tests (Fig. 3a). In the case of the SiOx/graphite elec-
trode composed of the pristine CMC/SBR polymer binder, an average binding affinity of 0.757 N was obtained, 
while this value increased to 0.907 N when heparin was added to CMC/SBR (heparin/CMC/SBR electrode). 
A dramatic increase in the binding affinity was further obtained for the electrode with the CMC/SBR binder 
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Figure 1.  Preparation of the dopamine-heparin binder 1.

Figure 2.  UV-Vis spectra (a) and FT-IR spectra (b) of dopamine-grafted heparin 1 and heparin.

Figure 3.  Peel test results with its mean forces (a) and images (black regions represent the detached electrode 
components and the white regions indicate transmitted light) (b) of the CMC/SBR-, heparin/CMC/SBR- and 
dopamine-heparin/CMC/SBR-based electrodes.
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containing dopamine-heparin (dopamine-heparin/CMC/SBR), with a measured value of 1.287 N. These results 
suggested that the addition of heparin to CMC/SBR mechanically strengthened the electrode due to the forma-
tion of physical interactions between CMC and heparin, and that the durability of the electrode in the presence of 
mechanical stress was further increased by the strong adhesion resulting from the inclusion of dopamine in the 
dopamine-grafted heparin (dopamine-heparin, 1)27,34.

We further used an optical microscope to examine the surface of the tape detached from the electrode after 
the peel test to determine whether the addition of dopamine-heparin (to form a dopamine-heparin/CMC/SBR 
binder) reduced the amount of Si exfoliated from the electrode. As shown in Fig. 3b, the amount of the electrode 
material detached from the current collector was inversely related to the adhesive force generated by the binder 
in Fig. 3a28. The tapes pulled off the pristine CMC/SBR-based electrode were stained with a lot of slurry and 
transmitted little light, indicating that much of the Si material in these cases became detached from the electrode 
and transferred to the tape. In contrast, the tapes pulled off the heparin/CMC/SBR-based electrode were stained 
with only a very small amount of slurry, and were observed to transmit a considerable amount of light, indicative 
of the better ability of heparin/CMC/SBR than of pristine CMC/SBR to prevent material from being detached 
from the electrode and consistent with the stronger adhesion force of the heparin/CMC/SBR binder based on 
the peel test. And this trend continued with the inclusion of dopamine: tapes pulled off the dopamine-heparin/
CMC/SBR-based electrode, showed the least amount of slurry and transmitted the most light, consistent with the 
dopamine-heparin/CMC/SBR binder having displayed an adhesion force greater than those of the other binders.

Electrochemical properties.  After investigating the mechanical properties of the electrodes containing 
the heparin/CMC/SBR and dopamine-heparin/CMC/SBR binders, we then assessed the electrochemical perfor-
mances of their corresponding cells. We performed the electrochemical evaluations at a low rate (specifically with 
a discharge rate of 0.2 C and charge rate of 0.5 C, where 1 C equals 450 mA g−1), and compared the results with the 
cell performance of the pristine CMC/SBR-based electrodes (see Fig. 4).

The voltage profiles of the prepared cells during the 1st cycle showed similar trends irrespective of the binder 
(Fig. 4a), suggesting that the addition of heparin or dopamine-heparin (1) did not cause any particular side 
reactions. In addition, the voltage profiles of both the heparin- and dopamine-heparin-based electrodes showed 
lower resistance during lithiation than did the electrode prepared from CMC/SBR. The enhanced physical prop-
erties of the heparin and dopamine-heparin binder systems have been suggested to result in less polarization 
due to the reduction of the contact resistance of the electrode36. Having the highest mechanical strength, the 
dopamine-heparin-based electrode indeed showed the lowest resistance.

In addition, the specific discharge capacities of the cells prepared using the three binders were also determined 
in order to assess the effect of the binder on cyclability (Fig. 4b). The specific capacity of the CMC/SBR-based 
electrode started to deteriorate rapidly after 50 cycles, and at 100 cycles showed a value of 286 mAh g−1 and a 
retention of 62.3% of the original specific capacity. After about 100 cycles, this electrode showed particularly 
poor cycling stability. This poor stability was attributed to the CMC/SBR binder, with its poor adhesion proper-
ties, no longer being able to accommodate the repeated changes in the volume of the silicon electrode. The cell 

Figure 4.  The 1st cycle voltage profiles (a), cyclability (b), the Coulombic efficiencies (c) and rate capability (d) 
of the SiOx/graphite composite anodes with various binders.
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performances of the electrode made of the heparin/CMC/SBR binder and that made with the dopamine-heparin/
CMC/SBR binder, however, were much better than the cell performance of the electrode made with the pristine 
CMC/SBR binder. The superior performance of the former two cells was attributed to their enhanced physical 
properties. A specific capacity of 380 mAh g−1, representing a retention of 81.3% of the original capacity, was 
observed at 100 cycles, and a specific capacity of 268 mAh g−1 and retention of 57.3%, were observed at 150 cycles 
for the electrode including heparin/CMC/SBR. The dopamine-heparin/CMC/SBR-based binder system showed 
the best cell performance. Although the specific capacity and retention values of the dopamine-heparin/CMC/
SBR-based binder system at 100 cycles, with values of 378 mAh g−1 and 81.3%, respectively, were similar to those 
of the heparin/CMC/SBR-based system, a much greater reversible capacity of 343 mAh g−1 and retention of 
73.5% were obtained at 150 cycles for the dopamine-heparin/CMC/SBR-based system than for the heparin/CMC/
SBR-based system. Since the three cells were subjected to the same conditions, the superior specific capacity and 
percent retention of original specific capacity up to the 150 cycles for the cell having the dopamine-heparin/
CMC/SBR binder were therefore attributed mainly to the superior adhesion properties of this binder material.

The dopamine-heparin-CMC/SBR electrode also displayed excellent Coulombic efficiency (Fig. 4c). It dis-
played an initial Coulombic efficiency (after the formation cycles) of 97.4%, a value of 98.9–99.5% at the 20th 
cycle, and very high value of 99.7% at the 150th cycle. These values were higher than those of the CMC/SBR- and 
heparin/CMC/SBR-based electrodes.

We also performed rate capability tests for the three types of electrode (Fig. 4d). Their 0.1 C-capacities 
were similar to those in the formation stage of the cycling performance experiment. The CMC/SBR-based 
electrode (having the worst mechanical properties) showed a much larger decay of specific capacity as the 
C rate was increased; the performance of this electrode indicated that it would be difficult to use above 15 C. 
The heparin-based electrode, in contrast, exhibited a stable capacity up to 3 C. Although a constant capac-
ity loss occurred when the rate was increased to above 3 C, the cell showed stable operation up to 20 C. The 
dopamine-heparin electrode showed stable performance up to 5 C, and showed a reasonably good cell per-
formance of about 200 mAh g−1 even at 20 C. We attributed the enhanced rate properties of the heparin and 
dopamine-heparin electrodes to the improved physical properties of these binders, which helped to prevent the 
conducting agents and active materials from detaching from the electrodes even at high C rates. In addition, the 
functional groups in the heparin structure were thought to further provide a lithium transfer pathway capable of 
conducting Li+ ions28,37–41.

Electrochemical impedance spectra (EIS) were also acquired for the electrodes with and without the 
dopamine-heparin, and the overall resistance on the electrode surface was found to be smaller when 
the dopamine-heparin was included (Fig. 5). Since there were no other factors besides the addition of 
dopamine-heparin, this result was thought to be due to the formation of a solid electrolyte interphase (SEI) layer. 
Surface analyses using SEM and XPS further confirmed these results (see below).

Finally, a full cell, having a LiNi0.6Co0.2Mn0.2O2 positive electrode and the composite negative electrode con-
taining the dopamine-heparin/CMC/SBR binder, was tested to evaluate the binder in a practical battery appli-
cation (Fig. 6). To ensure reliable performance, one formation cycle was performed after the fabrication of the 
cell, followed by charging and discharging at 0.5 C between 3.0 and 4.1 V. Even though the initial high specific 
charging capacity of the full cell (Fig. S2), the obtained capacities at subsequent cycles suddenly fall because of 
the initial irreversible reaction of the negative electrode limiting the number of reversible lithium ions and the 
high kinetic resistance from the high amount of the active material causing high polarization. On the other side, 
an excellent cell performance, with retention of 92% of the initial performance at the 100th cycle and of 89% of 

Figure 5.  The EIS spectra for SiOx/graphite composite-based cells (black: CMC/SBR, red: dopamine-heparin/
CMC/SBR).
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the initial performance at the 150th cycle, was obtained, strongly suggesting that the proposed binder system has 
potential for use in practical Si-based lithium-ion batteries. In addition, the voltage profiles of the full cell (Fig. S2) 
showed 66.5% Coulombic efficiency at the pre-cycling step, which can be attributed to irreversible SiOx conver-
sion and SEI formation during pre-cycling. After the pre-cycling, however, the system required only two cycles to 
show >99% Coulombic efficiency, which was maintained for more than 100 cycles (Fig. 6).

Morphological analysis.  The CMC/SBR-based and dopamine-heparin/CMC/SBR-based electrodes were 
visualized before and after cycling using scanning electron microscopy (SEM), as shown in Fig. 7, in order to 
determine the effects of the binder material on the morphology of the electrode surface. The two electrodes 
showed similar surface morphologies immediately after fabrication, but quite different morphologies after 150 
cycles, at which point the surface of the pristine CMC/SBR electrode was relatively thickly and unevenly covered 
by an SEI layer, while the surface of the dopamine-heparin/CMC/SBR-based electrode maintained a relatively 
clean, uniform and porous appearance.

Energy dispersive spectrometry (EDS) analyses of the prepared electrodes (based on analyses of mapped 
images of oxygen atoms, which originated from SiOx and the polymer binder, and of silicon atoms, which orig-
inated from SiOx) showed that the materials comprising the electrodes were well dispersed for both electrodes 
irrespective of the addition of the dopamine-heparin to the CMC/SBR (Fig. S3). However, the EDS results showed 
that the portion of the weight of the CMC/SBR electrode due to oxygen was about 22% greater after cycling than 
before cycling, whereas the portion of the weight of the dopamine-heparin-based electrode due to oxygen was 
only about 20% greater after cycling (Fig. S4). Since changes in oxygen content as a result of cycling have been 
suggested to originate from the formation of the SEI layer and/or the decomposition of electrolytes, these results 
might indicate that less electrolyte decomposed when dopamine-heparin was present.

We also carried out XPS analyses of the surfaces of the CMC/SBR and dopamine-heparin/CMC/SBR elec-
trodes. For the CMC/SBR electrode, the peak intensity corresponding to C1s was much lower after 150 cycles than 
before cycling, whereas that for O1s significantly increased, confirming the formation of a thick SEI layer caused 

Figure 6.  Cyclability results and Coulombic efficiencies of a full cell having the LiNi0.6Co0.2Mn0.2O2 cathode 
and SiOx/graphite composite anode including the dopamine-heparin/CMC/SBR binder.

Figure 7.  SEM images of the surface of the CMC/SBR-based and dopamine-heparin/CMC/SBR-based 
electrodes.
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by the side reactions of the carbonate-based electrolytes (Fig. S5). In contrast, in the case of dopamine-heparin/
CMC/SBR electrode, the changes in the peak intensities of the C1s and O1s peaks were not large even after 150 
cycles, suggesting that there was relatively little SEI formation38,42. The XPS results were found to be in good 
agreement with those of the SEM analyses.

Discussion
We developed a new polymer binder system based on dopamine-grafted heparin (dopamine-heparin) as an addi-
tive to the CMC/SBR binder for SiOx/graphite composite electrodes in order to (1) produce physical crosslinking 
using acid-base interactions between heparin and CMC, (2) increase the ion conductivity using the sulfonate 
groups of heparin, and (3) strengthen the adhesion of the binder to the electrode due to the inclusion of dopa-
mine. While the addition of heparin to the CMC/SBR binder (to convert commercialized CMC/SBR-based 
electrodes to the heparin/CMC/SBR-based electrodes) improved the physical properties of the electrodes and 
hence the overall performance of the corresponding cells, even better physical properties were achieved when 
dopamine-heparin was added (to produce dopamine-heparin/CMC/SBR electrodes). Also, while previously 
described electrodes could be made with only 3–5 wt.% SiOx because of the increased failure of these electrodes 
with increasing SiOx content due to side reactions of Si, we were able to achieve excellent cell performance for the 
dopamine-heparin/CMC/SBR-based electrode with SiOx/graphite composite active material containing up to 7 
wt.% SiOx. Specifically, the resulting dopamine-heparin/CMC/SBR-based electrode displayed a specific capacity 
of 343 mAh g−1 and retention of 73.5% of the original capacity, and Coulombic efficiency of 99.7% after 150 
cycles, together with a high capacity of 200 mAh g−1 even at 20 C. Furthermore, a stable cell performance with 
89% retention at the 150th cycle was achieved in a full cell test using this electrode. Overall, the inclusion of 
dopamine-grafted heparin not only enhanced the physical properties of the corresponding dopamine-heparin/
CMC/SBR-based electrode but also its ionic conductivity, and hence demonstrated its potential for use in practi-
cal Si-based lithium-ion batteries.

Methods
Materials.  Heparin sodium salt, N-hydroxysuccinimide (NHS), and dopamine hydrochloride were pur-
chased from Sigma-Aldrich. N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), sodium 
dihydrogen phosphate and sodium hydrogen phosphate were purchased from Alfa-Aesar. Dimethyl carbonate 
and electrolyte (1 M LiPF6 in ethylene carbonate/ethylmethyl carbonate (EC:EMC = 3:7 v/v) with 10 wt.% fluoro-
ethylene carbonate (FEC)) were purchased from PanaxEtec. Silicon monoxide (SiOx) was obtained from Osaka 
Titanium Technologies. Carboxymethyl cellulose (CMC) was purchased from Nippon Paper Chemicals. Styrene-
butadiene rubber (SBR) was purchased from ZEON.

Synthesis of dopamine-grafted heparin 1.  Heparin (1.0 g) was added to an aqueous phosphate buffer 
solution (PBS, 100 mL, pH = 6.0) in a round-bottom flask, and this mixture was stirred until a homogeneous 
solution was obtained. Thereafter, EDC (1.63 g, 8.5 mmol) and NHS (0.98 g, 8.5 mmol), dissolved in a PBS solu-
tion (pH = 6.0), were subsequently added to the heparin solution. Finally, to this mixture was added an aqueous 
solution of dopamine (0.5 g, 2.6 mmol) in PBS (pH = 6.0). The resulting mixture was stirred for 9 h at r.t. After 
completion of the reaction, the dopamine-grafted heparin was purified from the reaction mixture by subjecting 
this mixture to dialysis twice using a cellulose membrane (MWCO = 12 kDa, Sigma-Aldrich) in distilled water 
for 6 h, and the product was collected by freeze-drying.

The relative amount of dopamine in the dopamine-heparin 1 was calculated by performing quantitative 
analysis using UV-Vis spectroscopy (Fig. S1)32. Standard dopamine solutions were prepared for a calibration 
curve, and then the molar absorptivity was obtained from this calibration curve slope. Finally, the absorbance of 
the dopamine-heparin solution was measured, and the dopamine content was determined using the following 
Equation (1):

= εA bc (1)

where A is the absorbance, Ɛ is the molar absorptivity, b is the path length of the sample, and c is the concen-
tration of the sample.

Fabrication of the SiOx/Graphite composite electrode.  The composite electrode composition was 
80:10:10 wt.% of active materials: conducting agent:polymer binder, with 7 wt.% of the active materials being 
SiOx and the remainder being graphite. The conducting agent is Super-P. The binder compositions tested were 
a 1:2 weight ratio of CMC:SBR and a 0.1:0.9:2 weight ratio of heparin(-dopamine):CMC:SBR. To make a SiOx/
graphite composite electrode, we first mixed all of the solid materials, i.e., the graphite and SiOx active materials, 
the conducting agent and CMC binder powder in a mortar based on the designed composition. This mixture of 
solids was combined with enough distilled water and a solution of SBR to make a slurry with the desired viscosity, 
which was coated onto a Cu foil. The as-formed electrode produced in this manner was dried in a convection 
oven at 80 °C for 30 minutes. The prepared electrode was made to have a mass loading of 5 mg cm−2. The prepared 
electrodes were dried under vacuum at 120 °C for 6 h to eliminate residual water. The theoretical capacity of the 
SiOx/graphite composite electrode was determined to be 450 mAh g−1 by weight ratio of active materials, whereas 
the capacities of graphite and SiOx have been determined to be 372 mAh g−1 and 1500 mAh g−1, respectively.

Characterization and Measurements.  FT-IR spectra were recorded on a PerkinElmer Spectrum Two 
ATR spectrometer. UV-vis spectra were recorded on a PerkinElmer Lambda 365 spectrometer. Scanning Electron 
Microscopy (SEM) was performed using a JEOL JSM-7000F instrument. To see the surface morphology, the 
cycled Si electrodes were washed with dimethyl carbonate before being imaged. For evaluating the mechanical 
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properties of the electrodes with various polymer binders, the prepared electrodes were each cut into rectangular 
shapes (1.2 cm × 3.0 cm) and attached to 12-mm-wide 3 M tape. The peel strength of each tested electrode speci-
men was then recorded with a universal testing machine (UTM, Shimadzu EZ-L) by pulling the tape at a constant 
displacement rate of 30 mm min−1.

Electrochemical performances and failure mode analyses.  To evaluate the electrochemical per-
formances of the prepared electrodes, 2032-type coin cells were assembled in an Ar-filled glove box, using 
multi-layered porous PE/PP/PE as the separator, a lithium disc as the counter electrode, and 1 M LiPF6 in ethylene 
carbonate/ethylmethyl carbonate (EC:EMC = 3:7 v/v) with 10 wt.% fluoroethylene carbonate (FEC) (PanaxEtec) 
as an electrolyte. Galvanostatic discharge−charge cycling was then performed using a CPS-Lab battery cycler 
(Basytec) at 25 °C in a temperature-controlled chamber. All of the cells were repeatedly discharged to 0.005 V vs 
Li/Li+ and charged to 2.0 V vs Li/Li+ at a constant C-rate of C/20 lithiation (discharge)-C/10 delithiation (charge) 
in the first cycle and C/10 lithiation-C/10 delithiation in the next two cycles for pre-cycling, and then at C/5 
lithiation- C/2 in the following cycles. Rate capability tests were carried out by repeating discharging to 0.005 V vs 
Li/Li+ and charging to 2.0 V vs Li/Li+. The pre-cycling was performed before the cyclability test, and the current 
for lithiation was fixed at C/20, and the currents for delithiation were varied from 1/2 to 20 C (C/2, 1 C, 2 C, 3 C, 
5 C, 10 C, and 20 C). For postmortem analyses, the cycled cells were disassembled in an Ar-filled glove box and 
recovered electrodes were washed with dimethyl carbonate to eliminate residual electrolyte. Then, the surface 
morphologies of cycled electrodes were investigated by performing scanning electron microscopy (SEM, JEOL 
JSM-7800F). The EIS was measured at a frequency range of 10 mHz–100 kHz with an AC amplitude of 10 mV at 
0.01 V.

Full cell measurement.  The full-cell was assembled using an N/P ratio of 1.1. The same SiOx/Graphite com-
posite electrode was used for the negative electrode and fabricated 94:3:3 ratio of active materials:super-P:binder. 
The composite cathode electrode being fabricated with a 90:5:5 ratio of LiNi0.6Co0.2Mn0.2O2:super-P:PVdF were 
used. The full cells were repeatedly charged to 4.1 V and discharged to 3.0 V at a constant C-rate of C/10 for both 
the 1st charge and discharge as a pre-cycling step and at C/5 of lithiation and C/2 of delithiation in the subsequent 
cycles. And 1 C was determined to be 170 mA per gram of the positive electrode material.
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