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Abstract

Motivation: A central task of bioinformatics is to develop sensitive and specific means of providing

medical prognoses from biomarker patterns. Common methods to predict phenotypes in RNA-Seq

datasets utilize machine learning algorithms trained via gene expression. Isoforms, however, gen-

erated from alternative splicing, may provide a novel and complementary set of transcripts for

phenotype prediction. In contrast to gene expression, the number of isoforms increases signifi-

cantly due to numerous alternative splicing patterns, resulting in a prioritization problem for many

machine learning algorithms. This study identifies the empirically optimal methods of transcript

quantification, feature engineering and filtering steps using phenotype prediction accuracy as a

metric. At the same time, the complementary nature of gene and isoform data is analyzed and the

feasibility of identifying isoforms as biomarker candidates is examined.

Results: Isoform features are complementary to gene features, providing non-redundant informa-

tion and enhanced predictive power when prioritized and filtered. A univariate filtering algorithm,

which selects up to the N highest ranking features for phenotype prediction is described and eval-

uated in this study. An empirical comparison of pipelines for isoform quantification is reported by

performing cross-validation prediction tests with datasets from human non-small cell lung cancer

(NSCLC) patients, human patients with chronic obstructive pulmonary disease (COPD) and amyo-

trophic lateral sclerosis (ALS) transgenic mice, each including samples of diseased and non-

diseased phenotypes.

Availability and Implementation: https://github.com/clabuzze/Phenotype-Prediction-Pipeline.git

Contact: clabuzze@iastate.edu, antoniom@bc.edu, watsondk@musc.edu, andersonpe2@cofc.edu

1 Introduction

Comprehensive analysis of high-throughput sequencing data re-

mains a challenging task due to the inherent complexities of genetic

transcript analysis from next-generation sequencing data (Kanitz

et al., 2015). An especially difficult aspect is the accurate estimation

of gene and isoform transcript expression in RNA-Seq data (Liu

et al., 2014). Several methods have been developed which claim to

approach the problem with an empirically superior algorithm; how-

ever, an objective analysis using non-simulated data is often difficult

(Leng et al., 2013; Trapnell et al., 2011; Wang and Cairns, 2014).

In RNA-Seq, ‘reads’ represent sequenced transcript fragments.

The total number of reads aligning to each transcript is quantified as

VC The Author 2016. Published by Oxford University Press. i421
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32, 2016, i421–i429

doi: 10.1093/bioinformatics/btw430

ECCB 2016

https://github.com/clabuzze/Phenotype-Prediction-Pipeline.git
Deleted Text: )
Deleted Text: )
Deleted Text: ),
Deleted Text: ), Trapnell <italic>et<?A3B2 show $146#?>al.</italic> (2011)
Deleted Text: &hx201D;
Deleted Text: &hx201D;
http://www.oxfordjournals.org/


counts. It is difficult to verify isoform expression because correlation

with phenotypes is rarely annotated in genomic databases and com-

prehensive validation using PCR is unrealistic. An optimal pipeline

for isoform expression quantification is necessary in order to apply

the full potential of high-throughput sequencing data to biomedical

analysis (Kanitz et al., 2015). However, distinct algorithm design

and the loss of biological validation make analyses of isoform ex-

pression algorithms difficult (Leng et al., 2013; Trapnell et al.,

2011; Wang and Cairns, 2014).

Processing samples using RNA-Seq technology captures the ex-

pression of genes and isoforms, generated by alternative splicing (Li

and Dewey, 2011; Trapnell et al., 2011; Wang and Cairns, 2014).

Previous methods of comparing transcript quantification and differ-

ential expression techniques have relied on the analysis of false-

discovery rates and commonly identified alternative splicing patterns

(Liu et al., 2014). An objective method to compare algorithms that

quantify transcript expression is to measure the ability of machine

learning techniques to predict the phenotype of biological samples

processed with each algorithm (Anderson et al., 2014). Prediction

accuracy can be used as a metric to determine which tool most reli-

ably quantifies expression.

Two of the most utilized transcript assembly and differential ex-

pression pipelines include Tophat/Cufflinks and RSEM/EBSeq (Leng

et al., 2013; Trapnell et al., 2011). These approaches utilize varying

statistical methods, each claiming to optimally address the chal-

lenge. SeqGSEA is another differential expression and alternative

splicing platform that has yielded competitive results with respect to

the two well-established pipelines (Wang and Cairns, 2014). The

state-of-the-art nature of these tools provides a convincing argument

to focus a comprehensive analysis on these three methods.

These tools quantify expression for a massive number of tran-

scripts. Feature selection and filtering can reduce the massive number

of gene and isoform features to a subset that efficiently represents the

original data. Machine learning algorithms such as Sparse Partial

Least Squares (Chun and Keleş, 2010), Elastic Net (Zou and Hastie,

2005) and Random Forest (Liaw and Wiener, 2002) may be over-

whelmed by noisy datasets due to over-fitting. Therefore, a method to

rank these features and select those which best represent the quantita-

tive distance between phenotypes may increase prediction accuracy.

This article describes an empirically optimal method for pheno-

type prediction, revealing the critical nature of isoforms as features

and recommending RSEM as a transcript quantification tool. Our

most valuable predictors (MVP) filtering algorithm, increases pre-

diction accuracy and suggests that filtering may allow researchers to

focus validation on a relatively small number of transcripts. Our

analysis shows that isoforms are complementary to genes, providing

non-redundant information and enhanced predictive power.

An analysis of phenotype prediction utilizing both gene and iso-

form transcripts requires the investigation of distinct transcript

quantification methods, a novel investigation of the feature engin-

eering of count-based isoforms into fractional-based isoforms, the

MVP univariate filtering method and the evaluation of multiple ma-

chine learning algorithms. Comparisons between these pipelines are

reported in this paper and recommendations for the optimal pipeline

are provided along with a R-based implementation of the pipeline

and MVP filtering method.

2 Methods

Three datasets of varying size were used to compare the pipelines

generated for this analysis and to empirically develop our MVP

filtering method. Included were datasets from human non-small cell

lung cancer (NSCLC) patients, human patients with chronic ob-

structive pulmonary disease (COPD) and samples of pure corticospi-

nal motor neuron populations isolated from amyotrophic lateral

sclerosis (ALS) transgenic mice, each including samples of diseased

and non-diseased phenotypes. Feature engineering from count-based

isoform expression to fractional-based isoform expression is math-

ematically defined, and we discuss the utility of filtering/feature se-

lection, including the MVP filtering method. We describe the

datasets in detail and outline the alignment and transcript quantifi-

cation processes using the Tuxedo Pipeline, RSEM/EBSeq and

SeqGSEA. Finally, the selected machine learning algorithms and dif-

ferential expression are reviewed.

2.1 MVP filtering algorithm
The MVP method filters gene or isoform expression tables with two

phenotypes and sample replicates to prioritize features for pheno-

type prediction. Before calculating distribution distance, MVP drops

features with null or zero expression in any sample. Each feature in

the cross-validation test set is guaranteed, therefore, to have non-

zero expression, which improves estimates of the sample mean and

variance. Filtering the entire dataset for non-zero values does not

bias the phenotype distributions as it is permutation invariant. The

MVP method only ranks features that have a P-value < a determined

by a t-test between phenotypes of the training set samples.

For each significant feature, normal distributions P1 and P2 are

modeled for the phenotypes with corresponding means l1, l2 and

variances r2
1; r2

2. The quantity r ranks features by distance between

distributions such that increasing separation between means and

decreasing total variance increases r score: r ¼ jl1�l2 j
r1

2þr2
2

The quantity r orders features similar to P-values generated by

the t-test. However, the r quantity is designed to rank features in

order of value as predictors by quantifying the distance between

phenotype distributions, which may result in a better selection of

features compared to P-value alone.

MVP Algorithm:

1. Input dataset with phenotypes P1 and P2

2. Retain only features where all samples have non-zero expression

3. Retain only features where all samples have non-null expression

4. Perform a t-test on all remaining features between P1 and P2

training set samples

5. For all features with P-value < a: calculate quantity r using esti-

mates of l1, l2 and r1
2; r2

2 from the training set phenotype

distributions

6. Select the features with one of the N highest r values as pre-

dictors, where N is the number of desired features.

2.2 Feature engineering
In addition to the massive number of isoforms, the robustness of iso-

form data can be increased by engineering count-based isoform ex-

pression to fractional-based isoform expression. Gene expression G,

count-based isoform expression C and fractional-based isoform ex-

pression F are defined as follows: let Cij be the total read count for

isoform i 2 Ij where Ij is the set of isoforms of gene j 2 J, and J is the

set of all genes. Read count of gene j is (1). Fractional-based expres-

sion of each isoform i of gene j is therefore (2).

Gj ¼
XjIj j

i¼1

Cij (1)
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Fij ¼
Cij

Gj
(2)

Fractional-based isoform expression provides a normalization of

isoform expression proportional to the corresponding gene expres-

sion. If the expression of all isoforms remained proportional in rela-

tion to the gene expression, fractional-based expression can retain

the proportionality even in the case of extreme read counts in a sam-

ple. This may reduce the impact of samples with outlying read

coverage which can impede the accurate estimation of phenotype

distributions. Gene data may not be engineered into fractional data

and therefore fractional-based isoform features may also be comple-

mentary to gene features.

2.3 Datasets
2.3.1 NSCLC

Non-small cell lung cancer RNA samples were taken from 21 pa-

tients with clinical outcomes determined by the American College of

Surgery Oncology Group (Anderson et al., 2014). Ten of these pa-

tients were diagnosed as disease free and 11 were diagnosed with re-

lapse within 3 years of initial surgical resection. A total of 100–

200 ng of total RNA was used to prepare libraries using the Illumina

protocol for the TruSeq RNA Sample Prep Kit. These RNA-Seq

libraries were paired-end sequenced on a HiScanSQ with 2 � 100

cycles and three samples per lane. The quality and adapter content

of the paired-end sequences was measured with FASTQC (Patel and

Jain, 2012). Trimmomatic 0.33 (Bolger et al., 2014) removed the de-

tected adapter content derived from the TruSeq2 Burnett Adapter

Sequences while also trimming the ends of the sequences using the

following settings: ILLUMINACLIP:TruSeq2.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:40.

2.3.2 COPD

A 189 sample RNA-Seq COPD dataset of 98 COPD patients and 91

patients with normal lung tissue was discovered in the NCBI

GEODatasets Database using the search terms: ‘expression profiling

by high throughput sequencing’ [DataSet Type]), 20:1000 [n sam-

ples], ‘lung’ (Kim et al., 2015). Ten replicates of each phenotype

were randomly selected and the records were obtained using the

SRAToolkit v2.5.2 to create a dataset similar in size to the NSCLC

dataset (Leionen et al., 2011). This study focuses on the analysis of

small/medium size datasets in terms of replicates, even though the

COPD dataset offers the opportunity to increase the number of rep-

licates used. These samples had previously been processed as.bam

files aligned to the hg19 human genome (UCSC) using Tophat

v2.0.0 and as paired end.fastq files for transcriptomic alignment

using RSEM v1.2.25.

2.3.3 ALS

UCHL1-eGFP mice were generated to visualize and purify cortico-

spinal motor neurons (CSMN) from the motor cortex, and CSMN

identity of eGFPþneurons was previously confirmed (Yasvoina

et al., 2013). hSOD1G93A-UeGFP mice were generated by cross-

breeding UCHL1-eGFP with hSOD1G93A mice at Northwestern

University. Both healthy (n¼4) and diseased (n¼4) CSMN were

isolated from motor cortex upon cortical dissociation and FACS-

mediated purification approaches at postnatal day 90, using previ-

ously established protocols (Ozdinler and Macklis, 2006). The gen-

erated mRNA was converted to a cDNA library using reverse

transcription. The samples were sequenced at Iowa State University

on an Illumina HiSeq 2500 after cDNA library-prep using Nextera’s

DNA Sample Preparation Kit. All eight samples were paired-end

sequenced in one lane. The quality and adapter content of the

paired-end sequences was measured with FASTQC (Patel and Jain,

2012). BBMap v35.85 was used to remove contaminated sequences

(Bushnell, 2015). Trimmomatic 0.33 (Bolger et al., 2014) removed

the detected adapter content and the sequences were trimmed using

the following settings: ILLUMINACLIP:nextera.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:40.

2.4 Alignment and transcript quantification
The Tuxedo v2.2.1 pipeline begins with Tophat which runs Bowtie2

to align trimmed sequences to a reference genome (Trapnell et al.,

2011). The human bowtie indices were created from the hg19

human genome (UCSC) and the mouse bowtie indices were created

from the mm10 mouse genome (UCSC). Tophat v2.0.0 was run

with the default settings. CuffLinks assembled the transcripts using

the corresponding genome GTF file as a reference. CuffMerge con-

denses each sample’s transcripts into a set which can be compared

across all samples and the resulting GTF file was used as a reference

for the CuffQuant and CuffDiff steps (Trapnell et al., 2011).

RSEM v1.2.25 ran Bowtie2 to align reads to the transcriptome

which was constructed from the human hg19 and mouse mm10 ref-

erence genomes and the corresponding GTF file which annotates

gene and isoform transcripts. RSEM was run with the default set-

tings, but Bowtie2 was selected for alignment rather than Bowtie.

RSEM assembles the transcripts and calculates their abundance

using rsem-calculate-expression (Li and Dewey, 2011). The data

tables created for each dataset containing the expected counts of

genes or isoforms were each piped into EBSeq and normalized (Leng

et al., 2013).

SeqGSEA requires.bam files synthesized from genomic alignment

(Wang and Cairns, 2014). The files created by Tophat were used to

provide input for SeqGSEA. SeqGSEA calculates expression levels

on exon counts using a supplemental Python script provided with

the SeqGSEA R package. The exon counts were calculated from the

Tophat.bam files and the human hg19 and mouse mm10 GTF files.

SeqGSEA detects gene expression by totaling the expression of all

exons in each gene.

2.5 Differential expression
Due to the variation in differential expression algorithms by the

Tuxedo Pipeline, EBSeq and SeqGSEA, a t-test was used to identify

differentially expressed transcripts quantified and normalized by

each tool. SeqGSEA was particularly problematic because it does

not provide P-values for its transcripts, rather ranks the transcripts

in order of predicted biological relevance. Therefore, a t-test was

used to identify differentially expressed features for input to the ma-

chine learning algorithms. The t-test provided consistent differential

expression compared to using each tool’s individual differential ex-

pression algorithm, which would have otherwise confounded the

analysis of each transcript quantification method.

2.6 Machine learning algorithms
The following machine learning algorithms were chosen to perform

the phenotype predictions. Random Forest was implemented from

the ‘randomForest’ R package (Liaw and Wiener, 2002). The Elastic

Net was run using the ‘glmnet’ R package (Friedman et al., 2010;

Zou and Hastie, 2005). Each pair of predictions was based on a

cross-validated Elastic Net fit which automatically selected the opti-

mal lambda level and feature number. The SPLS algorithm imple-

mentation came from the ‘mixOmics’ R package (Chun and Keleş,
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2010; Dejean et al., 2011). Each pair of predictions was based on a

cross-validation test to select the optimal eta and kappa parameters.

2.7 Evaluation
In order to empirically compare multiple pipelines using various

methods of transcript quantification, feature engineering, filtering

and machine learning algorithms, the prediction accuracy of each

pipeline may be compared via receiver operating curve (ROC) ana-

lysis. The ROC can be generated from the sensitivity and specificity

of phenotype prediction (Robin et al., 2011). For each pipeline com-

parison, cross-validation is used to create ROC curves and measure

AUC. Below is an explanation of the leave-two-out cross-validation

setup and summary of the pipeline comparison tests performed.

2.7.1 Cross-validation

To measure the predictive accuracy of each phenotype prediction

pipeline, it is important to perform many predictions using the se-

lected machine learning algorithms to quantify the sensitivity and

specificity of the predictions. Using the pipelines for each dataset

provides further information and comparison for each method. To

perform leave-two-out cross-validation tests on each dataset, one

sample of each phenotype is dropped iteratively while the remaining

samples form the training set. Leave-two-out tests provide a robust

estimation of the accuracy of each pipeline for phenotype prediction.

The differential expression, filtering and machine learning steps are

performed on the training set to select genes or isoforms that best

represent the quantitative difference between the phenotypes. Then,

the machine learning algorithm predicts the phenotypes of the

dropped samples. By iterating through all possible training sets for a

dataset, a robust analysis of the predictive accuracy of each pipeline

is recorded in a ROC curve. This is generated from the sensitivity

and specificity of the leave-two-out cross-validation test predictions.

The AUC is a value between 0 and 1 that represents the accuracy of

the predictions and is used in this study to compare the effectiveness

of phenotype prediction pipelines.

2.7.2 Pipeline comparisons

Possible pipelines were permuted by selecting one option from each

of the following steps. For each dataset, the 54 resulting pipelines

were compared via leave-two-out cross-validation prediction tests.

• Transcript Quantification Method: Cufflinks, RSEM, SeqGSEA
• Feature Format: Genes, Count-based Isoforms, Fractional-based

Isoforms
• Filtering: None, MVP
• Machine Learning Method: Random Forest, Elastic Net, SPLS

3 Results and discussion

To incrementally determine the optimal pipeline through analysis of

the empirical data, the following questions must be answered:

1. Which method reliably quantifies transcripts by producing con-

sistently high AUC scores?

2. Does the MVP filtering method enhance or decrease prediction

accuracy?

3. Which feature produces the most accurate predictions?

4. Which machine learning algorithm most consistently performs

better or equal to the others?

5. Are isoform features redundant or complementary to gene

features?

The answers to these questions will be investigated in the follow-

ing sections by analyzing the AUC scores generated via leave-two-

out cross-validation prediction tests on each dataset.

3.1 Transcript quantification
Transcript expression quantification, the calculation of read abun-

dance for both genes and isoforms, is a difficult task. The optimal

statistical technique required for this task is still being explored

(Leng et al., 2013; Trapnell et al., 2011; Wang and Cairns, 2014).

One goal of this study is to determine whether Cufflinks, RSEM or

SeqGSEA consistently produces the highest phenotype prediction ac-

curacy as a result of a superior transcript quantification algorithm.

Our study compares the AUC scores generated by pipelines

including each transcript quantification tool with and without the

MVP filter method (Fig. 1). Pipelines using RSEM for transcript

quantification and the MVP filtering method for feature selection

had significantly higher AUC scores than pipelines using the other

transcript quantification methods.

We have compiled detailed descriptions of pipelines and corres-

ponding AUC scores (Tables 1–3). For many of the pipelines pro-

cessed using Cufflinks for transcript quantification, the AUC scores

were comparable to those using RSEM when analyzing the ALS and

COPD datasets (Tables 1 and 2). RSEM, however, performed better

on the NSCLC dataset compared to both Cufflinks and SeqGSEA,

especially when predictions were generated from fractional-isoform

based data (Table 3). It is likely that AUC scores had large variabil-

ity when using SeqGSEA due to the large number of exons in any

dataset making even more difficult the challenge of selecting reliable

features (Fig. 1).

The significant increase in prediction accuracy when using

RSEM for transcript quantification and the MVP filter for feature

selection suggests that an optimal pipeline for phenotype prediction

should include these options.

Fig. 1. Phenotype prediction by pipelines using variable transcript quantifica-

tion tools and filtering. AUC values were generated by running each dataset

(NSCLC, ALS, COPD) through 54 pipelines that varied in transcript quantifica-

tion tool, feature type (gene, isoform count, isoform fraction), use of filtering

and machine learning algorithm (Random Forest, Elastic Net, SPLS).

Predictive results are shown grouped by dataset, transcript quantification

tool and use of filtering
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3.2 MVP filtering
This analysis confidently shows MVP filtering consistently enhances

the prediction accuracy of each feature type across all datasets when

using RSEM for transcript quantification. The mean AUC score for

phenotype predictions in each dataset increased when using the MVP

filter (Fig. 2). Reducing the feature size per iteration from greater than

1000 on average to 50, with a general increase in accuracy, is more ef-

ficient and a significant improvement in feature selection. This is fur-

ther evidence for the inclusion of a filtering method such as MVP in

the development of an optimal phenotype prediction pipeline.

The selection of the top 50 features ranked by the MVP fil-

tering method may provide important biomarker candidates to

Table 1. ALS dataset analysis

Transcript quantification Feature type Filter Machine learning Alg. AUC Confidence Int. Sens. Spec. Mean features*

Cufflinks Genes None Elastic Net 0.496 0.283–0.709 0.625 0.625 516

Cufflinks Genes None Random Forest 0.766 0.558–0.973 1.000 0.750 516

Cufflinks Genes None SPLS 0.606 0.391–0.820 0.688 0.688 516

Cufflinks Genes MVP Elastic Net 0.918 0.809–1.000 1.000 0.813 38

Cufflinks Genes MVP Random Forest 0.883 0.756–1.000 1.000 0.750 38

Cufflinks Genes MVP SPLS 0.863 0.719–1.000 0.750 1.000 38

Cufflinks Isoform Count None Elastic Net 0.781 0.601–0.962 0.875 0.813 1146

Cufflinks Isoform Count None Random Forest 0.815 0.643–0.986 1.000 0.750 1146

Cufflinks Isoform Count None SPLS 0.656 0.449–0.863 0.698 0.813 1146

Cufflinks Isoform Count MVP Elastic Net 0.793 0.607–0.979 0.813 0.813 50

Cufflinks Isoform Count MVP Random Forest 0.879 0.752–1.000 1.000 0.750 50

Cufflinks Isoform Count MVP SPLS 0.715 0.516–0.913 0.750 0.813 50

Cufflinks Isoform Fraction None Elastic Net 1.000 1.000–1.000 1.000 1.000 93

Cufflinks Isoform Fraction None Random Forest 0.840 0.687–0.993 1.000 0.750 93

Cufflinks Isoform Fraction None SPLS 0.938 0.815–1.000 0.938 1.000 93

Cufflinks Isoform Fraction MVP Elastic Net 0.891 0.776–1.000 1.000 0.750 47

Cufflinks Isoform Fraction MVP Random Forest 0.871 0.739–1.000 1.000 0.750 47

Cufflinks Isoform Fraction MVP SPLS 0.938 0.815–1.000 0.938 1.000 47

RSEM Genes None Elastic Net 0.699 0.489–0.909 0.750 0.875 631

RSEM Genes None Random Forest 0.758 0.545–0.971 1.000 0.750 631

RSEM Genes None SPLS 0.746 0.561–0.932 0.750 0.750 631

RSEM Genes MVP Elastic Net 0.824 0.653–0.995 0.938 0.750 50

RSEM Genes MVP Random Forest 0.947 0.880–1.000 1.000 0.750 50

RSEM Genes MVP SPLS 0.500 0.265–0.735 0.438 0.938 50

RSEM Isoform Count None Elastic Net 0.699 0.501–0.898 0.875 0.688 740

RSEM Isoform Count None Random Forest 0.773 0.572–0.975 1.000 0.750 740

RSEM Isoform Count None SPLS 0.746 0.566–0.926 0.813 0.750 740

RSEM Isoform Count MVP Elastic Net 0.910 0.811–1.000 1.000 0.750 50

RSEM Isoform Count MVP Random Forest 0.963 0.904–1.000 1.000 0.875 50

RSEM Isoform Count MVP SPLS 0.672 0.451–0.892 0.625 0.938 50

RSEM Isoform Fraction None Elastic Net 0.664 0.463–0.866 0.875 0.563 180

RSEM Isoform Fraction None Random Forest 0.779 0.582–0.977 1.000 0.750 180

RSEM Isoform Fraction None SPLS 0.816 0.643–0.990 0.875 0.813 180

RSEM Isoform Fraction MVP Elastic Net 0.781 0.585–0.978 1.000 0.750 41

RSEM Isoform Fraction MVP Random Forest 0.902 0.787–1.000 1.000 0.750 41

RSEM Isoform Fraction MVP SPLS 0.949 0.871–1.000 1.000 0.875 41

SeqGSEA Genes None Elastic Net 0.637 0.435–0.839 0.813 0.563 331

SeqGSEA Genes None Random Forest 0.770 0.565–0.974 1.000 0.75 331

SeqGSEA Genes None SPLS 0.820 0.666–0.975 0.813 0.750 331

SeqGSEA Genes MVP Elastic Net 0.785 0.608–0.963 0.813 0.750 47

SeqGSEA Genes MVP Random Forest 0.981 0.946–1.000 0.938 0.938 47

SeqGSEA Genes MVP SPLS 0.750 0.553–0.947 0.813 0.750 47

SeqGSEA Exon Count None Elastic Net 0.473 0.259–0.687 0.438 0.750 1181

SeqGSEA Exon Count None Random Forest 0.770 0.565–0.974 1.000 0.750 1181

SeqGSEA Exon Count None SPLS 0.820 0.647–0.994 0.688 1.000 1181

SeqGSEA Exon Count MVP Elastic Net 0.906 0.781–1.000 0.938 0.875 50

SeqGSEA Exon Count MVP Random Forest 0.996 0.985–1.000 1.000 0.938 50

SeqGSEA Exon Count MVP SPLS 0.934 0.818–1.000 0.875 1.000 50

SeqGSEA Exon Fraction None Elastic Net 0.844 0.701–0.986 0.813 0.813 2669

SeqGSEA Exon Fraction None Random Forest 0.758 0.545–0.971 1.000 0.750 2669

SeqGSEA Exon Fraction None SPLS 0.766 0.558–0.973 1.000 0.750 2669

SeqGSEA Exon Fraction MVP Elastic Net 0.672 0.466–0.878 0.750 0.750 50

SeqGSEA Exon Fraction MVP Random Forest 0.797 0.612–0.982 1.000 0.750 50

SeqGSEA Exon Fraction MVP SPLS 0.785 0.590–0.980 1.000 0.750 50

*Mean number of transcripts selected as features per leave-two-out cross-validation test.
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biomedical researchers. Following the identification of consist-

ently selected features in cross-validation tests, these features

can be tested using corrected t-tests and other differential ex-

pression methods to identify viable biomarker candidates. It

may be reasonable to correlate the list of MVP features with

features identified as differentially expressed by EBSeq or

CuffDiff. The promising genes and isoforms may be further pro-

cessed using qPCR to validate biological importance.

3.3 Features and feature engineering
Isoform data has not traditionally been included in phenotype pre-

diction. This analysis shows that both count-based isoform data and

Table 2. COPD dataset analysis

Transcript quantification Feature type Filter Machine learning Alg. AUC Confidence Int. Sens. Spec. Mean features*

Cufflinks Genes None Elastic Net 0.996 0.990–1.000 0.980 0.990 1297

Cufflinks Genes None Random Forest 0.910 0.867–0.953 0.930 0.810 1297

Cufflinks Genes None SPLS 0.817 0.757–0.876 0.680 0.840 1297

Cufflinks Genes MVP Elastic Net 0.953 0.929–0.978 0.860 0.890 50

Cufflinks Genes MVP Random Forest 0.935 0.904–0.967 0.890 0.860 50

Cufflinks Genes MVP SPLS 0.891 0.846–0.935 0.720 0.950 50

Cufflinks Isoform Count None Elastic Net 0.875 0.826–0.924 0.820 0.820 2959

Cufflinks Isoform Count None Random Forest 0.929 0.895–0.963 0.910 0.810 2959

Cufflinks Isoform Count None SPLS 0.564 0.484–0.644 0.250 0.910 2958

Cufflinks Isoform Count MVP Elastic Net 0.667 0.590–0.744 0.600 0.780 50

Cufflinks Isoform Count MVP Random Forest 0.923 0.889–0.957 0.880 0.800 50

Cufflinks Isoform Count MVP SPLS 0.532 0.451–0.613 0.820 0.330 50

Cufflinks Isoform Fraction None Elastic Net 0.766 0.702–0.830 0.520 0.880 2283

Cufflinks Isoform Fraction None Random Forest 0.941 0.912–0.971 0.890 0.840 2283

Cufflinks Isoform Fraction None SPLS 0.448 0.366–0.530 0.500 0.640 2283

Cufflinks Isoform Fraction MVP Elastic Net 0.728 0.648–0.807 0.740 0.850 50

Cufflinks Isoform Fraction MVP Random Forest 0.892 0.845–0.939 0.770 0.940 50

Cufflinks Isoform Fraction MVP SPLS 0.523 0.445–0.611 0.560 0.690 50

RSEM Genes None Elastic Net 0.860 0.808–0.912 0.900 0.700 1982

RSEM Genes None Random Forest 0.844 0.791–0.897 0.700 0.890 1982

RSEM Genes None SPLS 0.870 0.820–0.921 0.810 0.800 1982

RSEM Genes MVP Elastic Net 0.960 0.934–0.986 0.900 0.940 50

RSEM Genes MVP Random Forest 0.915 0.878–0.952 0.870 0.840 50

RSEM Genes MVP SPLS 0.874 0.828–0.920 0.750 0.840 50

RSEM Isoform Count None Elastic Net 0.788 0.724–0.852 0.870 0.660 3435

RSEM Isoform Count None Random Forest 0.899 0.855–0.942 0.820 0.870 3435

RSEM Isoform Count None SPLS 0.941 0.912–0.970 0.820 0.910 3435

RSEM Isoform Count MVP Elastic Net 0.972 0.952–0.991 0.900 0.940 50

RSEM Isoform Count MVP Random Forest 0.997 0.993–1.000 1.000 0.960 50

RSEM Isoform Count MVP SPLS 0.937 0.906–0.967 0.890 0.820 50

RSEM Isoform Fraction None Elastic Net 0.977 0.961–0.993 0.890 0.970 321

RSEM Isoform Fraction None Random Forest 0.954 0.926–0.982 0.860 0.970 321

RSEM Isoform Fraction None SPLS 0.962 0.938–0.986 0.890 0.980 321

RSEM Isoform Fraction MVP Elastic Net 0.965 0.941–0.989 0.900 0.970 50

RSEM Isoform Fraction MVP Random Forest 0.961 0.937–0.985 0.870 0.990 50

RSEM Isoform Fraction MVP SPLS 0.950 0.923–0.976 0.870 0.900 50

SeqGSEA Genes None Elastic Net 0.908 0.870–0.947 0.730 0.920 672

SeqGSEA Genes None Random Forest 0.851 0.797–0.905 0.860 0.790 672

SeqGSEA Genes None SPLS NA NA–NA NA NA NA

SeqGSEA Genes MVP Elastic Net 0.734 0.663–0.805 0.710 0.710 50

SeqGSEA Genes MVP Random Forest 0.739 0.671–0.807 0.600 0.810 50

SeqGSEA Genes MVP SPLS 0.680 0.604–0.755 0.640 0.730 50

SeqGSEA Exon Count None Elastic Net 0.653 0.578–0.728 0.360 0.870 21862

SeqGSEA Exon Count None Random Forest 0.858 0.800–0.915 0.900 0.850 21862

SeqGSEA Exon Count None SPLS 0.908 0.860–0.955 0.830 0.950 21862

SeqGSEA Exon Count MVP Elastic Net 0.737 0.668–0.807 0.770 0.660 50

SeqGSEA Exon Count MVP Random Forest 0.706 0.633–0.779 0.840 0.580 50

SeqGSEA Exon Count MVP SPLS 0.801 0.738–0.864 0.790 0.790 50

SeqGSEA Exon Fraction None Elastic Net 0.831 0.777–0.885 0.800 0.810 41563

SeqGSEA Exon Fraction None Random Forest 0.932 0.896–0.969 0.900 0.890 41563

SeqGSEA Exon Fraction None SPLS 0.943 0.908–0.978 0.990 0.890 41563

SeqGSEA Exon Fraction MVP Elastic Net 0.916 0.875–0.957 0.880 0.890 50

SeqGSEA Exon Fraction MVP Random Forest 0.948 0.920–0.977 0.820 1.000 50

SeqGSEA Exon Fraction MVP SPLS 0.971 0.951–0.992 0.900 0.960 50

*Mean number of transcripts selected as features per leave-two-out cross-validation test.
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fractional-based isoform data are competitive in regard to gene ex-

pression data and even have enhanced prediction accuracy. The

AUC scores of pipelines based on each feature when using RSEM

for transcript quantification were compared (Fig. 3).

Count-based isoform expression data using the MVP filtering

method generated many of the highest AUC’s in this analysis

(Tables 1–3). The enhancement compared to gene expression data

may result from the increased number of features that exist com-

pared to genes alone. This result may also implicate the largely over-

looked active isoforms that are involved in phenotype expression.

Fractional-based isoform expression produced AUC scores com-

parable to those of count-based isoform data (Fig. 3). Fractional-

Table 3. NSCLC dataset analysis

Transcript quantification Feature type Filter Machine learning Alg. AUC Confidence Int. Sens. Spec. Mean features*

Cufflinks Genes None Elastic Net 0.416 0.348–0.483 1.000 0.000 1682

Cufflinks Genes None Random Forest 0.635 0.555–0.715 0.809 0.618 1682

Cufflinks Genes None SPLS 0.613 0.534–0.693 0.900 0.545 1682

Cufflinks Genes MVP Elastic Net 0.543 0.465–0.622 0.891 0.345 50

Cufflinks Genes MVP Random Forest 0.603 0.526–0.603 0.809 0.455 50

Cufflinks Genes MVP SPLS 0.664 0.587–0.741 0.818 0.627 50

Cufflinks Isoform Count None Elastic Net 0.506 0.436–0.577 0.264 0.836 3554

Cufflinks Isoform Count None Random Forest 0.671 0.593–0.748 0.791 0.636 3554

Cufflinks Isoform Count None SPLS NA NA–NA NA NA NA

Cufflinks Isoform Count MVP Elastic Net 0.541 0.465–0.618 0.623 0.445 50

Cufflinks Isoform Count MVP Random Forest 0.581 0.505–0.656 0.636 0.536 50

Cufflinks Isoform Count MVP SPLS 0.447 0.370–0.524 0.555 0.500 50

Cufflinks Isoform Fraction None Elastic Net 0.411 0.358–0.464 1.000 0.000 2623

Cufflinks Isoform Fraction None Random Forest 0.497 0.418–0.575 0.645 0.473 2623

Cufflinks Isoform Fraction None SPLS NA NA–NA NA NA NA

Cufflinks Isoform Fraction MVP Elastic Net 0.632 0.558–0.707 0.718 0.709 50

Cufflinks Isoform Fraction MVP Random Forest 0.636 0.562–0.710 0.764 0.518 50

Cufflinks Isoform Fraction MVP SPLS 0.590 0.515–0.665 0.355 0.818 50

RSEM Genes None Elastic Net 0.487 0.417–0.558 0.864 0.182 1216

RSEM Genes None Random Forest 0.629 0.550–0.708 0.764 0.609 1216

RSEM Genes None SPLS 0.558 0.479–0.638 0.864 0.409 1216

RSEM Genes MVP Elastic Net 0.559 0.482–0.636 0.945 0.254 50

RSEM Genes MVP Random Forest 0.529 0.449–0.610 0.836 0.382 50

RSEM Genes MVP SPLS 0.668 0.590–0.745 0.845 0.627 50

RSEM Isoform Count None Elastic Net 0.421 0.366–0.476 1.000 0.000 1747

RSEM Isoform Count None Random Forest 0.609 0.530–0.688 0.845 0.500 1747

RSEM Isoform Count None SPLS 0.535 0.453–0.616 0.800 0.509 1747

RSEM Isoform Count MVP Elastic Net 0.519 0.441–0.597 0.791 0.364 50

RSEM Isoform Count MVP Random Forest 0.581 0.500–0.661 0.682 0.618 50

RSEM Isoform Count MVP SPLS 0.738 0.671–0.805 0.782 0.691 50

RSEM Isoform Fraction None Elastic Net 0.373 0.333–0.414 1.000 0.000 880

RSEM Isoform Fraction None Random Forest 0.586 0.509–0.664 0.800 0.500 880

RSEM Isoform Fraction None SPLS 0.664 0.586–0.743 0.864 0.645 880

RSEM Isoform Fraction MVP Elastic Net 0.923 0.886–0.961 0.955 0.818 50

RSEM Isoform Fraction MVP Random Forest 0.589 0.513–0.664 0.273 0.909 50

RSEM Isoform Fraction MVP SPLS 0.817 0.762–0.817 0.909 0.636 50

SeqGSEA Genes None Elastic Net 0.415 0.355–0.474 1.000 0.009 935

SeqGSEA Genes None Random Forest 0.609 0.531–0.686 0.709 0.600 935

SeqGSEA Genes None SPLS 0.551 0.470–0.632 0.882 0.427 935

SeqGSEA Genes MVP Elastic Net 0.532 0.455–0.609 0.473 0.691 50

SeqGSEA Genes MVP Random Forest 0.530 0.453–0.607 0.282 0.855 50

SeqGSEA Genes MVP SPLS 0.637 0.562–0.711 0.691 0.609 50

SeqGSEA Exon Count None Elastic Net 0.393 0.334–0.452 0.036 0.964 8245

SeqGSEA Exon Count None Random Forest 0.582 0.506–0.658 0.555 0.627 8245

SeqGSEA Exon Count None SPLS 0.541 0.460–0.621 0.873 0.418 8245

SeqGSEA Exon Count MVP Elastic Net 0.507 0.429–0.585 0.636 0.491 50

SeqGSEA Exon Count MVP Random Forest 0.678 0.602–0.743 0.600 0.682 50

SeqGSEA Exon Count MVP SPLS 0.569 0.492–0.647 0.664 0.564 50

SeqGSEA Exon Fraction None Elastic Net 0.378 0.313–0.443 0.991 0.036 7524

SeqGSEA Exon Fraction None Random Forest 0.621 0.546–0.697 0.673 0.591 7524

SeqGSEA Exon Fraction None SPLS 0.528 0.450–0.606 0.727 0.464 7524

SeqGSEA Exon Fraction MVP Elastic Net 0.636 0.563–0.555 0.563 0.691 50

SeqGSEA Exon Fraction MVP Random Forest 0.564 0.488–0.640 0.536 0.591 50

SeqGSEA Exon Fraction MVP SPLS 0.507 0.430–0.585 0.464 0.655 50

*Mean number of transcripts selected as features per leave-two-out cross-validation test.
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based AUC’s seem to be superior when analyzing datasets with fea-

tures that have outlier expression counts, such as the NSCLC dataset

where many outliers were detected using iLOO (George et al., 2015)

(Table 3). Fractional-based isoform data quantified by RSEM with

MVP filtering produced the only viable AUC scores in the NSCLC

dataset (Table 3). The proportional normalization of each isoform

in regard to corresponding gene expression may reduce the impact

of extreme read counts and outliers. This may make differential ex-

pression tests more reliable in such cases and supports the case for

performing phenotype prediction from fractional-based isoform

data.

3.4 Machine learning algorithms
Both the Random Forest and Elastic Net machine learning algo-

rithms produced promising results across the datasets, especially

after MVP filtering (Fig. 4). SPLS was more variable than both

Random Forest and Elastic Net, and produced several NA results

when SPLS failed due to low variance features. Random Forest gen-

erated the highest observed AUC scores after MVP filtering. The

Elastic Net consistently produced results within range or superior to

Random Forest, and produced much greater scores in several data-

sets where Random Forest and SPLS did not generate accurate pre-

dictions (Fig. 4).

Due to the fact that the Elastic Net performed more consistently

on all datasets (Tables 1–3) and generated AUC scores comparable

in accuracy to Random Forest (Fig. 4), it seems optimal to include

the Elastic Net in the phenotype prediction pipeline.

3.5 Complementary features
Isoforms offer a complementary and non-redundant set of features

for phenotype prediction. When selected fractional-based isoform

features were converted to the respective gene name and compared

to the list of gene features for the optimal RSEM-based pipeline, lit-

tle overlap between the two lists of features was found. There was

4.49% overlap in the ALS dataset, 1.93% overlap in the COPD

dataset and 0% overlap in the NSCLC dataset. This reinforces the

importance of including isoform expression data in phenotype pre-

diction analyses.

4 Conclusion

The results of this study support two major conclusions. First, we

have identified an optimal pipeline for phenotype prediction by an-

swering the previously discussed questions on the construction of

such a tool. RSEM generally generated the highest isoform based

Fig. 2. Predictive power of pipelines that use RSEM with varying input data-

sets and filtering. AUC values were generated by running all input datasets

through nine pipelines that all performed transcript quantification with

RSEM, but varied in feature type (gene, isoform count, isoform fraction), use

of filtering and machine learning algorithm (Random Forest, Elastic Net,

SPLS). Predictive results for these pipelines are shown grouped by dataset

and use of filtering

Fig. 3. Predictive power of pipelines that use RSEM with varying feature types

and filtering. AUC values were generated by running all input datasets

(NSCLC, ALS, COPD) through nine pipelines that all performed transcript

quantification with RSEM, but varied in feature type (gene, isoform count, iso-

form fraction), use of filtering and machine learning algorithm (Random

Forest, Elastic Net, SPLS). Predictive values are shown grouped by feature

type and whether filtering was applied

Fig. 4. Predictive power of pipelines that use RSEM with varying machine

learning algorithms and filtering. AUC values were generated by running all

input datasets (NSCLC, ALS, COPD) through nine pipelines that all performed

transcript quantification with RSEM, but varied in feature type (gene, isoform

count, isoform fraction), use of filtering and machine learning algorithm

(Random Forest, Elastic Net, SPLS). Predictive values are shown grouped by

machine learning algorithm and whether filtering was applied
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AUC scores with MVP filtering compared to other transcript quantifi-

cation tools. We have shown that feature selection via a filtering

method, such as the MVP filtering algorithm, consistently increases

AUC score. Overall, fractional-based isoform features can be analyzed

using the Elastic Net to yield the most consistently accurate phenotype

predictions. These methods have been built into an open source pipe-

line available via GitHub. Second, we have identified the complemen-

tary nature of isoform expression data. Isoform features provide non-

redundant information and enhanced predictive power compared to

gene features. Our paper addresses the necessity of including isoform

expression data in phenotype prediction and biomedical data analysis.

4.1 Pipeline
The Phenotype Prediction Pipeline is implemented in R. Extensive

documentation and the full source code are available at: https://

github.com/clabuzze/Phenotype-Prediction-Pipeline.git
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