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As anthropogenic activities warm the Earth, the fundamental solution of reducing
greenhouse gas emissions remains elusive. Given this mitigation gap, global warming
may lead to intolerable climate changes as adaptive capacity is exceeded. Thus, there is
emerging interest in solar radiation modification, which is the process of deliberately
increasing Earth’s albedo to cool the planet. Stratospheric aerosol injection (SAI)—the
theoretical deployment of particles in the stratosphere to enhance reflection of incoming
solar radiation—is one strategy to slow, pause, or reverse global warming. If SAI is ever
pursued, it will likely be for a specific aim, such as affording time to implement mitiga-
tion strategies, lessening extremes, or reducing the odds of reaching a biogeophysical
tipping point. Using an ensemble climate model experiment that simulates the deploy-
ment of SAI in the context of an intermediate greenhouse gas trajectory, we quantified
the probability that internal climate variability masks the effectiveness of SAI deploy-
ment on regional temperatures. We found that while global temperature was stabilized,
substantial land areas continued to experience warming. For example, in the SAI sce-
nario we explored, up to 55% of the global population experienced rising temperatures
over the decade following SAI deployment and large areas exhibited high probability of
extremely hot years. These conditions could cause SAI to be perceived as a failure.
Countries with the largest economies experienced some of the largest probabilities of
this perceived failure. The potential for perceived failure could therefore have major
implications for policy decisions in the years immediately following SAI deployment.
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Anthropogenic climate change, primarily driven by increasing concentrations of atmo-
spheric greenhouse gasses, has caused Earth’s global mean temperature to reach its warm-
est level in at least the last 2,000 y (1). This global warming may exceed 1.5 °C above
preindustrial temperatures later this decade, at least for a short period of time, and most
years are likely to exceed the 1.5 °C threshold by 2040 across a range of emissions scenar-
ios (1). By the middle of this century (2041–2060), warming in excess of 2.0 °C would
be reached under intermediate, high, and very high emission scenarios (1), and current
policies have the world on track to warm by roughly 3.0 °C by the end of the century
(2). Moreover, emissions scenarios that target global temperature stabilization at either
1.5 or 2.0 °C require net-zero carbon emissions trajectories, which in practice will neces-
sitate new and enormously scaled-up carbon dioxide removal technology (3).
In parallel with global policy shortfalls, current levels of warming are driving substantial

impacts on human and natural systems (4). For example, climate change is already leading
to intensification of extreme events such as extreme heat, heavy rainfall, intense droughts,
extreme wildfire weather, and marine heat waves (4). These and other climate changes are
leading to a broad suite of impacts, such as migration of ecological niches (5), increases in
global tree mortality (6), increases in financial losses from extremes (e.g., 7), and amplifi-
cation of existing economic inequality (8) and social injustices (9). Furthermore, there is
the possibility that biogeophysical tipping points may lead to new states in key Earth sys-
tems, such as irreversible Antarctic ice loss, tropical rainforest dieback, and slowing ocean
circulations (10). These so-called tipping points are highly uncertain—in terms of
whether, when, and how they may occur (1). Despite this uncertainty, there is paleocli-
mate evidence that tipping points have been crossed in the past, and emerging evidence
suggests that they could be crossed as a result of anthropogenic change (11–13).
To possibly grant humanity additional time to sufficiently reduce greenhouse gas

emissions, lessen the existing negative impacts of climate change, and avoid transgres-
sion of irreversible tipping points, there is renewed interest in developing an interna-
tional research agenda on solar radiation modification (SRM)—a speculative form of
climate change response that has the potential to offset human-induced warming by
reflecting a small amount of solar energy back to space before it enters and warms the
planetary environment (14).

Significance

Even if aggressive mitigation
policies are implemented soon,
climate change impacts will
worsen in the coming decades.
One proposed response is
stratospheric aerosol injection
(SAI), which would reflect a small
amount of the sun’s energy back
to space, thereby cooling the
planet. This approach is broadly
considered to be relatively
inexpensive and straightforward
to deploy, and global cooling could
occur rapidly. However, on
regional scales, internal climate
variability is likely to dominate
over SAI forcing. This means that
in the decade after SAI is
deployed, many regions of the
world could locally experience
even higher temperatures. Our
study provides conceptual insight
for the possible perception of the
failure of SAI or other climate
mitigation strategies.
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There are numerous challenges for advancing SRM science
and research. First, there are substantial ethical questions con-
cerned with committing future generations to an uncertain
technology and the potential burden of continuing climate
intervention well into the future (15) or deciding when and
how to ramp down SRM deployment (16–19). Second, there
are important concerns related to how climate intervention
may drive changes in essential Earth system processes (20, 21).
Third, there are concerns that the negative consequences arising
from SRM would disproportionately burden populations that
are systematically already burdened by climate change impacts,
global dispossession of resources, and wealth inequality (22, 23).
Research investigating public opinion has found considerable
heterogeneity in attitudes toward either research or use of climate
intervention (24).
In addition to these social challenges, there exist basic scien-

tific questions about how to distinguish the climate effects of
SRM from anomalies driven by internal variability of the Earth
system (25, 26). This variability can lead to substantial short-
term variation in socially relevant climate phenomena, such as
the frequency of extreme hot and cold spells (27), the severity
of drought (28), the path of the midlatitude storm tracks (29),
changes in regional temperature and precipitation (30), the
state of Arctic Sea ice (31), or the strength of tropical modes of
variability such as the El Ni~no Southern Oscillation (32) or the
Madden-Julian Oscillation (33). Research on the interaction
between human-induced climate impacts, or “signals,” and
internal climate variability, or “noise,” is a critical area of cli-
mate change science, not least for supporting policymakers and
the public in navigating the expectations of climate change
action against a backdrop of an internally varying climate sys-
tem (34).
Stratospheric aerosol injection (SAI) is the SRM strategy of

releasing particles into the stratosphere to slow, pause, or
reverse global warming (35). While climate simulations provide
evidence that the long-term result of SAI could lead to stabi-
lized global temperatures (17), the impacts of SAI may be
regionally heterogeneous, with temperature and precipitation
varying considerably (36–39). Moreover, internal climatic vari-
ability may mask the short-term perceived effectiveness of SAI;
that is, it is possible that while SAI could successfully stabilize
mean global temperatures, the perceived effectiveness on
regional scales may be overwhelmed by local climatic variability
over the short term. Psychologically, a climate change–related
event connects to people’s perceptions most clearly when it is
directly and locally relevant (40, 41). Moreover, people who are
residents of a specific location may tacitly incorporate 10-y
trends in their perception of changes in climate (42). Hence,
local changes in climate—such as continued warming or the
occurrence of extreme events—may cause climate interventions
such as SAI to be perceived as a failure. Given the potential for
SAI to abruptly cease and the likelihood of rapid climate
change following such cessation (e.g., 19, 43), the perception
of failure carries particular risks.
If SRM is ever pursued, it will likely be for a specific social

or geophysical aim (22). This may include halting an antici-
pated geophysical tipping point [such as accelerated Antarctic
ice loss (44), permafrost melting, or forest die-off] or lessening
the impacts of extremes such as deadly heat waves in large pop-
ulation centers (45). Yet, if climate variability were to mask the
short-term perceived effectiveness of climate intervention, it
could undermine coordinated, international policy action to
address climate change broadly (46). Understanding the mask-
ing effects of climate variability on regional scales will thus be

critical for interpreting the potential perceived success of any
SRM strategy in the immediate years following deployment.

To systematically distinguish the different possible outcomes
associated with the masking effect of internal climate variabil-
ity, we introduce a set of archetypal regional responses that
could unfold under SAI. These archetypes are motivated by the
fact that in the period prior to SAI deployment, a given region
could be warming or not due to internal climate variability,
even in the context of global-scale warming (47). Similarly, fol-
lowing deployment, that region could either experience warm-
ing or not, even if the global temperature is stabilized. Thus,
we defined four archetypes of perceived success of climate inter-
vention based on four categories of pre- and postdeployment
experience: 1) Rebound Warming (i.e., no warming followed
by warming); 2) Continued Warming (i.e., warming followed
by more warming); 3) Stabilization (i.e., no warming either
before or after deployment); and 4) Recovery (i.e., warming fol-
lowed by no warming). The phenomena Rebound Warming
and Continued Warming could both be locally perceived as a
failure of SAI to deliver on its intended purpose; hence,
throughout the rest of this work, the phrase “perceived failure”
refers to the combination of these two archetypes.

Past research into global SRM strategies employed climate or
Earth system models to simulate how the natural system might
respond to different intervention approaches (48). Here, we lev-
eraged just one of them: the Assessing Responses and Impacts of
SRM on the Earth system with Stratospheric Aerosol Injection
(ARISE-SAI) ensemble carried out with the Community Earth
System Model, version 2 (CESM2) (49). ARISE-SAI simulates a
plausible deployment of SAI, designed to hold global mean tem-
perature at 1.5 °C above preindustrial conditions in the context
of the Shared Socioeconomic Pathway 2 (SSP2)-4.5 future emis-
sions scenario (Fig. 1A) (49). Extending out to the year 2069,
ARISE-SAI includes 10 ensemble members, each initiated from
slightly different initial conditions to enable quantification of the
irreducible uncertainty arising from internal climate variability
(e.g., 50). The 1.5 °C threshold is relevant for global policy dis-
course in part because this is a global mean temperature increase
that is considered both an important Earth system threshold as
well as a key focus of global climate policy negotiations
enshrined in the United Nations’ Paris Agreement (51). The fact
that ARISE-SAI simulates SAI deployment that stabilizes global
temperature at 1.5 °C while also representing the effect of inter-
nal variability via a substantial number of ensemble members
makes ARISE-SAI a useful testbed for probing the possibility of
perceived failure of climate intervention.

Results

Increases in greenhouse gas concentrations and other anthropo-
genic forcings under the SSP2-4.5 scenario drove increases in
temperatures globally (Fig. 1A), as seen in the forced (ensem-
ble-mean) response during the 2015 to 2034 predeployment
period of ARISE-SAI (Fig. 1B). Visualizing the ensemble mean
reduced many of the effects of internal climate variability, even
though an ensemble of more than 10 members is likely needed
to fully remove such effects regionally (e.g., 47, 52). Over the
longer postdeployment period of 2035 to 2069, the ensemble
mean exhibited a clear picture of temperatures generally hold-
ing steady throughout the rest of the simulation (Fig. 1A),
indicative of SAI acting to stabilize temperatures even regionally
(Fig. 1C). In reality, however, any area’s actual climate trajec-
tory will be a combination of both the forced response and
internal climate variability, which would be analogous to a
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single ensemble member (Fig. 1 D and E) rather than the ensem-
ble mean.
Focusing on the decade prior to SAI deployment

(“predeployment decade”; 2025 to 2034), any ensemble member
(e.g., member #9) will exhibit a large range of temperature
trends regionally under SSP2-4.5 (Fig. 1D), even though the
forced response is overwhelmingly warming. This is because
internal climate variability can drive short-term trends in tem-
perature that can partially mask (or augment) the longer-term,
forced trend. What is perhaps less appreciated is that internal
climate variability can similarly mask the effects of SAI on a
regional scale. In the decade following continuous SAI deploy-
ment (“postdeployment decade”; 2035 to 2044), ensemble mem-
ber #9 exhibited warming temperatures over 49% of the land
surface (Fig. 1E), where warming is defined as decadal tempera-
ture trends larger than 0.1 °C/decade. This trend threshold was
chosen to reflect the approximate warming over the observa-
tional record (53); temperature trends less than this are referred

to here as “not warming,” since they capture both cooling as
well as small positive trends. Thus, the effects of internal cli-
mate variability can cause the magnitude of regional warming
trends in the postdeployment decade to far exceed the forced
trend from SAI.

Beijing, China, provides an example of how a single region
can experience each of the four archetypal responses under dif-
ferent individual realizations of the ARISE-SAI experiment
(Fig. 2). Ensemble member #1 exhibited the Recovery archetype
(Fig. 2D), where SAI would potentially be labeled a success in
that the perception of temperature change would swing from an
increase in local temperature prior to deployment to a stabiliza-
tion or decrease in temperature after deployment. However, in
member #4, Beijing experienced Rebound Warming (Fig. 2A),
with cooling over the predeployment period followed by warming
over the postdeployment period. Likewise, in member #7, Beijing
experienced Continued Warming (Fig. 2B), with substantial
warming during both the pre- and postdeployment decades.

Fig. 1. Surface temperature trends. (A) Global mean surface temperature. Gray lines denote individual ensemble members, and the black line denotes the
ensemble mean. (B and C) Ensemble-mean trends over years 2015 to 2034 under SSP2-4.5 (B) and 2035 to 2069 (C) with ARISE-SAI deployment. (D and E)
Trends over the predeployment decade (D) and postdeployment decade (E) for ensemble member #9. (B–D) The percentage in the bottom of the maps
denotes the percentage of land area that exhibited warming trends as defined in the text.
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All four archetypal regional responses can be found across
the globe, with varying percentages of the ARISE-SAI ensemble
(Fig. 3). While some regions, notably Australia and parts of
Africa, exhibited high probability of the Recovery archetype
(Fig. 3D), substantial parts of the land surface experienced high
probability of either Rebound Warming or Continued Warming.
Repeated occurrence of perceived failure in the same location
across multiple ensemble members can be largely understood as
internal climate variability persistently masking the effect of SAI
deployment (although more than 10 ensemble members would
be required to completely rule out the possibility of a weak,
short-term forced response to SAI itself; Fig. 1C).
Aggregating the occurrence of Rebound Warming and Con-

tinued Warming across all ensemble members yielded the prob-
ability (computed as the percentage of the 10 ensemble members)
of internal variability leading to perceived failure of SAI in the
ARISE-SAI experiment (Fig. 4 A and B). While some regions of
the planet experienced near-zero probability of perceived failure
under ARISE-SAI deployment, there were other regions that
experienced greater than 50% probability of perceived failure.
East Antarctica—a region of global importance and priority
with respect to the potential for substantial changes in sea level
(54)—appeared particularly prone to climate variability mask-
ing the effectiveness of climate intervention. Likewise, much of
northern Eurasia and the western half of North America experi-
enced a very high probability of perceived failure in the decade
following deployment. For the case of North America, Pacific
Decadal Variability—which CESM is known to simulate with
high fidelity (55)—could be a key factor confounding the effects
of climate intervention (SI Appendix, Fig. S3).
We emphasize that these results are specific to ARISE-SAI

deployment, which is only one of many possible SAI deploy-
ment scenarios (e.g., 56). Regardless, they suggest that internal
variability in the climate system, whether arising from random
noise in the atmosphere or oceans (57) or from potentially pre-
dictable coupled ocean-atmosphere modes of variability, can
effectively mask SAI deployment.

Our perceived failure metric relies on quantifying decadal
temperature trends. However, given the myriad impacts of
extreme heat on natural and human systems (27, 58), an alter-
native metric for the perceived effectiveness of SAI could
instead be a measure of the experience of temperature extremes
following deployment. We found that although the forced
response in ARISE-SAI resulted in a stabilization of global tem-
peratures (Fig. 1 A and C), it is still very likely that record hot
temperatures will occur following deployment (Fig. 4B). For
example, for broad areas of Africa, Eurasia, North America,
South America, and Antarctica, at least 1 y in the decade after
SAI deployment was hotter than the hottest year that occurred
in 2015 to 2034. Moreover, the regions experiencing persis-
tently high perceived failure of SAI (Fig. 4A) did not directly
correspond to the regions experiencing extremely high mean
annual temperatures (Fig. 4B). This finding underlines that
multiple climate metrics are necessary when considering the
perceived effectiveness of SAI.

Given the importance of local experiences for informing
perceptions of climate change (40), we next explored the popu-
lations exposed to perceived failure of SAI in the specific
ARISE-SAI deployment scenario examined here. Using gridded
population data projected for 2040 in SSP2 (59, 60), we found
that between 10% and 55% of the global population experi-
enced perceived failure across the 10-member ARISE-SAI
ensemble (SI Appendix, Fig. S4). The most severe example is
shown in Fig. 4C for ensemble member #9, where substantial
populations in India, Southeast Asia, the eastern United States,
and West Africa were exposed to the potential of perceived fail-
ure over the decade following ARISE-SAI deployment.

Perceptions of climate change–related phenomena can be
related to both individual local experiences as well as collective
sociocultural experiences (40, 61, 62). Thus, to further explore
the socioeconomic reality of perceived failure of SAI at the
national level, we compared the probability of country-level
perceived failure against country-level gross domestic product
(GDP) in 2040 (in units of purchasing power parity; PPP) (63).

Fig. 2. Predeployment and postdeployment surface temperature trends for Beijing, China. (A–D) Each panel highlights a different ensemble member
denoted in each panel by the thick black line, with the other nine members shown as thin gray lines. SAI deployment was initiated in the year 2035 (teal
shading). Ten-year linear best-fit lines are shown for 2025 to 2034 (orange) and 2035 to 2044 (teal).

4 of 8 https://doi.org/10.1073/pnas.2210036119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2210036119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2210036119/-/DCSupplemental


All of the largest economies in the world experienced substantial
probability of perceived failure in the postdeployment decade of
ARISE-SAI (Fig. 4D). The implication is that the countries with
the most geopolitical and global economic power—and perhaps
those with the most financial capacity to deploy continuous SAI
to manage global temperatures (64)—experienced at least a 50%
probability of large populations being exposed to the potential of
perceived failure of SAI. These countries also cover substantial
land areas, potentially increasing the odds that internal climatic
variability could mask the benefits of SAI. Yet, the fact remains
that the countries that are apparently most prone to high poten-
tial of perceived failure are those with the largest populations
and the largest economies.

Discussion

The “fast” dimension of climate intervention is a notable advan-
tage of SAI relative to other climate intervention approaches
(14, 24). However, we found that substantial areas of the world
could experience warming trends and extremely hot years,
even after 10 y of continuous deployment in the ARISE-SAI
scenario—raising the possibility that SAI may not be perceived
locally as effective. Given the potential social, political, and eco-
nomic costs associated with climate intervention and increasing
stakes associated with a warming planet, this gap in time
between deployment and local perceived effectiveness could serve
to undermine the fast dimension of SAI intervention. Moreover,
SAI is a technology that could potentially be deployed quickly
by a small group of actors (or a single actor), owing to its rela-
tively low cost and ease of deployment from a single location on
the planet (e.g., within the borders of a single country) (35, 64).

In light of our findings, several priorities emerge for a
forward-thinking SAI research agenda. First, the prevalence of
perceived failure suggests countries should expect public doubt
in the short-term effectiveness of SAI. The expectation of precise
manipulation would be markedly inaccurate (65). Moreover, dif-
ferent types of SAI deployment scenarios could lead to different
levels of masking (both more and less) of internal climate vari-
ability. However, this issue will also emerge in the midst of more
general mitigation efforts (66), as internal climate variability will
likely produce continued warming in some regions in the years
following aggressive policies aimed at reducing greenhouse gas
emissions—potentially leading to similar perceptions of failure in
the climate policy itself (67). Thus, whether or not SAI is pur-
sued, countries must recognize that internal climate variability
will need to be anticipated and well-articulated if continued pub-
lic support is desired. Furthermore, this articulation must occur
amid a communication environment that is already fraught with
climate-related misinformation (68).

To further explore the relevance of the perceived failure arche-
types, we performed a similar analysis using data from the
Geoengineering Large-Ensemble SAI experiment (69). The
results provide complementary insights into SAI deployed under
a much higher emissions scenario (Representative Concentration
Pathway 8.5) and different stabilization targets and deployment
year (deployment in the year 2020 with the main aim to keep
global temperatures around 1 °C above preindustrial values).
Because of this, GLENS-SAI represents a much more aggressive
SAI scenario than ARISE-SAI. The GLENS-SAI results (see SI
Appendix) again illustrate the regional significance of internal cli-
mate variability and thus further indicate that the potential for
perceived failure will exist across many different SAI deployment
strategies.

Fig. 3. Archetypal regional responses to ARISE-SAI. (A–D) The percentage of ensemble members that exhibited specific archetypal responses over the 10 y
pre- and postdeployment: (A) Rebound Warming (not warming followed by warming), (B) Continued Warming (warming followed by warming), (C) Stabilization
(not warming followed by not warming), and (D) Recovery (warming followed by not warming).
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Given that specific regions of the planet are predisposed to
the effects of large internal climate variability, such as that pro-
duced by the El Ni~no Southern Oscillation or the Pacific
Decadal Oscillation (70), it is likely that these regions will also
experience persistent masking of SAI effectiveness. Such under-
standing of regionally persistent masking of SAI effectiveness
will complement and contribute to the growing literature on
detection and attribution of deployment of climate intervention
(25, 26). Further, because the possibility of perceived failure
extends beyond SAI, knowledge of specific regionally persistent
internal variability will benefit other climate mitigation policies,
especially those contingent on public support (71).

Conclusions

Our results highlight the need for continued research and
understanding of how climate variability may mask climate
intervention in the years immediately following deployment. If
climate intervention is ever pursued, it will likely be for a spe-
cific social or geophysical aim. Internal climate variability, how-
ever, may mask the short-term perceived effectiveness of that
intervention, including in the targeted geographical areas, eco-
systems, or economic sectors for which the intervention was
deployed in the first place. Our results thus suggest that the sci-
entific community must better frame what the success of
SAI—and climate intervention more broadly—looks like in the

context of internal climate variability. Specifically, it will be
important to understand how key global drivers of variability,
such as coupled ocean-atmosphere modes operating on decadal
timescales, may mask the intended results of climate interven-
tion strategies and to what extent this masking will be predict-
able or detectable. Our analysis provides a foundation for that
understanding and motivation for improving the ability of
global policy and scientific organizations to better frame the
stakes associated with the deployment of climate intervention
in the future.

Methods

ARISE Data. Gridded, monthly near–surface air temperature fields (variable
name TREFHT) were obtained from the ensemble of simulations performed for
the ARISE-SAI (49). The ARISE ensemble was simulated with the CESM, version 2
(72) using WACCM6 (Whole Atmosphere Community Climate Model Version 6)
(73). We averaged together the gridded, monthly fields to produce annual-
mean fields, with each field having a grid resolution of 0.94240838 degrees lati-
tude by 1.25 degrees longitude.

The ARISE dataset includes two sets of simulations composed of 10 ensemble
members each. The first set follows the SSP2-4.5 emissions scenario, while the
second is identical to the first but with the inclusion of SAI beginning in the year
2035. The location and amount of aerosols released into the stratosphere each
year is determined by a controller algorithm that works to keep global mean tem-
perature, the north-south temperature gradient, and the equator-to-pole tem-
perature gradient at values based on the 2020 to 2039 mean of the SSP2-4.5

Fig. 4. Perceived failure over the 10 y following SAI deployment under ARISE. (A) Probability of perceived failure over the postdeployment period, where
the probability was computed as the fraction of ensemble members exhibiting warming trends. (B) Probability of a location exceeding its 2015 to 2034 (pre-
deployment) maximum annual-mean temperature in the decade following SAI deployment (2035 to 2046). (C) Projected number of people at each location
experiencing perceived failure of SAI over the postdeployment period in ensemble member #9 using projected populations for 2040. Gray denotes regions
not experiencing perceived failure in that particular ensemble member. (D) Percentage of members with 10% or more of a country’s projected 2040 popula-
tion (see SI Appendix, Fig. S5 for alternative population thresholds) experiencing perceived failure following SAI deployment versus the country’s projected
2040 GDP in units of PPP. Circled area corresponds to the projected 2040 population experiencing perceived failure averaged across ensemble members.
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simulations with CESM2 (WACCM6) (73). Further details about the ARISE-SAI
configuration and aerosol injection strategy are provided in ref. 49.

Probability of Perceived Failure. Decadal trends of annual mean tempera-
ture at each grid point were computed using linear, least-squares regression
over two 10-y periods: 1) the predeployment decade (2025 to 2034) and 2) the
postdeployment decade (2035 to 2044). Since SAI under ARISE is designed to
stabilize global-mean temperature (not to reverse the warming trend and induce
cooling), we defined “warming” as any decadal trend that exceeded 0.1 °C per
decade. A warming threshold of 0.1 °C per decade was chosen to reflect the
approximate warming we have thus far experienced over the observational
record (53). All trend magnitudes less than this were considered “not warming.”
We thus classified each of the ensemble members, for each location, as falling
into one of the four archetypes of perceived success of climate intervention
based on the pre- and/or postdeployment trends: 1) Rebound Warming (i.e., no
warming followed by warming); 2) Continued Warming (i.e., warming followed
by more warming); 3) Stabilization (i.e., no warming either before or after
deployment); and 4) Recovery (i.e., warming followed by no warming). The com-
bination of Rebound Warming and Continued Warming represented the experi-
ence of potential perceived failure, as both exhibited warming trends over the
postdeployment decade that exceeded 0.1 °C per decade. The probability of per-
ceived failure was then computed as the percentage of ensemble members (out
of 10) that experienced perceived failure at each location.

Populations and Country-Level Statistics for Those Experiencing Per-
ceived Failure. Projected, gridded population data for the year 2040 were
downloaded from the Socioeconomic Data and Applications Center (SEDAC) for
SSP2 (https://sedac.ciesin.columbia.edu/data/collection/popdynamics/maps/
services). The SEDAC data were downloaded in netcdf format at a resolution of
one-eighth of a degree and then regridded to the ARISE/CESM2 grid using the
sum function. The global population was perfectly conserved in this regridding
process. The population experiencing perceived failure was then computed as
the sum of the populations at each grid point where the postdeployment decade
exhibited warming trends greater than 0.1 °C. Projected GDP (in units of PPP)
data for the year 2040 under SSP2 were downloaded as shapefiles from the

International Institute for Applied Systems Analysis at the country level
(https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10). Temperature
trends, projected population, and projected GDP were then calculated within
each country boundary using the python packages regionmask and geopandas.

Fig. 4D includes the percentage of members with 10% or more of a country’s
projected 2040 population experiencing perceived failure following SAI deploy-
ment. SI Appendix, Fig. S5 displays results for the same analysis using alterna-
tive population thresholds (i.e., 5%, 10%, 25%, and 50%).

Probability of Exceeding Predeployment Maximum Temperature. For
each grid point, we computed the maximum annual-mean temperature across
all available years prior to SAI deployment (2015 to 2034). This was done for
each ensemble member separately to simulate perceptions within each individ-
ual realization of the climate system. The probability of exceeding the predeploy-
ment maximum temperature was then defined as the number of ensemble
members (out of 10) that exceeded their predeployment maximum in the
decade following deployment (2035 to 2044).

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. The manuscript will be submitted in parallel to the
EarthArXiv preprint server, under a CC BY 4.0 license. All ARISE and GLENS data
are publicly available (see information for access): https://www.cesm.ucar.edu/
projects/community-projects/ARISE-SAI/ and http://www.cesm.ucar.edu/projects/
community-projects/GLENS/. Population and GDP data can be downloaded at
https://sedac.ciesin.columbia.edu/data/collection/popdynamics/maps/services and
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10. Code is available
on GitHub at https://github.com/eabarnes1010/arise_perceived_failure (74) and
is archived on Zenodo at the following DOI: https://doi.org/10.5281/zenodo.
7072436 (75).
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