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Abstract

Objective

Mature hair follicles represent an important stage of hair follicle development, which deter-

mines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we

used weighted gene co-expression network analysis (WGCNA) to identify hub genes of

mature skin and hair follicles in Inner Mongolian cashmere goats.

Methods

We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats

from fetal days 45–135 days, and divided the co expressed genes into different modules by

WGCNA. Characteristic values were used to screen out modules that were highly

expressed in mature skin follicles. Module hub genes were then selected based on the cor-

relation coefficients between the gene and module eigenvalue, gene connectivity, and Gene

Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.

The results were confirmed by quantitative polymerase chain reaction (qPCR).

Results

Ten modules were successfully defined, of which one, with a total of 3166 genes, was

selected as a specific module through sample and gene expression pattern analyses. A

total of 584 candidate hub genes in the module were screened by the correlation coefficients

between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG func-

tional enrichment analyses detected WNT10A as a key gene in the development and matu-

ration of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the
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expression trends of 13 genes from seven fetal skin samples were consistent with the

sequencing results, indicating that the sequencing results were reliable.n

Introduction

China has a long history of cashmere goat breeding, with>30 pure-breeding varieties, includ-

ing Inner Mongolian, Liaoning, and Tibetan cashmere goats, as well as many improved

hybrids. Cashmere goats thus play an important role in the development of China’s animal

husbandry, and China is the world’s largest producer of cashmere fibers [1]. However, rapid

developments in the cashmere textile industry mean that the requirements for cashmere fine-

ness are becoming increasingly strict, with a consequent need for the industry to cultivate

excellent cashmere goat varieties.

Cashmere goats produce wool from primary hair follicles and cashmere from secondary

hair follicles. Most research on skin and hair follicles in cashmere goats has focused on changes

in the primary and secondary hair follicles during their growth, degeneration, and resting

stages, and on the mechanisms of their related genes. The fetal development of primary and

secondary hair follicles has been less well studied, and studies of fetal skin and hair follicle

development have largely considered the occurrence of primary and secondary hair follicles

(fetal period 45–65 days). However, there have been no reports on the maintenance of hair fol-

licle structure and skin hair follicle homeostasis by epithelial cells and fibroblasts during the

development and maturation of the primary and secondary hair follicles (115–135 days), even

though the stability of the epithelial cells and fibroblasts has been shown to be a key require-

ment for the hair follicle to enter the hair cycle and to maintain the normal structure of the

hair follicle in other mammals [2–7].

The early stages of skin and hair follicle development in Inner Mongolian cashmere goats

has been divided into seven important stages (45–135 days). Cashmere goat wool is produced

by primary hair follicles, while cashmere is produced by secondary follicles. The primary hair

follicle primordium has been formed in all areas in cashmere goats at 55–65 days, some pri-

mary hair follicles have matured to form complete hair follicle structures by 105 days, and pri-

mary hair follicle development is basically complete by 135 days (Fig 1A). The primordial

body of secondary hair follicles can be observed on the temples and neck at 65 days of fetal

development, after which secondary follicles begin to grow and develop in various parts of the

body, have developed and formed by 105 days, and gradually become mature after 125 days

(Fig 1B) [8].

Transcriptome sequencing can reflect the gene expression in a species at a specific time and

in specific tissues. The occurrence and fetal development of skin and hair follicles in Inner

Mongolian cashmere goats was examined in detail by transcriptome sequencing of the seven

stages [9]; however, although some key genes related to secondary hair follicle development

were identified, no genes highly related to the development and maturation of fetal skin folli-

cles were reported.

Weighted gene co-expression network analysis (WGCNA) is a popular systems biology

method that describes gene correlations based on microarray databases to detect highly corre-

lated gene clusters (modules). By identifying the intrinsic or central genes in these modules,

these co-expressed gene clusters can summarize the modules and can then be related to the

phenotype. Further analysis can also identify key and central participants in the module, thus

helping to identify possible therapeutic targets or candidate biomarkers [10, 11].
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Fig 1. Schematic diagram of skin hair follicle development. (A) Primary hair follicles; (B) secondary hair follicles. PC: Placode; DC: Dermal

condensate; DP: Dermal papilla; IRS: Inner root sheath; HFSC: Hair follicle stem cells; SG: Sebaceous gland.

https://doi.org/10.1371/journal.pone.0243507.g001
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Materials and methods

Ethics statement

Fetal skin samples were collected from Inner Mongolian cashmere goats in accordance with

the International Guiding Principles for Biomedical Research Involving Animals. The proce-

dure was approved by the Animal Ethics Committee of the Inner Mongolia Academy of Agri-

culture and Animal Husbandry Sciences, which is responsible for Animal Care and Use in the

Inner Mongolia Autonomous Region of China. No specific permissions were required for

these activities and the animals did not include any endangered or protected species.

Skin sample preparation for quantitative real time-polymerase chain

reaction (QPCR) validation

Samples were obtained from the Inner Mongolia Jinlai Animal Husbandry Technology Co.,

Ltd. (Hohhot, Inner Mongolia). The cashmere goat farm met the relevant Chinese national

standard experimental animal environment and facilities requirements (gb14925-2010).

According to the breeding records, we performed caesarean sections at different gestational

ages. Surgery was carried out using general anesthesia and the ewes were monitored and

nursed. Before the operation, the experimental animals were forbidden to eat and drink water.

First, atropine (Quanyu, China) was injected intramuscularly with 0.04ml/kg, Half an hour

later, xylazine hydrochloride injection (Shengxin, China) was injected intramuscularly with

0.1–0.15ml/kg. All operating personnel were qualified veterinarians with at least 3 years of

clinical experience. We collected samples of fetal skin from three fetuses for each period (45,

55, 65, 75, 95, 115, and 135 days). The embryos were cleaned with diethyl pyrocarbonate water

after cesarean section, and skin samples (1 cm2) were collected quickly from the fetuses using

sterile, enzyme-free disposable scalpels and forceps. The samples were then put into storage

tubes, numbered, frozen rapidly in liquid nitrogen, and stored at -80˚C until use. The sampling

process was conducted in strict accordance with animal welfare requirements.

Data sources

This study used previous preliminary test results [9]. Fetal samples were collected as described

above. The 21 sets of samples were subjected to RNA-Seq to obtain gene expression data for

each gene sample. The gene expression data for each sample was normalized using the frag-

ments per kilobase of exon per million fragments method. We have specified where the mini-

mal data set underlying the results described in supporting information.

Division of modules

Before WGCNA, we screened and filtered the selected gene set to remove low quality genes or

samples with an unstable impact on the results to improve the accuracy of network construc-

tion. A weighted gene co-expression network was constructed using the WGCNA (v.147)

package in R language [11]. The cor function (Pearson’s correlation coefficient) was first used

to calculate the correlation coefficient between any two genes, and the picks of threshold func-

tion was then used to obtain the appropriate soft threshold (power value with correlation coef-

ficient reaching the plateau period or>0.8 was selected as the parameter for subsequent

analysis), to construct an adjacency matrix in accordance with a scale-free network. The tomsi-

milarity function was used to transform the adjacency matrix into a topology overlap matrix,

which was clustered using the hclust function (average), and the first principal component of

each clustering module was calculated as the module eigenvalue (ME) using the
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moduleeigengenes function. Modules with an eigenvalue similarity >0.85 were merged into

one module, with a minimum of 50 genes in each module.

Screening candidate hub genes

We used the ME to draw a sample expression pattern heat map for Inner Mongolian cashmere

goat fetal skin and hair follicles in the seven periods, and selected the highest expression mod-

ule in the mature stage as the candidate module. Important parameters of the genes in the

module (correlation coefficient with ME and connectivity) were analyzed using the cor func-

tion (Pearson’s correlation coefficient) to calculate the correlation coefficient between the gene

and the characteristic value of each module (P value calculated by Student’s t-test), and the

total correlation coefficient of each gene with other genes was calculated in the adjacent matrix

to determine the connectivity of each gene. The correlation coefficients between genes and the

ME and gene connectivity identified candidate hub genes in the candidate modules.

Enrichment analysis of key candidate genes with Gene Ontology (GO)/

Kyoto Encyclopedia of Genes and Genomes (KEGG) function

The candidate hub genes of specific target modules were subjected to KEGG pathway and GO

functional enrichment analysis using cluego in Cytoscape 3.7.2 (http://apps.cytoscape.org/

apps/cluego). KEGG pathways were analyzed using the KEGG database (http://www.KEGG.

jp) and GO functional enrichment analysis was carried out using the GO database (http://

geneontology.org/).

QPCR verification

Total RNA was isolated from skin tissue using TRIzol reagent (Takara, China) and reverse-

transcribed into cDNA using a Primer Script™ Reagent Kit (Takara, China) QPCR. QPCR was

carried out on an ABI 7300 system (ABI, USA) using FastStart Universal SYBR Green Master

according to the manufacturer’s instructions. The thermal cycling conditions used for QPCR

were 95˚C for 5 min, followed by 45 cycles of 95˚C for 30 s and 60˚C for 45 s. Experiments

were carried out using three biological and technical replicates, respectively. Data were

expressed as mean±standard error.

Results

Construction of weighted gene co-expression network

The applicable power value for this test was four (Fig 2). Ten co-expression modules were cre-

ated and coded as blue, black, green, turquoise, pure, red, brown, yellow, magenta, and pink

modules, including 3,166, 305, 494, 10,378, 62, 439, 2,958, 1,305, 236, and 293 genes, respec-

tively (total 19,636 genes) (Fig 3).

Selection of specific target modules for skin hair follicle development and

maturation in fetal cashmere goats

The sample expression pattern heat map (Fig 4) showed that genes in the blue module were

most highly expressed in three samples at 115 days and three samples at 135 days, consistent

with the developmental periods for skin and hair follicles in fetal Inner Mongolian cashmere

goats. The blue module was accordingly selected for further study.
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Screening key candidate genes in specific target modules

The correlation coefficients between genes and the eigenvalues of each module were calculated

using the cor function (Pearson’s correlation coefficient), and the sum of the correlation coeffi-

cients between each gene and other genes was calculated in the adjacency matrix to obtain the

connectivity of each gene. Previous studies showed that genes with high connectivity and genes

related to MEs were potential candidate hub genes, and that they represented the overall level of

the module [11, 12]. To identify the candidate hub gene of the blue module, we created a

Wayne map based on the intersections of genes with connectivity�900 in the blue module and

genes with correlation�0.9 with MEblue as candidate hub genes in the blue module (Fig 5).

Enrichment analysis of GO/KEGG functions for key candidate genes in

specific target modules

We further analyzed the 584 candidate hub genes in the blue module by GO/KEGG enrich-

ment analysis, with a focus on enrichment of GO Biological Process and KEGG signal path-

ways, which could directly indicate if the enriched genes were related to the occurrence and

development of skin follicles. Candidate hub genes were significantly enriched in 11 GO terms

(Fig 6). Skin development, hair cycle, and tissue development were directly involved in the

development of skin hair follicles. In the GO cellular component, 22 GO terms were enriched

in the candidate genes (Fig 7), with cell-cell junction being significantly enriched. This sug-

gested that the genes enriched in this GO term might regulate the degree of cell-cell compact-

ness; however, this function is limited to cell-cell connections, and does not indicate cell-cell

communication and material exchange [13, 14]. The candidate genes were enriched in 24 GO

molecular function terms (Fig 8). Negative regulation of catalytic activity was significantly

Fig 2. Power value curve.

https://doi.org/10.1371/journal.pone.0243507.g002
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enriched, and we speculated that genes enriched in this GO term might be involved in inhibit-

ing the expression of genes related to hair follicle development; e.g. RALT/MIG6 inhibits the

abnormal expression of epidermal growth factor receptor, thus preventing epithelial cells from

transforming into cancer cells [15]. Candidate hub genes were enriched in 47 signaling path-

ways in KEGG analysis (Fig 9), including three significantly enriched pathways: fatty acid deg-

radation, estrogen signaling pathway, and Staphylococcus aureus. These three signaling

pathways showed no relevant report on the occurrence and development of skin hair follicles.

Screening of key hub genes in mature Inner Mongolian cashmere goat fetal

skin follicles

GO Biological Process enrichment identified 89 genes that were enriched in skin development,

the hair cycle, and tissue development, includingWNT10A, DNASE1L2, KRT25,HOXC13,

Fig 3. Module hierarchical clustering tree. Dynamic tree cut indicates module divided according to clustering results; merged dynamic indicates module divided

according to similarity of the module. Analysis was carried out according to the merged module. Vertical distance in tree diagrams represents distance between two

nodes (between genes); horizontal distance is meaningless.

https://doi.org/10.1371/journal.pone.0243507.g003

PLOS ONE Using WGCNA to identify the hub genes of skin hair follicle development in fetus stage of Cashmere goat

PLOS ONE | https://doi.org/10.1371/journal.pone.0243507 December 22, 2020 7 / 19

https://doi.org/10.1371/journal.pone.0243507.g003
https://doi.org/10.1371/journal.pone.0243507


KRT27, FOXN1, TMEM79, LOC102177231, and LOC102176999, which were enriched in all

three GO terms (Fig 10). Notably, candidate hub genes were enriched in 12 KEGG signaling

pathways directly involved in skin hair follicle development (Fig 9). Although there were no

significant differences in the enrichment of KEGG signaling pathways, they are of great biolog-

ical significance in the occurrence and development of skin hair follicles and hair morphogen-

esis. The 12 signaling pathways were enriched in 56 genes, including AREG, FZD10, EFNA3,

Fig 4. Heat map of sample expression pattern. Abscissa represents the sample and ordinate represents the module, based on module eigenvalues. Red: High

expression; green: Low expression.

https://doi.org/10.1371/journal.pone.0243507.g004
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EPHA2, BMP4, FZD7,WNT10A, LOC102175216, and PLA2G2F, which were enriched in

more than three signaling pathways (Fig 11).WNT10A was the only gene enriched in all three

GO terms and all three KEGG signaling pathways (Fig 12). We therefore identifiedWNT10A
is the key hub gene in the development and maturation of skin hair follicles in fetal Inner

Mongolian cashmere goats.

Quantitative identification of core and key genes by real-time fluorescence

We selected 13 genes for QPCR verification, among which the expression trends of the follow-

ing genes were strongly correlated with the RNA-Seq results (Fig 13): ACTN4 (Fig 13A),

APRC2 (Fig 13B), EFNA3 (Fig 13D), FOXN1 (Fig 13E), FZD7 (Fig 13F), FZD10 (Fig 13G),

Fig 5. Venn diagram of key candidate genes for specific target modules.

https://doi.org/10.1371/journal.pone.0243507.g005

Fig 6. GO-biological process. ��P<0.01. Red box: GO terms directly involved in the development of skin hair follicles.

https://doi.org/10.1371/journal.pone.0243507.g006
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LAMC3 (Fig 13H), LOC102180576 (Fig 13I), TRPV3 (Fig 13L), andWNT10A (Fig 13M). The

expression trends forMAP2K3 (Fig 13J) and NSUN2 (Fig 13K) showed strong positive correla-

tions with RNA-Seq, and the expression trend for EFNA1 (Fig 13C) was moderately positively

correlated with RNA-Seq.

Discussion and summary

In this study, we used previous RNA-Seq results for different fetal stages of Inner Mongolian

cashmere goats to determine 10 co-expression network modules using WGCNA, and success-

fully mined the specific module related to mature skin and hair follicle development based on

the ME. WGCNA divides modules into soft thresholds, which reflect the effectiveness of bio-

logical networks more effectively than hard thresholds [11]. Finally, GO/KEGG functional

enrichment analysis of candidate key genes identifiedWNT10A as the key core gene for fetal

skin follicle development and maturation in Inner Mongolian cashmere goats.

The two most important concepts used to describe nodes in the topological overlap matrix

constructed by WGCNA are the correlations between genes and MEs and gene connectivity.

The characteristic value of a module represents the overall level of the module, such that a

closer correlation between the gene expression level and the ME indicates that the gene may be

the potential hub gene for the module. Gene connectivity is the sum of the correlation coeffi-

cients between the gene and other genes, and higher gene connectivity indicates more associ-

ated genes, further suggesting that the gene of interest may be a hub gene in the module [10–

12].

Although the fatty acid degradation, estrogen signaling pathway, and Staphylococcus aureus
infection KEGG pathways were significantly enriched among the 584 candidate hub genes,

there is no relevant report on the occurrence and development of skin hair follicles. Fatty acids

Fig 7. GO-cellular component. ��P<0.01.

https://doi.org/10.1371/journal.pone.0243507.g007

Fig 8. GO-molecular function. ��P<0.01.

https://doi.org/10.1371/journal.pone.0243507.g008
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on the skin surface are mainly composed of sebum and a small amount of intercellular lipids.

They are largely responsible for maintaining the normal skin barrier function, and the degra-

dation of fatty acids by the skin can maintain normal skin metabolism [16]. Studies of wound

healing showed that dynamic changes in estrogen levels in line with aging and the menstrual

cycle affected wound healing, because estrogen combines with receptors on the skin to activate

the estrogen signaling pathway and accelerate wound healing [17, 18]. Epithelial cells contain

the skeletal protein keratin, which maintains their basic morphology. At the same time, many

pathogenic microorganisms, including Staphylococcus aureus, enter the body via the skin [19,

20]. We therefore focused on 12 signaling pathways with biological significance in the develop-

ment of skin hair follicles.

During glycerophospholipid metabolism, phospholipase degrades and oxidizes bioactive

phospholipids in the epidermis, enabling epithelial cells to perform their normal cellular func-

tions and maintain the epidermal structure [21]. However, disruption of glycerophospholipid

metabolism results in oxidative damage to the epidermis, such as psoriasis [22]. Fibroblast

growth factor (FGF) 21 knockout mice showed slower hair regeneration and had significantly

fewer hair stems than wild-type mice, possibly related to the role of FGF21 as the key gene in

the MAPK and phosphoinositide 3-kinase/Akt signaling pathways [23]. The importance of

these signaling pathways in hair follicle development was also shown in a study of hair mor-

phology of Hu wool, The Ras signaling pathway may also be involved in hair follicle develop-

ment [24]. Hair follicles progress from the resting stage to the growth stage as a result of the

rapid differentiation of hair follicle stem cells, related to activation of the mTOR signaling

pathway [25]. The formation of skin hair follicles is related to the fine rearrangement of vari-

ous cells, notably including the appearance of dermal aggregations induced by epithelial cells.

Genes involved in axon guidance are highly expressed in epithelial cells and the dermis, sug-

gesting that axon guidance might play a key role in this process [26]. Arachidonic acid

Fig 9. KEGG signal pathway enrichment diagram. Abscissa indicates percentage of genes enriched by each signaling pathway relative to total genes of each signaling

pathway; numbers to right of columns indicate number of genes enriched by each signaling pathway; red boxes: Signaling pathways involved in development of skin hair

follicles. �P<0.05, ��P<0.01.

https://doi.org/10.1371/journal.pone.0243507.g009
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metabolism can produce prostaglandins D2 (PGD2), E2 (PGE2), F2-α (PGf2α) and I2, and

thromboxane A2 through different catalytic reactions. PGE2 protects irradiated mice from

hair loss, PGF2α promotes the growth of human eyelashes, while PGD2 inhibits hair growth

[27]. Tight junctions are an important prerequisite for tight intercellular connections, as well

as providing a means of intercellular communication, and also playing an important role in

different stages of the hair cycle and the process of hair follicle development [28, 29]. The

Hippo signaling pathway is a highly conserved signaling pathway, which is targeted by the

miR-200 family of microRNAs to regulate the cell fate (cell migration and adhesion) of hair

embryo, resulting in normal hair development [30]. Pluripotent stem cells have self-renewal

ability, and 3D culture of pluripotent stem cells in vitro produced skin epidermis and dermis,

together with new hair follicles [31]. The Hedgehog and Wnt signaling pathways are important

components of basal cell carcinoma and their interaction has been shown to lead to abnormal

differentiation of basal cells and eventually to basal cell carcinoma [32]. The Wnt signaling

pathway is an important part of many signaling pathways related to hair follicle development,

such as Hippo signaling, basal cell carcinoma, and signaling pathways regulating the pluripo-

tency of stem cells. In addition, Wnt signaling was shown to play an important role in hair fol-

licle differentiation and maturation in the development of wool follicles in Northern Shaanxi

cashmere goats [33]. These studies thus demonstrated the importance of the Wnt signaling

pathway in hair follicle development.

Mammalian skin and its appendages are derived from mesoderm and ectoderm during

embryogenesis [34, 35]. The embryo surface comprises a monolayer of epithelial cells, while

Fig 10. Gene enrichment map of skin follicle development and GO-biological process. Large nodes: GO terms

directly involved in the biological process of skin hair follicle development; small nodes: Enriched genes; red boxes:

Enriched to three GO terms.

https://doi.org/10.1371/journal.pone.0243507.g010
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the dermis is composed of fibroblasts, and hair follicles are induced by the interaction of the

epidermis and dermis [35, 36]. The exchange of information between the epidermis and the

dermis during hair follicle development involves a family of secreted signaling molecules, of

which the Wnt family of proteins may be the earliest and most critical in epidermal develop-

ment [35, 37–39]. Wnt family members (19 members in humans and mice) and their receptor,

Frizzled (FZD) protein (10 members in humans and mice), form a large family, and the net-

work they construct can control several different cell pathways, including their proliferation,

fate, shape, and movement [40, 41].

Some members of the Wnt family have different expression patterns during skin develop-

ment, and several candidates are related to the morphogenesis of hair follicles, such asWNT3,

WNT10A, andWNT10B [42–44].WNT10A is expressed in dermal papilla cells and in the adja-

cent follicular epithelium during hair growth [44] and can regulate the cell fate pattern [45].

Although severalWNT family genes have been found in epithelial cells on the surface of the

embryo, only the transcripts ofWNT10A andWNT10B were located specifically in the basal

layer of the hair follicle and the inner root sheath precursor in the matrix, whileWNT10A was

even expressed in the more-differentiated inner root sheath cells. The function ofWNT10A is

thus considered as part of the “first epithelial signal” in hair follicle morphogenesis [44]. In

addition to its role in hair follicle development,WNT10A is also involved in acne in humans,

and its dislocated alleles have a protective effect on acne [46].

The Wnt/β-catenin signaling pathway is generally divided into classical and non-classical

pathways. In the classical pathway, Wnt ligands bind to low-density lipoprotein receptors,

Fig 11. Gene enrichment diagram of KEGG signaling pathway in skin hair follicle development. Nodes with yellow background: Signal

pathways; nodes with blue background: Genes; red boxes: Genes enriched in at least three signal pathways.

https://doi.org/10.1371/journal.pone.0243507.g011
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associated protein LRP-5 and LRP-6 co-receptors, and FZD receptors, leading to the activation

of disheveled (DSH) and inhibition of the β-catenin degradation complex to stabilize the cyto-

plasm. β-catenin then accumulates in the cytoplasm, enters the nucleus, and activates Wnt-

regulated targets through interaction with T cell factor (TCF) family transcription factors, with

subsequent recruitment of co-activator genes [40]. In the non-classical Wnt/β-catenin signal-

ing, knypek (a member of the glypican family of heparan sulfate proteoglycans) enhances the

binding of Wnt to the FZD receptor [47], without involvement of LRP5 and LRP6. DSH is

activated by non-classical Wnt signaling via a different protein domain from the classical Wnt/

β-catenin signaling domain [48]. Non-classical Wnt signaling does not need β-catenin or Lym-

phoid Enhancer Factor/T-Cell Factor, and in contrast, DSH is activated by the bridging mole-

cule Daam1 [49]. Activated DSH can cause calcium flux and activation of calcium-sensitive

kinase, protein kinase C, and calcium/calmodulin-dependent protein kinase II [50, 51]. How-

ever, it is unclear if Rho1 activation and calcium flux activation occur in the same pathway or

in different branches of the non-classical FZD-DSH pathway [52]. In some cases, non-classical

Wnt signaling can be blocked by the Wnt/β-catenin pathway.

Fig 12. Venn diagram of GO/KEGG enrichment analysis. A: The genes marked by the red box are all enriched to 3 GO terms. B: The gene enriched to� 3

signal pathways is marked by the red frame.

https://doi.org/10.1371/journal.pone.0243507.g012
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Wnt-10A not only plays a role in the development of skin hair follicles, but also has an

important role in the development of other ectodermal structures. The ectoderm is the outer-

most layer of the embryo, which develops into the nervous system, sensory system, and the

skin and skin appendages. Ectodermal dysplasia is a congenital disease that affects the mor-

phogenesis of the skin, hair, nails, teeth, sweat and sebaceous glands, submucosa, and breast.

WNT10A is an important gene in ectodermal development, and its mutation may result in

ectodermal dysplasia [41], with the main symptoms of abnormal development of dentin and

nails and the appearance of cysts and erythema along the edge of the eyelid [53, 54]. During

tooth development, the specific expression ofWNT10A in epithelial cells can induce tooth-

root bifurcation, and it is therefore also considered as a key gene in the process of tooth differ-

entiation,WNT10A also controls the proliferation of adjacent mesenchymal cells by regulating

the expression of Wnt4 in mice [55, 56].

WNT10A also plays an important role in cancer. Its absence can delay the healing of dorsal

skin wounds in mice [57], while tumors are considered as “unhealable” wounds. Related to the

mechanism ofWNT10A in skin wound healing, its absence can inhibit the expression of colla-

gen, thereby preventing tumor occurrence [58]. Colorectal cancer is one of the main causes of

cancer-related deaths worldwide, andWNT10Amay be involved in the occurrence of colorec-

tal cancer by activating Wnt/β-catenin signaling [59]. Notably, hypermethylation ofWNT10A
can also be used as a diagnostic marker for colorectal cancer [60].

Further studies are needed to verify the functions of the candidate core geneWNT10A
using methods such as QPCR, western blot, and transgenic methods, in order to gain a deeper

Fig 13. Fluorescent QPCR to verify the sequencing results. Spearman’s rank correlation: 0.8< |Rs|< 1 extremely strong correlation, 0.6< |Rs|< 0.8 strong correlation,

0.4< |Rs|< 0.6 medium correlation, 0.2< |Rs|< 0.4 weak correlation, 0< |Rs|< 0.2 no correlation.

https://doi.org/10.1371/journal.pone.0243507.g013
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understanding of the relationship between the genes and modules identified in this study and

the mature stage of skin hair follicles in fetal Inner Mongolian cashmere goats. Revealing the

key genes in mature skin hair follicles will help to elucidate the regulatory network involved in

skin hair follicle maturation, with beneficial implications for the breeding and yield of Inner

Mongolian cashmere goats.
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