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Abstract

COVID-19 leads to severe respiratory problems, but also to long-COVID

syndrome associated primarily with cognitive dysfunction and fatigue. Long-

COVID syndrome symptoms, especially brain fog, are similar to those experi-

enced by patients undertaking or following chemotherapy for cancer

(chemofog or chemobrain), as well in patients with myalgic encephalomyeli-

tis/chronic fatigue syndrome (ME/CFS) or mast cell activation syndrome

(MCAS). The pathogenesis of brain fog in these illnesses is presently unknown

but may involve neuroinflammation via mast cells stimulated by pathogenic

and stress stimuli to release mediators that activate microglia and lead to

inflammation in the hypothalamus. These processes could be mitigated by

phytosomal formulation (in olive pomace oil) of the natural flavonoid luteolin.
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1 | INTRODUCTION

Infection with the recent coronavirus (severe acute respi-
ratory syndrome [SARS]-CoV-2) leads to COVID-19, the

severity of which derives from the host's inflammatory
response that involves release of a storm of pro-
inflammatory cytokines,1–7 especially interleukin-6 (IL-
6),8–11 but also IL-1.12,13

Even though symptoms associated with SARS-CoV-2
infection in children are mild, a number of recent publi-
cations reported a multisystem inflammatory syndrome
(MIA-C) in older children14–16 and adolescents,17 often
presenting with symptoms reminiscent of Kawasaki dis-
ease.16 Symptoms in MIA-C typically occur 4–6 weeks
after infection and the disease is characterized by ele-
vated markers of inflammation18 and the presence of
multiple autoantibodies.18 A similar disease in adults,

Abbreviations: AD, Alzheimer's disease; ACE2, angiotensin converting
enzyme 2; BBB, blood–brain barrier; CNS, central nervous system;
CRH, corticotropin-releasing hormone; DAMPs, damage-associated
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named multisystem inflammatory syndrome (MIA-A)
has been recognized by the Center for Disease Control
(CDC, USA) (https://www.cdc.gov/mis-c/). In fact, auto-
immune and inflammatory diseases are now increasingly
identified following COVID-19.19 The etiology of MIA
remains unknown.

Cytokine storms have also been implicated in a vari-
ety of “mystery” diseases.20 One such disease affects
COVID-19 survivors and is associated with severe
fatigue and neuropsychiatric symptoms (https://www.
health.harvard.edu/blog/the-tragedy-of-the-post-covid-
long-haulers-2020101521173), especially impairment in
cognitive functions known as “brain fog” (https://www.
nytimes.com/2020/10/11/health/covid-survivors.html).
Such patients have been called “long-haulers” (https://
directorsblog.nih.gov/tag/post-covid-syndrome/) and the
illness has been termed “long-COVID syndrome”
(https://directorsblog.nih.gov/2021/01/19/trying-to-make-
sense-of-long-covid-syndrome/). In fact, the National
Institutes of Health (NIH, USA) recently devoted a 2-day
conference on the epidemiology and pathophysiology
of this illness (https://www.niaid.nih.gov/news-events/
workshop-post-acute-sequelae-covid-19). Other names used
for this illness include “chronic COVID syndrome,”
“post-COVID syndrome,” or “long haulers COVID
syndrome.”21

In addition to the severe respiratory and inflamma-
tory problems discussed above, infection with SARS-
CoV-2 can also contribute to neurological22–25 and men-
tal26–30 disorders. For this reason, NIH held an 1-day
workshop on the effect of COVID-19 on the central ner-
vous system (CNS) (https://www.ncbi.nlm.nih.gov/
search/research-news/11277/) and recently launched
a database to track neurological symptoms associated
with COVID-19 (https://www.nih.gov/news-events/
news-releases/nih-launches-database-track-neurological-
symptoms-associated-covid-19). The importance of the
effects of COVID-19 on the brain is highlighted by the
blog recently posted by the NIH Director on this subject
(https://directorsblog.nih.gov/2021/01/14/taking-a-closer-
look-at-the-effects-of-covid-19-on-the-brain/).

However, few scientific publication has so far dis-
cussed long-COVID syndrome (https://www.nytimes.
com/2021/01/21/magazine/covid-aftereffects.html) such
as the one that reported the presence of persistent fatigue
apparently independent of the severity of the initial
symptoms.31 Symptoms experienced by long-COVID syn-
drome patients (Table 1) are very similar32 to those pre-
sent in patients with myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS),33,34 mast cell activation syn-
drome (MCAS),35,36 or systemic mastocytosis (SM)37 in
whom the unique tissue immune cells, mast cells, are
stimulated by environmental, pathogenic, and stress

stimuli. Moreover, IL-6 has not only been implicated in
COVID-198,12 but was also elevated in ME/CFS38 and
SM.39–41 To make matters worse, IL-6 promotes an
increase in number of mast cells.42

2 | CHEMOTHERAPY

Patients undergoing chemotherapy are susceptible to
infection with COVID-19.43

Moreover, more than 50% of patients on or following
chemotherapy develop symptoms similar to those
described above for long-COVID syndrome (Table 1), espe-
cially cognitive dysfunction,44–47 a condition that has been
termed “chemofog”48,49 or “chemobrain,”50–54 and has
been associated with distinct neuroimaging findings.55,56 A
number of drugs have been implicated in “chemobrain”
(Table 2) most notably doxorubicin,57–59 methotrexate,60,61

lenalidomide,62 rituximab,62 and trastuzamab.63

There have been intense efforts to understand the bio-
chemical64 or cellular44,65,66 mechanisms responsible for
chemobrain. These have included disrupted neurogenesis,67

aberrant myelination,6869 interference with prefrontal
activity,70 but most importantly neuroinflammation66 with
cytokine dysregulation.69,71

TABLE 1 Symptoms present in long-COVID syndrome

• Angioedema

• Brain fog

• Confusion

• Difficulty multitasking

• Dizziness

• Dysautonomia

• Fatigue

• Gastrointestinal complaints

• Headache

• Hypotension

• Insomnia

• Irritability

• Lightheadedness (syncope)

• Inability to find the right words

• Memory loss

• Myalgias

• Palpitations

• Shortness of breath

• Weakness

Note: The symptoms listed, especially those bolded, are experienced, by
many long-COVID syndrome patients and also patients undergoing or after

having been administered chemotherapy.
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3 | INFLAMMATION OF THE
BRAIN

Microglia have important functions in the CNS,72 espe-
cially with respect to neuroinflammation72–74 and neuro-
degenerative75–77 diseases. Microglia express Toll-like
receptors (TLRs),78 activated by damage-associated

molecular patterns (DAMPs) and were recently impli-
cated in COVID-19.79,80 COVID-19 can also affect the
hypothalamic–pituitary–adrenal (HPA) axis,81 which is
typically activated by stress and can further affect the
emotional state of individuals affected by COVID-19.82,83

Microglia also express receptors for corticotropin-
releasing hormone (CRH)84 and could be further acti-
vated by stress, especially associated with COVID-19.85

Microglia interact with the unique immune cells,
mast cells, in the brain86 leading to their activation87 and
neuroinflammation.88 Activation of mast cells89,90 and
microglia91 in the hypothalamus33 could lead to cognitive
dysfunction92 commonly also seen in patients with
MCAS93,94 (Figure 1). Psychological stress has pro-
inflammatory effects82,95 via stimulation of mast cells,83

especially by CRH96 leading to increased vascular perme-
ability.83 This process also leads to disruption of the
blood–brain barrier (BBB),97,98 via release of IL-699 and
CRH,100 further exacerbating brain inflammation by per-
mitting the entry into the brain of more viral particles,
cytokines, or other toxic substances (Table 1). A recent
NIH study reported blood vessel damage and inflamma-
tion, but no infection, in brains of patients with COVID-
19.101 (https://www.nih.gov/news-events/news-releases/
nih-study-uncovers-blood-vessel-damage-inflammation-

TABLE 2 Chemotherapeutic agents implicated in chemofog

• Bleomycin

• Carboplatin

• Cis-platin

• Cyclophosphamide

• Cytarabine

• Doxetaxel

• Doxorubicin

• Lenalidomide

• Methotrexate

• Taxol

• Trastuzumab

Note: The drugs listed, especially those bolded, have been reported to induce
“chemofog” or “chemobrain”.

FIGURE 1 Diagrammatic representation of how SARS-CoV-2 could stimulate mast cells and microglia in the hypothalamus, inhibited

by luteolin. SARS-CoV-2 could enter the brain via the olfactory nerve tract reaching the hypothalamus where it could activate brain mast

cells and microglia to release pro-inflammatory molecules, thus contributing to brain inflammation and brain fog. The effect of SARS-CoV-2

could be exaggerated by chemotherapy, as well as cytokines and mtDNA, or neuropeptides released under stress (thunderbolt). These

processed could contribute to the pathogenesis and symptoms of long-COVID syndrome and “chomobrain” and could be prevented by the

flavonoid luteolin
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covid-19-patients-brains-noinfection#:�:text=In%20an%
20in%2Ddepth%20study,shortly%20after%20contracting%
20the%20disease.) These findings may explain the recent
comprehensive reports of significantly increased neuro-
logic102 and psychiatric103 disorders in COVID-19
patients, as well as in long-COVID syndrome patients.104

Mast cells are ubiquitous in the body37 and are critical
for allergic diseases,105 but also inflammation.106 Mast
cells are also present in the brain, especially in the
median eminence of the hypothalamus, where they are
located perivascularly close to nerve endings positive for
CRH.107 Mast cells are also triggered by viruses108 includ-
ing SARS-CoV-2.109,110 A recent publication using normal
oral cavity mucosa reported no gene expression of the
SARS-CoV-2 receptor, angiotensin converting enzyme
2 (ACE2) in mast cells.111 However, mast cells are “plas-
tic” and their surface receptors can be induced by a vari-
ety of conditions. For instance, we reported that the
neuropeptides neurotensin112 and substance P (SP)113

can induce CRHR-1. Moreover, SP can induce the ST2
receptor for IL-33.114 In fact, ACE2 gene expression was
recently shown to be induced by interferon,115 and mast
cells can elicit strong pro-inflammatory and type I inter-
feron responses in response to viruses,116 implying an
autocrine action on ACE2 expression. Of course, it
remains to be seen to what extent pulmonary and/or
brain mast cells from deceased COVID-19 patients
express ACE2.

Following stimulation, mast cells release pro-
inflammatory mediators117 such as histamine, tryptase,
chemokines (e.g., CCL2, CCXL8)118 and cytokines (IL-
6,119 IL-1β ,120 and tumor necrosis factor [TNF]114),
especially when primed by IL-33.121,122 Histamine can
stimulate macrophages to release IL-1,123 which stimu-
lates mast cells to release IL-6.119 Mast cells can also
secrete mitochondrial DNA (mtDNA),124 which was
recently reported to be increased in the serum of COVID-
19 patients and correlated with disease severity.125 Extra-
cellular mtDNA serves as an alarmin and stimulates
pro-inflammatory mediator secretion from immune
cells.126,127 Moreover, mast cells synthesize and release
platelet activating factor (PAF), which has been impli-
cated in the inflammation128 and microthromboses129

characterizing COVID-19.

4 | TREATMENT APPROACHES

Unfortunately, there are no clinically effective interven-
tions for long-COVID syndrome1,130 or brain fog associ-
ated with either chemobrain, ME/CFS,131 or MCAS.36 It
is also hard to decide whether it would be best to stimu-
late or suppress the immune system,132,133 since antibody

production and T cells appear to be protective, while pro-
inflammatory cytokines are destructive.1,134,135 A reason-
able approach especially for brain fog associated with
long-COVID syndrome, ME/CFS, MCAS, and
chemotherapy-induced “chemobrain” would be inhibi-
tion of mast cell-associated neuroinflammation.

Even though inhibition of mast cells could be benefi-
cial in COVID-19 or long-COVID syndrome,38 there are
no effective mast cell inhibitors.136 Instead, mast cells
could be inhibited with the structurally related natural
flavonoids luteolin and quercetin,137–141 which are read-
ily available and are generally considered safe142–146

(Figure 1). Both flavonoids have broad anti-viral proper-
ties, inhibit entry of the virus into host cells,108,147,148

inhibit neuroinflammation,149 and reduce cognitive
decline.150 Furthermore, luteolin better penetrates into
the brain, inhibits both microglia151,152 and mast
cells,153,154 and has been reported to reduce neu-
roinflammation145,155,156 and cognitive dysfunction,157,158

including Alzheimer's disease in humans159,160 and in
animal models.161

Luteolin and quercetin are difficult to absorb after
oral administration,162 but their pharmacokinetics are
greatly improved in liposomal preparations using olive
pomace oil.163 In fact, a luteolin formulation in olive
pomace oil (NeuroProtek®) has been used effectively for
improving autism spectrum disorder,144,164 while another
one (BrainGain®) reduced brain fog.157 These liposomal
formulations not only improve oral absorption and bio-
availability but also provide the additional neuro-
protective165–170 and anti-inflammatory171,172 actions of

TABLE 3 Important facts and outstanding issues concerning

long-COVID syndrome

• Long-COVID syndrome is a serious concern

• Symptoms of long-COVID syndrome are similar to those
present in ME/CFS, MCAS and during or after
chemotherapy

• The most vexing symptoms are chronic physical and mental
fatigue (brain fog)

• The mechanism underlying these symptoms is presently not
known

• Stress-related neuropeptides and interferons could induce
ACE2 expression on mast cells and microglia

• Stimulation of hypothalamic mast cells and microglia by
SARS-CoV-2 could lead to release of pro-inflammatory
mediators

• Focal inflammation of the brain may be prevented/reduced
by appropriate liposomal luteolin formulations

Abbreviations: ACE2, angiotensin converting enzyme 2; MCAS, mast cell
activation syndrome; ME/CFS, myalgic encephalomyelitis/chronic fatigue

syndrome.
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olive pomace oil polyphenols, as well as the increase in
memory provided by the olive hydroxytyrosol169,173 pre-
sent in BrainGain®.

However, one should be aware of the fact that
luteolin is now present in numerous dietary supplements
with misleading names (e.g., “luteolin complex”) and
wide variations in the source, content, and purity (often
not disclosed at all) of luteolin.163

5 | CONCLUSION

The number of COVID-19 cases may turn out to be fewer
and the associated burden to the health system more by
the long-COVID syndrome.174 Obviously, there are many
outstanding issues to be investigated (Table 3). In the
meantime, the brain fog associated with long-COVID
syndrome and use of chemotherapy may be prevented/
reduced with appropriate luteolin formulations.
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