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Abstract: Landslide spatial probability and size are two essential components of landslide
susceptibility. However, in existing slope-unit-based landslide susceptibility assessment methods,
landslide size has not been explicitly considered. This paper developed a novel slope-unit based
approach for landslide susceptibility assessment that explicitly incorporates landslide size. This novel
approach integrates the predicted occurrence probability (spatial probability) of landslides and
predicted size (area) of potential landslides for a slope-unit to obtain a landslide susceptibility value
for that slope-unit. The results of a case study showed that, from a quantitative point of view,
integrating spatial probability and size in slope-unit-based landslide susceptibility assessment can
bring remarkable increases of AUC (Area under the ROC curve) values. For slope-unit-based scenarios
using the logistic regression method and the neural network method, the average increase of AUC
brought by incorporating landslide size is up to 0.0627 and 0.0606, respectively. Slope-unit-based
landslide susceptibility models incorporating landslide size had utilized the spatial extent information
of historical landslides, which was dropped in models not incorporating landslide size, and therefore
can make potential improvements. Nevertheless, additional case studies are still needed to further
evaluate the applicability of the proposed approach.
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1. Introduction

Landslide is a phenomenon in which a mass of rock, debris, or earth moves down a slope [1,2].
Landslides can cause huge losses of life and economy; about 14% of total casualties from natural
disasters are caused by landslides [3]. Therefore, landslide risk assessment and mitigation are of great
significance for human beings. Landslide susceptibility assessment is an essential step of landslide
risk assessment [4], thus had been one of the major focuses of landslide studies [5–7]. China is
particularly badly affected by fatal landslides [8]. Major regions severely affected by landslides in China
include the southwest mountainous area [9], southeast coastal area [10], and the loess plateau [11].
Landslide studies in China had focused on various aspects [12]. In particular, landslides induced by
the 2008 Wenchuan earthquake had been comprehensively investigated in various studies [13–17],
in which landslide susceptibility mapping is also a major focus [18].

Landslide susceptibility, regardless of the type of landslide, is a quantitative or qualitative
measurement of the spatial distribution and sizes (e.g., volumes or areas) of landslides which exist
or potentially may occur in an area [4]. Therefore, spatial probability and size are two essential
components of landslide susceptibility.
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Slope-unit (SU) and regular grid are two major types of units used in landslide susceptibility
mapping. Slope-unit is a hydrological region bounded by drainage (stream or valley) lines and divide
(ridge) lines [19]. Slope-units somehow constrain the extents of gravitational mass flows on slopes,
thus are more physically relevant than grid cells. Slope-units had been adopted in many landslide
susceptibility mapping applications [19–35] and had been proved to perform better than grid cells in
some studies [36,37]. The (total) size of landslides occurring in a particular slope-unit can be accepted
as an attribute of this slope-unit as the spatial distribution of a landslide is commonly constrained
by the slope-unit in which this landslide is located. By using slope-unit as landslide susceptibility
mapping unit, not only the occurrence probability of landslides for a mapping unit (i.e., landslide
spatial probability) can be described, but also the size of landslides within this mapping unit can be
quantified and predicted.

However, in existing slope-unit-based landslide susceptibility assessments, landslide size is still
not taken into account. This is because existing slope-unit-based approaches do not use “the size
of landslides that occur in a slope-unit” as a dependent variable to develop and train the landslide
susceptibility model. Most slope-unit-based approaches only use “whether a slope-unit has landslides
or not” as the dependent variable to develop a landslide susceptibility model [19–24,38,39]. That means
slope-units are categorized into two classes: slope-units that have landslides and slope-units that do
not have landslides. The most commonly used strategy of classification takes the ratio of the (total)
area of landslides that occur in a slope-unit to the area of that slope-unit (ALSU/ASU) as a criterion.
Those slope-units with ALSU/ASU lower than a predefined threshold are regarded as slope-units without
landslide, while those slope-units with ALSU/ASU larger than the predefined threshold are regarded as
slope-units with landslide [19,20,39–45]. In other words, landslide size information is not utilized and
predicted in existing slope-unit-based landslide susceptibility models.

The objective of this paper is to present a novel slope-unit-based approach for landslide
susceptibility assessment that explicitly integrates landslide spatial probability and size. This novel
approach not only predicts the occurrence probability of landslides in a slope-unit but also predicts
the size of landslides within that slope-unit. By combing (multiplying) the predicted occurrence
probability and size of landslides for a slope-unit, this approach assesses susceptibility integrating
spatial probability and size for that slope-unit. First, the procedures of the proposed approach are
introduced. Then, the performance of the proposed approach is evaluated and discussed based on a
case study.

2. Procedures

The procedures of the proposed approach for landslide susceptibility assessment proposed in this
paper can be divided into six steps, namely data collection and preparation, delineation of slope-units,
delineation of landslides, preparation of explanatory variables, preparation of response variables,
and generation of prediction models. All the six steps of the proposed approach are shown in Figure 1
and are detailed as follows.
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Figure 1. The procedures of the approach for landslide susceptibility assessment integrating spatial
probability and size proposed in this paper.

(1) Data collection and preparation. The first step is to collect and prepare data for the study
area. Generally speaking, digital elevation model (DEM) and satellite images are obligatory for
slope-unit delineation and landslide delineation, respectively. Nevertheless, it is worth noting
that DEM also can facilitate and support landslide mapping, and sometimes it is also practical to
map landslides using only high-resolution DEM derived from the airborne LiDAR scanning [46]
or other methods. Other data characterizing the geo-environmental attributes of the study area,
such as a geomorphological map, lithological map, seismic zone map, hydrological map, soil map,
vegetation map, are not obligatory but are important for getting a more comprehensive and
explanative landslide susceptibility model.

(2) Delineation of slope-units. Slope-units can be broadly regarded as “half basins”, and can be
delineated based on DEM using hydrological analysis. A frequently used method to delineate
slope-units is intersecting the basin polygons derived from the original DEM and the inverse
DEM [23,47–50]. Slope-units can also be delineated based on curvature [51–53]. There is also
software that can automatically delineate slope-units [45,54].

(3) Delineation of landslides. Landslides can be delineated either by visual (manual) interpretation or
semi-automatic recognition. Although representing landslides using single polygons is acceptable
for most applications of susceptibility analysis, explicitly mapping the different engineering
geomorphological zones of landslides such as the failure, transition, and deposition areas can
promote the analysis of landslide processes and mechanisms [55,56], especially for complex large
landslides [57].

(4) Preparation of explanatory variables. As slope-units are used as landslide susceptibility mapping units,
explanatory variables are those characterizing the properties of slope-units. Explanatory variables
can be either “statistical indices” or “direct indices”. “Statistical indices” are statistics of the values
of a certain geo-environmental factor within a certain slope-unit. For factors with numerical values,
for example topographic elevation and slope angle, commonly used statistics are mean and standard
deviation [20,21,39,43,48,50,58]. Range [44,58] and percentiles [22] were also adopted by several
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studies. For factors with categorical values, for example, lithology and land cover, both the proportions
of each category [20,22,43,45] or the category with the largest proportion [21,58] had been used as
explanatory variables. “Direct indices” are parameters characterizing the overall properties of a certain
slope-unit, for example, the size, shape, orientation, morphology, bedding attitude, and hydrological
properties [20–22,43,58].

(5) Preparation of response variables. As both spatial probability and landslide size will be predicted
in the proposed approach, response variables are the presence/absence of landslides and the
size of landslides in a slope-unit. Those slope-units having one or more than one landslide will
be considered unstable (with landslides), while those slope-units having no landslides will be
considered stable (without landslides). This criterion is slightly different from the commonly
used strategy which defines the presence/absence of landslides based on a non-zero ratio of the
area of landslides within a slope-unit to the area of that slope-unit [19,20,39–45]. The size of
landslides in a slope-unit will be the total size of all the landslides within that slope-unit. It must
be emphasized that a slope-unit can have more than one landslide. For example, an elongated
steep cliff can have many separate failures at different parts on that cliff. In addition, the size of
the largest landslide in a slope-unit can be also used as a response variable. This alternative is
not trivial when considering that one large landslide is more hazardous than many small ones.
Nevertheless, this research adopts the total size of all the landslides within a slope-unit, as this
research discusses landslide susceptibility but not the “susceptibility of the largest landslide”.

(6) Generation of prediction models. The proposed landslide susceptibility prediction model consists
of two models: a “class prediction model” and a “size prediction model”. For a certain slope-unit,
the “class prediction model” gives the probability that this slope-unit has landslides (PLSU),
while the “size prediction model” gives the possible area of landslides within this slope-unit
(ALSU). The final landslide susceptibility index for a slope-unit (LSISU) will be the product of the
predicted probability of landslide presence and the predicted size of landslides for that slope-unit:

LSISU = PLSU × ALSU, (1)

Correspondingly, the final landslide susceptibility index for a grid cell (LSICell) in a certain
slope-unit will be the final landslide susceptibility index for that slope-unit divided by the number of
grid cells in that slope-unit (NCSU):

LSICell = LSISU/NCSU = PLSU × ALSU/NCSU = PLCell × ALCell, (2)

in which
ALCell = ALSU/NCSU, (3)

is the “average” possible area of landslides per grid cell in this slope-unit, and

PLCell = PLSU, (4)

is the probability that a grid cell in this slope-unit has landslides. It is worth noting that the predicted
area of landslides for a slope-unit (ALSU) cannot be larger than the area of that slope-unit (ASU).
That means, the range of ALSU will be (0, ASU], and the range of ALCell will be (0, ACell], in which ACell
is the area of a grid cell. As the range of PLSU is (0, 1), the range of LSISU will be (0, ASU), and the range
of LSICell will be (0, ACell). The prediction models can be implemented using many methods, such as
logistic regression and neural networks.

It must be emphasized that step 1 to step 5 are basic steps for all slope-unit-based approaches
for landslide susceptibility assessment, in which explanatory and response variables for landslide
susceptibility prediction models are prepared. The difference in the novel approach proposed in
this paper compared with previous approaches lies in the last step in which prediction models are
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generated. Previous slope-unit-based approaches only predict the occurrence probability of landslides
by generating a “class prediction model”, while this novel approach also predicts the size of landslides
by generating a “size prediction model” and further multiplies the predicted occurrence probability
and size of landslides for a slope-unit.

3. Case Study

3.1. Study Area and Data

The Caiyuan Basin in Fujian Province, China (Figure 2) has been chosen to evaluate the proposed
approach for landslide susceptibility assessment that explicitly integrates landslide spatial probability
and size. The Caiyuan Basin is highly prone to landslides due to rugged topography and frequent
storm rainfalls. Large numbers of landslides occurred in the Caiyuan Basin during a storm rainfall
event in June 2010. First, slope-units were delineated based on a 5 m × 5 m spatial resolution DEM
with the automatic software r.slopeunits [45] and the assistance of manual editing of the automatic
generated results (Figure 3). Then, with the support of topographic hillshade maps and slope-unit data,
landslides were manually delineated on 2.5 m × 2.5 m spatial resolution SPOT images taken shortly
after the storm rainfall event (Figure 2a). Landslides were represented by single polygons embracing
both their source zones and transition-deposition zones. Field surveys [59] confirm that most of the
landslides in the study area are shallow earth slides that do not cross over slope-unit boundaries.
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3.2. Scenarios

There are three fundamental types of methods for landslide susceptibility assessment [4],
namely the qualitative “knowledge-driven methods” [60–62], quantitative “data-driven
methods” [24,63,64], and quantitative “physically based methods” [65–67]. Generally, more complex
methods that require a larger amount of and more detailed data are applied to landslide susceptibility
assessment of larger scales [68]. Data-driven methods (e.g., statistical methods) evaluate landslide
susceptibility by referring to the geoenvironmental characteristics of those locations where landslides
had occurred [7], and have become standard in regional-scale landslide susceptibility mapping [4].
Most published works on landslide susceptibility had implicitly used data-driven methods [63,69–83].

Three data-driven methods, namely the logistic regression (LR) method, neural network (NN)
method, and a modified frequency ratio (FR) method [7], were used for predicting the spatial
probability of landslides. The neural network method was used for predicting the size (area) of
landslides. Totally seven scenarios of landslide susceptibility assessment were implemented in
the case study to evaluate the proposed approach (Table 1). Three scenarios, namely “Grid (FR)”,
“Grid (LR)” and “Grid (NN)”, used the regular grid as a mapping unit. Four scenarios, namely
“SU (LR)”, “SU (NN)”, “SU (LRNN)” and “SU (NNNN)”, used slope-unit as mapping unit. Two of the
scenarios based on slope-units, namely “SU (LRNN)” and “SU (NNNN)”, had explicitly incorporated
landslide size, while the other five scenarios predicted only landslide spatial probability. For grid-based
scenarios, seven landslide-related factors were adopted to develop a landslide susceptibility model,
namely elevation, slope angle, slope aspect, standard curvature, plan curvature, profile curvature,
and topographic wetness index. For slope-unit based scenarios, totally forty-one explanatory variables
were adopted, including thirty-eight “statistical indices” and three “direct indices”. Details of the
explanatory variables are illustrated in Table 1. All these landslide-related factor data were derived
from the 5 m × 5 m spatial resolution DEM. Only factors derived from DEM were used because other
geo-environmental data, such as a geological map and vegetation map, with adequately large scale
and spatial resolution are not available for the Caiyuan Basin. Because random processes are involved
in the logistic regression method and neural network method, each of the six scenarios using the two
methods was implemented 100 times.

Table 1. Scenarios of landslide susceptibility assessment in the case study.

Scenario Unit a Method b
Explanatory Variable c

Probability Size

Grid (FR) Grid FR N.A.
H, AN, AS, SC, PLC, PRC, TWIGrid (LR) Grid LR N.A.

Grid (NN) Grid NN N.A.

SU (LR) SU LR N.A. HMin, HMax, HRange, HMean, HStd, HSum
SU (NN) SU NN N.A. ANMin, ANMax, ANRange, ANMean, ANStd, ANSum

SU (LRNN) SU LR NN ASMean, ASStd

SU (NNNN) SU NN NN

SCMin, SCMax, SCRange, SCMean, SCStd, SCSum
PLCMin, PLCMax, PLCRange, PLCMean, PLCStd, PLCSum
PRCMin, PRCMax, PRCRange, PRCMean, PRCStd, PRCSum
TWIMin, TWIMax, TWIRange, TWIMean, TWIStd, TWISum

P, A, SI
a Unit: “Grid” and “SU” mean regular gird and slope-unit are used as landslide susceptibility mapping units,
respectively. b Method: The column “Probability” indicates the method used for predicting the spatial probability
of landslides. The column “Size” indicates the method used for predicting the size (area) of landslides. “FR”,
“LR” and “NN” mean frequency ratio, logistic regression, and neural network method, respectively. “N.A.” means
not applicable. c Explanatory variable: “H”, “AN”, “AS”, “SC”, “PLC”, “PRC”, “TWI” mean elevation, slope angle,
slope aspect, standard curvature, plan curvature, profile curvature, and topographic wetness index, respectively.
For slope-unit-based scenarios, 38 statistical indices were adopted. Subscript “Min”, “Max”, “Range”, “Mean”,
“Std” and “Sum” mean the minimum, maximum, range, mean, standard deviation, and summation of factor values
within a slope-unit. Slope aspect only have mean and standard deviation statistics because it is a circular quantity.
“P”, “A” and “SI” are 3 direct indices for slope-unit-based scenarios, and mean perimeter, area, and shape index of a
slope-unit, respectively.
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4. Results and Discussion

4.1. Results

The performances of different landslide susceptibility models were evaluated using ROC
(receiver operating characteristic) curve. A ROC curve [84] is a graphical plot used to select the
best performance classifier model or to detect the optimal discrimination threshold of a classifier model.
A ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at
various discrimination thresholds. The point with a 0 FPR and a 1 TPR at the top left corner of the
ROC space is called a perfect classification, which means that predictions are 100% right. A model
with a larger AUC (Area under the ROC Curve) is closer to the perfect classification point and thus
performs better.

The boxplot of the AUCs for different scenarios of landslide susceptibility assessment is shown in
Figure 4. The AUC for scenario “Grid (FR)” is 0.6787. The average AUCs in the 100 Monte Carlo simulations
for scenario “Grid (LR)”, “Grid (NN)”, “SU (LR)”, “SU (NN)”, “SU (LRNN)” and “SU (NNNN)” are
0.6660, 0.6904, 0.6808, 0.6889, 0.7435 and 0.7495, respectively. It is obvious that scenarios explicitly
incorporating landslide size, i.e., scenario “SU (LRNN)” and “SU (NNNN)”, have the highest AUCs and
therefore the best performance compared with other scenarios. While scenario “Grid (FR)”, “Grid (LR)”,
“Grid (NN)”, “SU (LR)” and “SU (NN)” have similar AUCs, scenario “SU (LRNN)” and “SU (NNNN)”
have much larger AUCs. For slope-unit-based scenarios using the logistic regression method, the lowest
increase of AUC brought by incorporating landslide size is 0.0444, and the average is up to 0.0627.
For slope-unit-based scenarios using the neural network method, the lowest increase of AUC brought by
incorporating landslide size is 0.0389, and the average is up to 0.0606.
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Figure 4. The boxplot of the AUCs for different scenarios of landslide susceptibility assessment in the
case study. Scenario “Grid (FR)” only has one simulation because it does not involve random processes.
Each of all other scenarios has 100 stochastic simulations. The boxplot for scenario “Grid (LR)” looks
like a single line, since the variation of its AUCs is negligible. It is obvious that scenario “SU (LRNN)”
and “SU (NNNN)” incorporating landslide size have AUCs remarkably higher than that of other
scenarios. Detailed information about the scenarios is referred to in Table 1.

The ROC curves for different scenarios of landslide susceptibility assessment in the case study
are shown in Figure 5. The ROC curves for scenarios expect “Grid (FR)” to show the results of one of
the 100 Monte Carlo simulations. For illustration, the spatial distributions of landslide susceptibility
index (LSI) for scenario “Grid (NN)”, “SU (NN)” and “SU (NNNN)” are also shown in Figures 6–8
(the results of the same Monte Carlo simulation as that in Figure 5 are shown). The predicted landslide
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size (area) for each grid cell in the case study is shown in Figure 9. The maximum predicted landslides
area for a grid is 24.88 m2, which does not exceed the area of a grid (5 m × 5 m). For each grid cell,
the landslide susceptibility index shown in Figure 8 is the product of the landslide susceptibility index
(predicted spatial probability) shown in Figure 7 and the predicted landslide size shown in Figure 9.
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close look (b). The extent of the close look in (b) is shown in (a) with a cyan square. This figure shows
the result of one of the 100 Monte Carlo simulations in the case study, which is the same as that in
Figure 5. Detailed information about the scenarios are referred to in Table 1.
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Figure 8. The landslide susceptibility index (LSI) for scenario “SU (NNNN)” in the case study (a) with
a close look (b). The extent of the close look in (b) is shown in (a) with a cyan square. This figure shows
the result of one of the 100 Monte Carlo simulations in the case study, which is the same as that in
Figure 5. Detailed information about the scenarios are referred to in Table 1.
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The extent of the close look in (b) is shown in (a) with a cyan square.

4.2. Explanation of Results

The case study shows that for landslide susceptibility models using the same method, the change
of the mapping unit for the regular grid to slope-unit does not bring significant changes to the
model performances. On the contrary, the incorporation of landslide size does bring remarkable
increases of AUC to landslide susceptibility models. This finding implies that incorporating landslide
size can significantly improve slope-unit-based landslide susceptibility assessment. The reason for
this phenomenon is that the slope-unit-based landslide susceptibility model incorporating landslide
size involves all the information provided by landslide data. On the contrary, the slope-unit-based
landslide susceptibility model not incorporating landslide size drops the spatial extent information
of landslide provided by landslide data. Specifically, both the presence/absence of landslides and
the size of landslides are attributes of slope-units. However, in the landslide susceptibility model
not incorporating landslide size, all slope-units with landslides will be categorized as the same class,
although they may have different landslide sizes.

Landslide susceptibility is also considered to be the probability that an area has a landslide [5].
This definition of landslide susceptibility does not involve landslide size and is different from the
definition adopted in this paper [4]. Considering that different mapping units can be used in landslide
susceptibility assessment, a more general definition is believed to be the one regarding landslide
susceptibility as a measurement of both the spatial probability and sizes of landslides. For regular grid
mapping units, involving landslide size in susceptibility or not are equivalent. This is because a grid is
predicted to have landslides means that the whole grid will be covered by landslides. The predicted
landslide sizes for all grids will be the same since all regular grids have the same area. In other words,
for regular grid mapping units, only considering spatial probability in landslide susceptibility will
be adequate, while considering both spatial probability and size in landslide susceptibility will not
help to increase the success of its assessment. However, for the slope-unit mapping unit, not involving
size in landslide susceptibility will be questionable. The probability that a slope-unit has a landslide
solely cannot describe the spatial extent of potential landslides in that slope-unit, and therefore cannot
represent the “real spatial distribution” of potential landslides.

4.3. Noncollinearity between Spatial Probability and Size

A prerequisite for this procedure is that the probability of landslide presence (PLSU) and the size
of potential landslides (ALSU) for a slope-unit are not collinear (not correlated). Intuitive speculation is
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that the two variables are positively correlated, i.e., slope-units having larger PLSU will have larger
ALSU. Nevertheless, an opposite question would be if it is physically possible for PLSU and ALSU
to be “negatively correlated”. Although it is hard to find real cases to directly show the “negative
correlation” between PLSU and ALSU, theoretical reasoning might help to understand the possibility.
Considering a situation in which a rigid block is placed on an inclined plane. If we regard the rigid
block as a slope-unit, the possible area of landslides within this slope-unit (ALSU) would be equal to
the area of the block since this block is rigid. In the real world, this situation means the “average”
possible area of landslides per grid cell in this slope-unit (ALCell) would be equal to the area of a grid
cell (ACell). In other words, the size of potential landslides within this slope-unit has a maximum value.
Despite this, the probability that this slope-unit has landslides (PLSU), i.e., the probability that the rigid
block slides down the inclined plane, can be small if the angle of the inclined plane is small. It is worth
noting that, the probability that the rigid block slides along the inclined plane cannot be zero even if the
angle of the inclined plane is zero. This is because theoretically shaking forces from an earthquake can
make a block resting on a horizontal plane move. This theoretical reasoning shows the possibility of
large ALSU coupled with small PLSU. Similarly, small ALSU coupled with large PLSU is also physically
possible. Considering slope-unit, most of which is stable, while a small part of which is highly prone
to failure. Then, this slope-unit will be expected to have large PLSU and small ALSU. As both positively
correlated and negatively correlated are possible, PLSU and ALSU are not expected to be correlated.

The noncollinearity between PLSU and ALSU was also validated by the numerical predictions in
the case study. According to Figure 10, fitting linear regressions between PLSU and ALSU will get very
low coefficients of determination. Similarly, collinearity between PLCell (PLSU) and ALCell is also not
observed (Figure 11). The noncollinearity between PLSU and ALSU leads to the necessity of integrating
landslide probability and landslide size. Because of the noncollinearity between PLSU and ALSU, only
considering PLSU or only considering ALSU in landslide susceptibility will be potentially biased.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 12 of 17 
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Figure 10. Linear regressions between PLSU and ALSU based on all values of ALSU (a) and values of
ALSU below 1000 (b). This figure shows the result of one of the 100 Monte Carlo simulations in the case
study, which is the same as that in Figure 5. Detailed information about the scenarios are referred to in
Table 1. This figure shows the values of PLSU predicted using the neural network method, and values
of PLSU predicted using the logistic regression method show similar behaviors.
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Figure 11. Linear regressions between PLCell (PLSU) and ALCell based on all values of ALCell (a) and
values of ALCell below 10 (b). This figure shows the result of one of the 100 Monte Carlo simulations
in the case study, which is the same as that in Figure 5. Detailed information about the scenarios are
referred to in Table 1. This figure shows the values of PLCell predicted using the neural network method,
and values of PLCell predicted using the logistic regression method show similar behaviors.

4.4. Applicability of Incorporating Size

The application of the proposed approach for landslide susceptibility assessment considering
landslide size, however, is not straightforward. First, data with high resolution and high accuracy are
required. For example, the delineation of slope-units should be on a proper scale so that the delineated
slope-units can be broadly regarded as “meta-units” in which landslides occur. Slope-units delineated
based on low-resolution DEM is just “half basins”. DEM with adequately high resolution is required
for generating slope-units with an adequately fine scale. Second, the method is not applicable, at least
directly, for all landslide types. As it was already mentioned it cannot be applied for large deep-seated
landslides whose source zones can cross the watersheds. Besides, it requires some modification for
very long runout types such as rock avalanches and debris flows whose transition and deposition
zones can extend outside the single slope-unit where they are sourced. Moreover, additional results
from other case studies are needed to further evaluate the applicability of the proposed approach.

5. Conclusions

This paper presented a novel slope-unit-based approach for landslide susceptibility assessment
that explicitly integrates landslide spatial probability and size. The proposed approach uses slope-unit
as a landslide susceptibility mapping unit. Previous slope-unit-based approaches only predict the
occurrence probability of landslides by generating a “class prediction model”, while this novel approach
also predicts the size of landslides by generating a “size prediction model” and further multiplies the
predicted occurrence probability and size of landslides to get a landslide susceptibility value for a
slope-unit. Therefore, the landslide susceptibility value for a slope-unit given by this novel approach is
an integration of the predicted occurrence probability (spatial probability) of landslides and predicted
size (area) of potential landslides for that slope-unit.

A case study was implemented to evaluate the proposed approach. The study area was
the Caiyuan basin in Fujian Province, China, which distributes large numbers of rainfall-induced
landslides. The logistic regression method and the neural network method were used to predict
the occurrence probability of landslides, and the neural network method was used to predict the
size of landslides. The results showed that integrating spatial probability and size had significantly
improved slope-unit-based landslide susceptibility assessment. A series of Monte Carlo simulations
showed that the average increase of AUC brought by incorporating landslide size could be up to 0.06.
Specifically, for slope-unit-based scenarios using the logistic regression method and the neural network
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method, the average increase of AUC brought by incorporating landslide size is up to 0.0627 and
0.0606, respectively.

Landslide sizes quantitatively describe the spatial extents of historical landslides. Therefore,
considering landslide size together with landslide spatial probability in slope-unit-based methods can
bring potential improvements to landslide susceptibility assessment. Nevertheless, the applicability of
the proposed approach needs further evaluations based on other case studies. In addition, complicated
by varieties of data availability and landslide characteristics, the application of the proposed approach
for landslide susceptibility assessment considering landslide size is not straightforward.
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