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Abstract: Pseudomonas aeruginosa (P.a) is one of the most critical antibiotic resistant bacteria in the
world and is the most prevalent pathogen in cystic fibrosis (CF), causing chronic lung infections that
are considered one of the major causes of mortality in CF patients. Although several studies have
contributed to understanding P.a within-host adaptive evolution at a genomic level, it is still difficult
to establish direct relationships between the observed mutations, expression of clinically relevant
phenotypes, and clinical outcomes. Here, we performed a comparative untargeted LC/HRMS-
based metabolomics analysis of sequential isolates from chronically infected CF patients to obtain a
functional view of P.a adaptation. Metabolic profiles were integrated with expression of bacterial phe-
notypes and clinical measurements following multiscale analysis methods. Our results highlighted
significant associations between P.a “metabotypes”, expression of antibiotic resistance and virulence
phenotypes, and frequency of clinical exacerbations, thus identifying promising biomarkers and
therapeutic targets for difficult-to-treat P.a infections

Keywords: cystic fibrosis; metabolomics; multiscale data analysis; LC-HRMS; P. aeruginosa; polyamines;
Ala-Glu-mesodiaminopimelate
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1. Introduction

Cystic fibrosis (CF) is a severe genetic disorder caused by mutations in the gene
encoding the CF transmembrane conductance regulator (CFTR). In the lungs, CFTR ion
channel dysfunction triggers impairement of the mucociliary clearance process, which
promotes poly-microbial infections [1–3]. Pseudomonas aeruginosa (P.a) is the most frequently
isolated pathogen from the sputum of CF adult patients [4–7]. Highly resistant to antibiotics,
P.a often causes long-lasting chronic infections responsible for chronic inflammation and
subsequent decline of the lung function, as well as episodes of acute exacerbations. P.a is
thus considered as a leading cause of morbidity and mortality in CF [3,8–12].

Over the years of chronic respiratory infection, P.a adapts to this environment and
evolves within its host [13,14]. Frequent phenotypic adaptations include acquisition of
antibiotic resistances, decreased expression of virulence factors, loss of motility, slower
growth, switch to a mucoid phenotype due to overproduction of alginates, and increased
formation of biofilm and development of micro-colonies, which all reduce the recognition of
the pathogen by the immune system [5,6,15–17]. Metabolic changes also occur in response
to the nutritional conditions prevailing in CF mucus, such as the emergence of amino acids
auxotrophs, likely due to the high cost of metabolic production and ready availability of
nutrients in the lung mucus [18,19].

Whole genome sequencing has been useful to identify functional processes triggering
P.a adaptations to the CF lung [20–22]. However, given the complexity of the different
levels of regulation of living organisms (post-transcriptional, post-translational, enzymatic
kinetics, etc.), the relationships between genome mutations and their effects on relevant
phenotypes, such as their resistance to antibiotics or their virulence profile, remain difficult
to find [23]. Moreover, recent studies have shown that convergent metabolic adaptations
of strains infecting independent patients could be obtained through distinct mutational
paths [24] and that isolates with almost identical genome sequences sampled from dif-
ferent patients can express highly divergent transcriptomic, metabolic and phenotypic
profiles [25]. Together, these findings highlighted the need to get a more functional view
of P.a’s within-host evolution, in order to draw links between bacterial adaptations, ex-
pression of clinically relevant phenotypes, and ultimate impact of the infection on the
patient’s health status. To achieve this goal, metabolomics (that refers to the measure of
the small molecules, or metabolites, present in a biological system) constitutes a promising
tool [26] as it allows to get a snapshot of bacterial metabolic activities [27]. Comparing
internal P.a metabolomics profiles obtained during the course of an infection thus provides
a functional view of bacterial adaptation to the CF lung environment, at the closest to
the phenotype. Precursor studies have shown the potential of metabolomics to study P.a
metabolic adaptation during chronic infections [18] as well as the link between metabolic
profiles and bacterial phenotypes [28,29].

In this paper, we present the first untargeted, non-hypothesis-driven metabolomics
study using Liquid Chromatography coupled with High Resolution Mass Spectrometry
(LC/HRMS), to access within-host adaptive evolution of P.a metabolism within the lungs
of chronically infected CF patients. Antibiotic resistance and virulence profiles as well
as patients’ clinical health status were also characterized, and the results were integrated
with metabolomics footprints in a multiscale statistical approach. This strategy allowed us
to define bacterial metabolic profiles that we named “metabotypes” that are significantly
associated with clinically relevant bacterial phenotypes and to the patients’ respiratory
disease. As such, our results demonstrate the potential of untargeted metabolomics to get
insights into bacterial adaptation processes that can be connected to pathogenicity and
clinical outcome. This study thus constitutes a first and important step in the identification
of future metabolites that could be used as biomarkers and metabolic targets for next-
generation therapies to support the clinical care of these difficult-to-treat infections.
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2. Results
2.1. Evolutionary Relationships of P.a Clinical Isolates

In order to study P.a metabolism over the course of chronic CF lung infections, a ret-
rospective longitudinal collection of P.a clinical isolates sampled from expectorations of
chronically infected adult CF patients was built. Thirty-four patients were included into
the study (clinical description of the cohort in Supplementary Table S1). For each patient,
3 to 5 isolates sampled at different time points of the 2010–2015 follow-up period were
arbitrarily selected for Pulsed-Field Gel Electrophoresis (PFGE) of SpeI-restricted total
DNA genotyping (Figure 1a). Evolutionary clonal lines were defined as isolates sampled
from the same patient at different time points but sharing PFGE profiles that clustered into
a same clonal complex (CC) as defined by Römling et al. [30,31] (Figure 1b). This analysis
identified clonal evolutionary lines for 32/34 patients, confirming the chronic nature of
P.a infection (Figure 1c). Only two patients (17 and 86) have been excluded from further
analysis due to no detection of an evolutive clonal line. To note, one patient (patient 27)
appeared to be co-infected by two distinct clonal lines, and both have been included in the
study. We also observed 3 CCs (CC1, 2 and 3) shared between different patients. From this
analysis, a Final Cell Bank was built by pairing the earliest and the latest isolates from each
of the 33 clonal lines (same CC). They represent different evolutionary stages (hereafter
referred to as early and late) of the within-host adaptation of the clone which had initiated
the chronic infection in the past before the first sample collection.
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Figure 1. Temporal collection and Pulsed-Field Gel Electrophoresis (PFGE) genotyping of clinical P.a isolates responsible for
chronic lung infection in CF patients. (a) Representative example of PFGE gels (pulsotypes) of P.a clinical isolates sampled
from patients 60 and 141 (1, 2 and 3 represent the sampling time of each isolate: beginning, middle or end of the 2010–2015
follow-up period, respectively; M = marker fragment size). (b) Pairwise comparison of 122 P.a PFGE pulsotypes. Clonal
complexes (CCs) and clones have been defined according to Römling et al. criteria [31]: no clonal link if the pulsotypes
showed more than 6 different bands, Clonal Complex (CC) if the pulsotypes showed less than 6 different bands, and clonal
if the pulsotypes were identical. (c) Temporal series of PFGE-genotyped isolates sampling from patients’ expectorations
between 2010 and 2015. Small grey crosses represent all the P.a. isolation time points between 2010 and 2015 for each patient.
The symbol shape of the bigger dots represents the CC of the isolates that have been analyzed by PFGE (unique clones are
represented by a black cross). For 32/34 patients, the earliest and latest sampled isolates belonging to a same CC have been
selected for the Final Cell Bank.
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2.2. Acquisition of P.a Metabolomic Profiles by Untargeted LC-HRMS

The isolates of the Final Cell Bank were analyzed by untargeted LC/HRMS to deter-
mine their intracellular metabolic content (Figure 2a). Isolates were first grown in synthetic
CF medium 2 (SCFM2), without mucin, which mimics the nutritional conditions in CF
pulmonary mucus ([32], see Methods). Intracellular extracts of mid-log cultures were
harvested by fast-filtration and mechanical lysis, and the contents were normalized by
considering the ratio between colony-forming units (CFU) over optical density at 595nm
(OD595) (CFU/OD595) as indicated in Aros-Calt et al. [33]. Metabolomic analysis was
performed using two complementary LC/HRMS methods to maximize chemical cover-
age, and data were processed and normalized following the most up-to-date methods
(see Methods). Comparison of spectral data with public and in-house databases allowed
annotation of 271 metabolites (Supplementary Table S2). Intensities of these 271 putatively
annotated metabolites were analyzed using multivariate statistical methods described in
the following sections. Statistically significant metabolites were finally formally identified
by matching their tandem MS/MS fragmentation profiles with a standard or by manual
interpretation (see Methods, Figure 2a, Supplementary Table S3).

2.3. Diversity of P.a Metabolic Evolution within CF Patients’ Lungs

To investigate intra-host modifications of P.a metabolic profiles during the course of CF
chronic lung infections, we computed metabolic Polarity degreesi,j (Pi,j) as an indicator of the
modifications of the metabolomic signatures between early and late isolates (see Methods).
Metabolic Pi,j allows to distinguish the “core metabolome” of each clonal line, which remains
unchanged over time (Pi,j close to 0), from the “variable metabolome”, which varies during
infection (Pi,j 6= 0) (Figure 2b). Metabolic Pi,j were computed to describe the within-host
changes in the production of the 271 annotated metabolites measured by LC-HRMS over
our 33 evolutionary lines (Figure 2c). Statistical analysis of the metabolic Pi,j showed the
existence of several within-host evolutionary paths of the P.a metabolomes, highlighting
the diversity of the metabolic adaptations (Supplementary Figure S1).

2.4. Intra-Host Metabolic Adaptation Is Associated with the Acquisition of Antibiotic Resistance

Given that acquisition of antibiotic resistances is a hallmark of chronic infection and is
of major clinical importance in CF lung infections, we next investigated the within-host
modifications of P.a metabolomic profiles associated with concomitant antibiotic resistance
changes. Resistance profiles of each P.a isolate against 14 antibiotics of clinical importance
were determined in vitro (Supplementary Table S4). Pi,j computation was then applied to
this phenotypic dataset to capture within-host modifications of the resistance phenotypes j
for each clonal line i and identified either gain, loss or unchanged resistance phenotype
between early and late isolates. Hierarchical cluster analysis (HCA) showed a segregation
of the clonal lines according to the overall gain, loss or unchanged antibiotics resistance
profiles (row clustering, Figure 2d). Interestingly, resistance profiles to the beta-lactams
family as well as to the two aminoglycosides gentamicin and amikacin evolved in a similar
manner within the patient’s airways (column clustering, Figure 2d).

This antibiotic resistance Pi,j was then integrated with the previously described
metabolic Pi,j following a multiscale statistical workflow (Figure 2e). Briefly, we per-
formed a hierarchical clustering on principal components (HCPC) inferred from a multiple
factor analysis (MFA) to jointly extract the information from both metabolomics and an-
tibiotic resistance datasets. This analysis led to the identification of 3 clusters representing
P.a clonal lines with similar “metabo-resistome” modifications between early and late
isolates. Cluster 1 (Figure 2e, in red) was significantly associated with the acquisition of
resistance for 11/14 of the tested antibiotics (of which 9/9 beta-lactams), and with intra-host
modifications of 5/271 annotated metabolites. These modifications included increased
levels of 13-Hydroxyoctadeca-9,11-dienoic acid, methyl-4-hydroxyphenylacetate, Ala-Glu-
meso-diaminopimelate and decreased levels of both isobutyric and diaminopimelic acids
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(Figure 2e). Clusters 2 and 3 were associated with an unchanged or decreased antibiotic
resistance, respectively (in white and blue, Figure 2e).
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Figure 2. Multiscale analysis identifies within-host metabolic modifications of P.a associated with the
acquisition of beta-lactam resistances. (a) Schematic summary of untargeted LC-HRMS metabolomic
analysis workflow for acquisition of P.a isolates’ metabolic profiles. (b) Intra-host modifications
between early and late isolates from 33 evolutive lines have been assessed by calculating the Pi,j value
for each line i, metabolite or resistance phenotype j. (c) Distributions of metabolite Pi,j representing
intra-host modifications of 271 annotated metabolite intensities. (d) Hierarchical cluster analysis of
antibiotic resistance Pi,j representing intra-host modifications of resistance against 14 antibiotics (*).
(e) Multiscale data integration workflow for the identification of metabolic signatures associated with
the acquisition of antibiotic resistance: (i) unsupervised HCPC identified 3 clusters of P.a lines with
similar modifications of both antibiotic resistances and metabolite intensities; (ii) cluster 1 (in red) is
significantly associated with acquisition of antibiotic resistances, especially against beta-lactams (χ2 p-
value < 0.05), and with modifications in the abundance of 5 metabolites; (iii) selection of significantly
associated metabolites and antibiotics to build a supervised logistic model predicting acquisition of
antibiotic resistances from metabolic changes; (f) cross-validation of the best logistic regression model,
which predicts the acquisition of beta-lactam resistance from an increased production of Ala-Glu-
meso-diaminopimelate. ** p-values < 0.01. (*) abbreviations: FQ: fluoroquinolones; AKN: amikacin,
ATM: aztreonam, CIP: ciprofloxacin, CZD: ceftazidime, FEP: cefepime, GMN: gentamicin, IPM:
imipenem, LVX: levofloxacin, MEM: meropenem, PIL: piperacillin, PTZ: piperacillin-tazobactam,
TCC: ticarcillin-clavulanic acid, TIC: ticarcillin, TMN: tobramycin.

The 5 metabolites associated with Cluster 1 were selected to build a supervised logistic
model, in order to predict acquisition of beta-lactams resistance from a reduced number
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of metabolite modifications (Figure 2e). Step-by-step forward selection and internal cross-
validation of the best model showed that identification of clonal lines that had gained
beta-lactam resistance over time could be predicted based on changes in their metabolome.
More specifically, the sole increase in Ala-Glu-meso-diaminopimelate production between
early and late isolates predicted the acquisition of beta-lactams resistance with a moderate
sensitivity (67%) but excellent specificity (92%) (Figure 2f).

2.5. P.a Metabotypes Segregated by Differential Levels of Polyamines and Their Metabolites

In order to highlight potential metabolic signatures of clinical relevance, we also
analyzed P.a metabolic profiles, without integrating the temporality of the samplings
(Figure 3a). Sixty-six P.a isolates were described by 2 data blocks: LC-HRMS intensities
of 151 selected metabolites (Figure 3b,c,f left side), and presence/absence of 6 virulence
phenotypes (Figure 3d–f right side)

For the metabolite analysis, metabolites presenting differential expression levels within
the bank (variation coefficient >0.5), which are most likely associated with clinically relevant
bacterial phenotypes, were selected. HCPC analysis of the 151/271 selected metabolites
led to the identification of 3 groups of P.a isolates with similar metabolic profiles, which
will hereafter be termed metabotypes (Figure 3b). The 10 most significant metabolites
associated with these 3 metabotypes are listed in Table 1 (one-way analysis of variance
(ANOVA) F-test p-value <0.05). In order to put these data into a biological perspective,
metabolic pathways associated with these metabolites were inferred using the PAMDB
database [34].

Table 1. List of the 10 Metabolites Most Strongly Associated with the Three Metabotypes Observed Among the P.a Clinical Isolates.

Metabotype Metabolite Relative
Abundance

p-Value
(One-Way ANOVA) Identification Status (*)

1

Spermidine − 2.8 × 10−11 a, c, d
Cytosine − 5.2 × 10−10 a, b, d
Putrescine − 1.3 × 10−0.9 a, c, d
Adenosine monophosphate (AMP) − 3.6 × 10−0.9 a, b, d
Uridine diphosphate (UDP)-Galactose
(UDP-Glucose) − 4.6 × 10−0.9 a, b, d

Cytidine diphosphate (CDP) − 5.9 × 10−0.9 a
Adenosine diphosphate (ADP) − 8.1 × 10−0.9 a, b, d
Guanosine − 1.9 × 10−0.8 a, c, d
N2-Succinyl-L-ornithine − 2.6 × 10−0.8 a
UDP-N-acetylgalactosamine
(UDP-N-acetylglucosamine) − 4.1 × 10−0.8 a, b, d

2

Guanine + 1.4 × 10−0.6 a, b, d
UDP-N-acetylgalactosamine
(UDP-N-acetylglucosamine) + 1.8 × 10−0.6 a, b, d

12-Hydroxydodecanoic acid + 2.6 × 10−0.6 a, b, d
Guanosine monophosphate + 4.5 × 10−0.6 a, c, d
Pentoses phosphate + 1.7 × 10−0.5 a, b, d
N2-Succinyl-L-ornithine + 2.3 × 10−0.5 a
Glucosamine 6-phosphate
(Galactosamine 6-phosphate) + 2.4 × 10−0.5 a, b, d

Cytosine + 3.7 × 10−0.5 a, b, d
Guanosine + 5.2 × 10−0.5 a, c, d
UDP-Galactose (UDP-Glucose) + 1.5 × 10−0.4 a, b, d
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Table 1. Cont.

Metabotype Metabolite Relative
Abundance

p-Value
(One-Way ANOVA) Identification Status (*)

3

1-Hydroxy-2-nonyl-4(1H)-quinolinone + 7.5 × 10−0.8 a
Palmitoleic acid + 2.5 × 10−0.7 a
Glycerylphosphorylethanolamine/
sn-glycero-3- phosphoethanolamine + 3.0 × 10−0.7 a, f

AMP + 2.2 × 10−0.6 a, b, d
N2-Succinyl-L-glutamic acid
5-semialdehyde − 3.3 × 10−0.6 a

Heptadecenoic acid + 3.6 × 10−0.6 a
N-Acetylornithine + 5.4 × 10−0.6 a, c, d
Tetradecanoyl-phosphate (n-C14:0) + 1.0 × 10−0.5 a
Indoleglycerol phosphate + 1.2 × 10−0.5 a
Glycerol + 1.2 × 10−0.5 a

(*) Identification status: (a) based on accurate mass, (b) based on ZIC-pHILIC column retention time similarity with a standard, (c) based on
C18 column retention time similarity with a standard, (d) based on MS/MS spectrum similarity with a standard, (e) based on the MS/MS
spectra similarity with those from the METLIN public database, (f) based on the MS2 spectra. 1, 2 and 3 in the table mean respectively
metabotype 1, 2 and 3.

Interestingly, metabotype 1 was characterized by significantly lower levels of spermi-
dine and putrescine, nucleotides, nucleosides, hexosamines or precursors of glycosamino-
glycan (AMP, ADP, CDP, GDP, cytosine, guanosine, UDP-galactose and UDP-N-
acetylgalactosamine). Metabotype 2 was characterized by higher levels of the ornithine
catabolite N2-succinylornithine. Finally, metabotype 3 was characterized by higher levels
of the ornithine precursor N-acetyl-L-ornithine and lower levels of the ornithine catabolite
N2-succinylglutamate-semialdehyde. Metabotype 3 was also characterized by a higher
level of 1-hydroxy-2-nonyl-4(1H)-quinolinone (NQNO) (Table 1).

These results highlighted metabolites involved in the polyamines (e.g., putrescine,
spermidine) metabolism as strongly discriminant between the various P.a metabotypes
(Figure 3c,g, pairwise Student t test, FDR adjusted <0.05, except for spermidine level
between metabotypes 2 and 3, p-value = 0.076).

2.6. Multivariate-Based Analysis of Bacterial Virulence

To access the relationships between P.a metabotypes and virulence properties of
each isolate, we investigated six different phenotypes: cytotoxicity on macrophages and
epithelial cells, epithelial cells stress response induced by P.a infection (see Supplementary
Figure S2), formation of mucoid colonies, pigment production and bacterial growth rate.
Experimental results were converted into a binary presence/absence matrix and analyzed
in a multivariate fashion by HCPC analysis. HCPC clustering revealed 3 groups of isolates
that can be defined according to their relative level of virulence (Figure 3d) as follows:
(i) avirulent isolates (n = 30/66), which are generally non-cytotoxic on J774 macrophages
and A549 epithelial cells, do not cause stress on A549, and have a slow growth rate; (ii)
moderately virulent isolates (n = 17/66), which cause stress on A549, are cytotoxic on J774
but not on A549, and have a fast growth rate; and (iii) highly virulent isolates (n = 19/66),
which are cytotoxic on both cell types and cause stress on A549 cells (χ2 p-values < 0.05,
Figure 3e).
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Figure 3. Multiscale analysis identified associations between P.a metabotypes and expression of virulence phenotypes.
(a) Summary of multiscale statistical workflow. (b) Representation of 3 HCPC clusters of isolates expressing similar
metabolic profiles (metabotypes) in the first 2 PCs of the MFA. Cluster centroids are shown as larger dots. (c) Simplified view
of the polyamines (putrescine, spermidine) synthesis pathway (adapted from [35]). Significant metabolites are highlighted
by arrows, indicating whether the metabolite is found in higher or lower abundance in the color-matching metabotype.
(d) Representation of 3 HCPC clusters of isolates expressing similar virulence phenotypes in the first 2 PCs of Multiple
Correspondence Analysis (MCA). Clusters centroids are shown as larger dots. (e) Representation of the virulence categories
in the first 2 PCs of the MCA. (f) Dendrograms and summary of the main characteristics of HCPC clusters identified on each
data block and associations between P.a virulence level and metabotype (Fisher test p-values < 0.05 are indicated by (*)).
(g) Boxplots showing bivariate relationships between putrescine and spermidine levels with the expression of individual
virulence factors (Student t test p-values <0.1 and <0.05 are indicated by (.) and (*), respectively).
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2.7. Polyamines Production Is Associated with the Level of P.a Virulence

Significant associations between established virulence levels and metabotypes were
observed: metabotype 1 matched with avirulent isolates; metabotype 2, with moderately
virulent isolates; and metabotype 3, with highly virulent isolates (Fisher exact test p-value =
0.01, Figure 3f). Considering that the polyamines’ metabolic pathway was among the most
discriminant between the different metabotypes, the relationships between the virulence
phenotypes and the intensity of putrescine and spermidine were further investigated.
Firstly, the relative changes in the proportion of these two metabolites were found to
be highly correlated (Pearson’s R = 0.91, p-value <2.10−16), confirming the link between
the production of spermidine and the level of its precursor putrescine and therefore
the modifications of the metabolic flux related to this pathway between metabotypes.
Secondly, analysis of the relationships between the level of these 2 metabolites and virulence
properties revealed that spermidine levels were significantly higher in the isolates which
were cytotoxic on J774 macrophages and significantly lower in the isolates forming mucoid
colonies. Moreover, spermidine and putrescine levels were higher in fast-growing isolates
(p-value of Student t-tests <0.05). Although not statistically significant, a trend toward
a gradual increase of polyamines’ production was detected in the bacterial isolates with
higher virulence (Figure 3g).

We then analyzed the modifications of P.a virulence level occurring overtime within
the patients’ airway. The overall level of virulence was lowered between early and late
isolate for 9/33 clonal lines (27%) (for example, with the early isolate being defined as
highly virulent and the late isolate defined as moderately or non-virulent; see Figure 3d–f),
increased for 3/33 clonal lines (9%), and no change was observed for the remaining 21/33
clonal lines (64%). Interestingly, Kruskal–Wallis testing showed a significant decrease in
the spermidine level between early and late isolates, when the virulence level decreased (p-
value of Kruskal–Wallis test = 0.03). A similar trend was observed for putrescine, although
not significant (p-value of Kruskal–Wallis test = 0.11) (Supplementary Figure S3).

2.8. High Polyamines Production By P.a Is Associated with Frequent Clinical Exacerbations

The patients’ clinical records were used to build clinical indicators of respiratory
health, in order to explore the relationships between P.a metabotypes and clinical out-
come. Temporal monitoring of the Forced Expiratory Volume in 1 s (FEV1) and compar-
isons to a reference population are considered the most robust prognosis predictor in CF
patients [8,36,37]. Three indicators describing the average level (high or low), long-term
(decline or no decline) and short-term (stable or unstable) dynamics of the patients’ lung
functions (see Methods, Figure 4a) were thus built based on all the FEV1 measurements
performed during the 2010–2015 period (5–45 measures per patient). No statistical relation-
ship was observed between these 3 indicators, confirming that they were non-redundant
describers of the patient’s respiratory health status. Remarkably, a significant association
between production of both putrescine and spermidine by the cultivated P.a isolates, and
the short-term dynamic of the patient’s respiratory function (Wilcoxon test, p-values =
0.030 and 0.041 for associations between an unstable FEV1 and the levels of putrescine
and spermidine, respectively, Figure 4b) was observed. These significant relationships
showed, for the first time, that metabolite biomarkers specifically produced by P.a are
correlated to the frequency of acute clinical exacerbations of the patient’s respiratory illness.
Considering the statistical inferences of the results described in Figure 3, this relationship
could be related to the expression of virulence factors in P.a isolates.
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Figure 4. Relations between patients’ respiratory functions and the production of polyamines by P.a isolates. (a) Temporal
series of all FEV1 measurements realized on the 32 patients of the cohort during the follow-up period and construction of
clinical indicators. Average FEV1 for each patient was defined as high (green background) or low (red background), by
comparison to the cohort average. FEV1 temporal dynamics was modeled using linear regression of the FEV1 measurements
overtime as follows: (i) long-term dynamic was classified as in decline (red lines) if the slope was significantly under 0,
not declining (black lines) if not; (ii) short-term dynamics were defined as unstable (yellow background) if the standard
deviation of the residuals was above 40% or stable (blue background) if not. (b) Boxplots showing the putrescine and
spermidine production (LC-HRMS peak intensity) by P.a per FEV1 based respiratory categories. The data presented in this
figure have been translated into a table to make it accessible to colorblind readers (Supplementary Table S5).

3. Discussion

Preliminary genome-based studies gave important insights into P.a patho-adaptation
during CF chronic lung infections, but gene-to-phenotype relationships are, to date, still
difficult to draw. The concept of this study was based on the hypothesis that downstream
metabolic manifestations induced by genome-based adaptations would be more readily
linkable to bacterial phenotypes and their clinical impact. A multi-factorial investigation
based on the comparison of P.a population genetic structures, intracellular metabolic pro-
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files, and patients’ health records was built. Longitudinal clinical P.a isolates, representative
of different evolutionary stages of a clonal complex chronically infecting a patient’s airway,
were collected and used to build the reference clonal evolutionary lines studied here. Early
and late isolates of each clonal evolutionary line were extensively characterized by the
analysis of virulence and antibiotic resistance properties and the acquisition of untargeted
and high-resolution in vitro metabolomic fingerprints.

Pairing metabolic profiles from sequential P.a isolates of a same evolutionary line
(through the calculation of Pi,j) allowed the differentiation between the “core” and the
“variable” metabolomes of each P.a line. The core metabolome made of metabolites whose
production remained unchanged over time (Pi,j close to 0), was discarded from the dataset,
thus giving a specific emphasis to metabolites showing significant changes over time. This
“variable metabolome” was made of a lower number of metabolites whose production was
strongly correlated to bacterial phenotypes of clinical importance. These changes were
associated with modulations of bacterial metabolic pathways in response to within-host
selective pressures.

In particular, the sole increase of Ala-Glu-meso-diaminopimelate production between
early and late P.a isolates was found to be sufficient to predict within-host acquired beta-
lactam resistance. This murein tripeptide is known to be produced during the degradation
of the bacterial cell wall peptidoglycan and directly reused in the recycling process [38].
Interestingly, the therapeutic target of beta-lactam antibiotics is primary peptidoglycan
synthesis. Our results clearly support the hypothesis that the increase in Ala-Glu-meso-
diaminopimelate production reveals an over-activation of the peptidoglycan recycling
process, thus allowing the bacteria to escape from the effect of beta-lactam treatment.
Recently, inactivation of the peptidoglycan recycling pathway has been shown to be
associated with restoration of antibiotic sensitivity, decrease in bacterial virulence, and
improvement of the innate immune system response in vitro [39,40]. Our observations
support these earlier observations and underline the importance of this pathway in the
acquisition of P.a beta-lactam resistances in vivo. Peptidoglycan recycling inhibitors thus
represent promising targets for future antimicrobials. Our results also suggest that Ala-Glu-
meso-diaminopimelate concentration can be used as a biomarker to anticipate the efficacy
of beta-lactam antibiotic treatments: An increased level in Ala-Glu-meso-diaminopimelate
can indeed predict the acquisition of beta-lactams resistance with moderate sensitivity
(67%) but excellent specificity (92%). We could then anticipate that such metabolic readouts
can be measured directly from the patients’ expectorations and provide a fast and relevant
information, which could advantageously complement routinely used bacterial culture
methods (antibiograms), which require 24 to 48 h of growth in conditions far from the
patients’ airways. Although Ala-D-Glu-meso-diaminopimelate levels would not detect
100% of beta-lactams resistances, high levels of the metabolite would clearly indicate that
a beta-lactam treatment would most likely fail to control the infection. This would thus
provide fast and highly valuable information to redirect the clinical team towards the
choice of a different antibiotic therapy and avoid ineffective try-and-fail therapeutic cycles.
A clinical research protocol should be conducted to validate that measurements of Ala-
D-Glu-meso-diaminopimelate in the sputum of CF patients will contribute to the early
diagnosis of beta-lactam resistance and to a more rational use of antibiotics.

On the other hand, cross-sectional analysis of P.a’s untargeted metabolomics footprints
allowed us to classify the isolates according to their metabolic profiles and highlighted the
polyamines pathway as a major discriminant between the different metabotypes. These
molecules are found in all living organisms and are notably involved in promoting cell
growth [41,42]. This could explain the concordance between the levels of metabolites
involved in polyamines and nucleic acids synthesis. The main polyamines found in
bacteria are putrescine, spermidine and cadaverine [43,44]. As a major result, significant
correlations were found between a high production of putrescine and spermidine by P.a
isolates, the expression of several virulence phenotypes, as well as an unstable pulmonary
function. It should be noted that highly unstable pulmonary function mostly refers to
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particularly severe clinical phenotype of “frequent exacerbations. Interestingly, it has been
shown in vitro that P.a possesses the operons spuABCDEFGH-spuI for polyamines uptake
and utilization. It was also shown that the global CbrAB two-component system senses
polyamines, regulates the spu operons and modulates 236 genes which have effect on
metabolism, virulence and antibioresistance in P.a [45,46]. In another study, Zhou et al.
demonstrated that spermidine has a positive effect on the activation of the Type 3 Secretion
System (T3SS) and found a relation with cytotoxicity on epithelial cells in P.a laboratory
strains [47]. Furthermore, Twomey et al. reported an increased level of putrescine in
bronchial secretions of CF patients during pulmonary exacerbations. This increase was
correlated with the presence and abundance of P.a and Chrysiogenales, but the producers of
these molecules remained to be defined [48]. As such, our results draw a link between these
two studies, demonstrating for the first time the link between high levels of putrescine and
spermidine specifically produced by P.a, high P.a virulence and clinical exacerbations.

Putrescine is also known to be a precursor for the synthesis of succinate [49] and
was found to be a biomarker of acute P.a lung infection in a pre-clinical model close to
CF exacerbations [50]. Moreover, Whiteson and colleagues have shown that putrescine
produced by clinical P.a isolates induces the activation of human dendritic cells and the
production of interleukin (IL)-12, leading to a pro-inflammatory polarization of the immune
response (CD4 T cells) [51] that could in turn lead to lung inflammation and subsequent
clinical exacerbation episodes and loss of lung function. Future work should address the
role of polyamines production by P.a in the crosstalk with host cells. Our results suggest
that a significant increase of polyamines production by P.a could induce a boost of bacterial
growth and virulence, inducing an important inflammatory response and subsequent
acute exacerbation. Such findings direct future developments for CF treatments towards a
better control of polyamines production. Promising results have recently been reported
using specific antibodies preventing the integration of extracellular polyamines by P.a,
thus reducing T3SS expression, in vitro cytotoxicity against A549 cells, as well as in vivo
mortality in an animal infection model [52].

Finally, and although it is often dominant, P.a is not unique but is one of the bacteria
that make up the lung microbiota of CF patients. There are many interactions between
the species composing the CF lung microbiota, and they can have a significant impact
on the clinical outcome of the infection [53]. Thus, if phenotypic studies on pure isolates
such as those presented here provide important elements for understanding the patho-
evolutionary mechanisms of chronic P.a infection, the hypotheses raised need to be studied
in the context of the CF pulmonary ecosystem as a whole. For example, it would be of great
interest to study the influence of isolates of P.a isolates producing high levels of polyamines
on the structure of the microbiota and the impact of the microbial community on host
cells. Indeed, several human pathogens possess transport systems allowing the use of
extracellular polyamines to support growth [42]. It is thus possible that the overproduction
of polyamines by particularly virulent isolates of P.a isolates induces the overgrowth of
other colonizing species in the patients’ lungs, thus causing the dysbiosis at the origin of
the exacerbations. For this, microbiota culture models under conditions reproducing the
CF lung environment could be used, in order to assess the impact of P.a producing different
polyamines levels on the diversity and abundance of different species [54].

In conclusion, the reported datasets demonstrate that non-targeted metabolomics is
an efficient strategy to identify bacterial mechanisms of clinical importance, bringing out
potential novel therapeutic strategies. Monitoring of metabolites found among the flexible
metabolome might be used to predict exacerbations or resistance to certain antibiotic
therapies. Such biomarkers could help in rationalizing the use of antibiotics and provide
alternatives or supplements to conventional antibiotic therapies, ultimately improving
patients’ health care.
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4. Materials and Methods
4.1. Patients
4.1.1. Cohort Selection of Patients

Thirty-four patients from the Cystic Fibrosis Resource and Competence Center (CFRCC)
of the Grenoble-Alpes University Hospital (CHUGA) were recruited retrospectively accord-
ing to the following inclusion criteria: diagnosis of CF according to the national guidelines,
16 years old in 2010, chronically infected by P.a according to the EuroCareCF reference
criteria [55], 3 P.a isolates sampled over a 3 years follow-up period. The data are derived
from clinical research on cystic fibrosis patient and bacterial samples named METAPYO:
“A metabolomic approach for the study of the adaptive evolution of Pseudomonas aeruginosa
during chronic pulmonary infections in cystic fibrosis”. This research was approved by the
CHUGA institutional review board and authorized after its filing with the CNIL according
to the french procedure for a monocentric retrospective study (Reference Methodology
MR004-Compliance Commitment No. 2205066 v 0). Duly informed patients did not object
to the conduct of the research.

4.1.2. Clinical Data and Respiratory Function Modelling

All the Forced Expiratory Volume in 1 s (FEV1) measurements made between 2010 and
2015 have been extracted from the medical records of the cohort’s patients. FEV1 values (in
L) have been converted in Z-score adjusted for age, sex and height by non-linear regression
following the Global Lung Initiative recommendations. These international guidelines also
advocate to adjust this Z-score according to ethnicity, but the French legislation does not
allow to collect this information. Considering the greatest prevalence of CF in Caucasians,
we therefore considered all our patients as of Caucasian origin in this calculation [56].

Patients have been stratified according to both the level and the temporal dynamics of
all FEV1 records during the 2010–2015 follow-up period. Mean FEV1 was classified as high
if above the cohort average, low if not. Long-term dynamic of the FEV1 was defined as
in decline if the slope of the linear regression of the FEV1 over 5 years was significantly
below 0, not declining if not. Short-term dynamic was defined as unstable if the standard
deviation of the residuals around the linear regression of the FEV1 over time was above
40%, stable if not. One indicator of each Mean FEV1, Long-term dynamic and Short-term
dynamic have been used to describe each patient’s clinical state over the study period.

4.2. P.a Clinical Isolates
4.2.1. P.a Isolates Identification

P.a isolates from sputum of CF patients followed at Grenoble-Alpes University Hospi-
tal were obtained from the Grenoble-Alpes University Hospital Microbiology Laboratory.
Strains have been isolated and purified according to the national guidelines [57]. Isolates
were stored at −80 ◦C in cryotubes with beads. P.a isolates were identified by standard
biochemical testing and proteomic profiling by matrix-assisted laser desorption and ioniza-
tion time-of-flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonics, Wissenbourg,
France). Three to 5 isolates per patient (see cohort selection section) were arbitrarily selected
and cultivated in SCFM2 medium for further analysis.

4.2.2. Growth Conditions

If not specified, all pre cultures and cultures were done at 37 ◦C, 230 rpm, in SCFM2
medium in aerobic conditions. Pre-cultures were done in 2.5mL SCFM2, cultures in 2
∗ 2.5 mL SCFM2, pooled together prior to experimental procedure. SCFM2 medium
was prepared as indicated by Turner et al. [32]. Mucin was discarded from the medium
composition in order to allow a precise follow-up of bacterial growth by Optical Density
measurements at 595 nm (OD595).
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4.2.3. Pulsed-Field Gel Electrophoresis Clonal Analysis

PFGE analysis of SpeI restricted genomic DNA was performed as described previ-
ously [58]. PFGE was performed using a CHEF-DR III apparatus (Bio-Rad), set at 5.0 V/cm,
with a linear ramping from 5 to 25 s for 11 h and 5 to 60 s for 13 h. PFGE gels were pictured
using ImageLab 5.1 software (Bio-Rad). Images were then aligned and analyzed using
BioNumerics software (version 7.1, Applied Maths, Sint-Martens-Latem, Belgium) DNA
patterns (or pulsotypes) were converted into a 0/1 discrete matrix of presence/absence of
bands at each molecular weight, as described previously by Lavenir et al. [59]. Hamming’s
distances have been calculated using R software version 3.3.2 [60] (Vienna, Austria), and
the number of different bands between isolates have been interpreted following the criteria
defined in Römling et al. (1995) [31]. Two or more pulsotypes sharing less than 7 different
bands have been defined as a PFGE Clonal Complex (CC), attesting for a recent common
ancestor.

4.3. Metabolomics Analysis
4.3.1. Sample Preparation

Sampling and metabolite extraction of P.a isolates grown in SCFM2 were performed
as indicated by Aros-Calt and colleagues, with slight modifications [33,61] (See Supple-
mentary Methods). Bacterial culture, sample preparation, metabolomics analyses, and data
processing were performed in biological triplicates.

4.3.2. Liquid Chromatography Coupled with High Resolution Mass Spectrometry
(LC-HRMS) Analysis

Untargeted metabolomic profiling of the bacterial samples was done using ultra
high-performance liquid chromatography (Ultimate 3000 UPLC, Thermo Fisher Scientific,
Waltham, MA, USA) coupled with an Exactive Orbitrap mass spectrometer (Thermo Fisher
Scientific Waltham, MA, USA). In order to enhance the chemical coverage of the analysis,
we used two different but complementary chromatographic columns, consisting in re-
versed phase chromatography (C18 chromatographic column) and Hydrophilic Interaction
Liquid Chromatography (HILIC) for the analysis of hydrophobic and polar metabolites,
respectively.

The C18 chromatographic separation was carried out on a Hypersil GOLD C18 column
(1.9 µm, 150 × 2.1 mm, Thermo Fisher Scientific) at 30 ◦C, with flow elution rate of 500
µL/min. The mobile phases consisted of A (100% water + 0.1% formic acid) and B (100%
acetonitrile (ACN) + 0.1% formic acid). Elution started with an isocratic step of 2 min at
5% mobile phase B, followed by a linear gradient from 5% to 100% mobile phase B for the
next 11 min. These proportions were kept constant for the next 12.5 min before returning
to 5% B for 4.5 min. The HILIC chromatographic separation was carried out on a Sequant
ZIC-pHILIC column (5 µm, 150 × 2.1 mm, Merck, Darmstadt, Germany) maintained at 15
◦C under a elution gradient of mobile phases A and B at a flow elution rate of 200 µL/min.
Mobile phase A was 10 mM ammonium carbonate pH 10.5 (adjusted with ammonium
hydroxide), and mobile phase B was 100% ACN. Elution was initiated with 80% B phase
for 2 min, followed by a linear gradient of 80–40% B from 2 to 12 min. The chromatographic
system was then rinsed for 5 min at 0% B, before returning at 80% B and the and the run
ended with an equilibration step of 25 min at 80% B.

The mass spectrometer was fitted with an electrospray source (ESI) operating in
positive and negative ionization modes for C18 and ZIC-pHILIC, respectively. It was
operated with capillary voltage at −3kV in the negative ionization mode and 5 kV in
the positive ionization and a capillary temperature set at 280 ◦C. Temperature of the
autosampler compartment was set at 4 ◦C, and the injection volume was 10 µL. Detection
was carried out from m/z 75 to 1000 in both ionization modes at a resolution of 50,000 at
m/z 200 as reported by Aros-Calt et al. [61] (each scan taking 0.5 s).
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4.3.3. LC-HRMS Data Processing

Raw LC-HRMS data were converted to m/z extensible markup language (.mzXML)
in centroid mode using MSConvert ProteoWizard (release version 3.0.9393). Peak detection
and integration were performed using R version 3.3.2 and XCMS package version 3.0.2 [62].
Briefly, features were detected using the centWave algorithm (step = 0.01, m/z deviation
tolerance = 10 ppm, peak width = 10–40 s for C18, 20–120 s for HILIC, signal-to-noise
ratio = 5). Peaks were grouped by density and retention times were nonlinearly smoothed
(loess). Missing values (gap filling) were imputed by the chrom method. Annotation of
adducts, fragments, and isotopes was achieved using the CAMERA package [63].

Features detected following XCMS-CAMERA analysis were then filtered and stan-
dardized using the Workflow4Metabolomics platform [64,65]. Data filtering was done
according to the following criteria: (i) correlation coefficient between dilution factor and
peak area in QC samples > 0.7, (ii) ratio of mean peak area in blanks over biological samples
< 0.33, and (iii) variation coefficient of peak area in QC samples <30%. Peak intensities
were then normalized using the Probabilistic Quotient Normalization (PQN) algorithm
described by Dieterle et al. [66].

4.3.4. Metabolite Annotation

Feature annotation was performed by using our spectral database first according
to accurate measured masses and chromatographic retention times [61,67,68] and then
according to publicly available databases KEGG, PAMDB, HMDB, and METLIN [34,69–71]
solely using accurate masses. This data-based analysis allowed putative annotation of 271
metabolites (Supplementary Table S2). Metabolite identification was further confirmed
for discriminant metabolites LC-MS/MS experiments using a Dionex Ultimate chromato-
graphic system combined with a Q-Exactive mass spectrometer (Thermo Fisher Scientific,
San Jose, CA, USA) under non-resonant collision-induced dissociation conditions using
higher-energy C-trap dissociation (HCD). To be identified, metabolites had to match at
least two orthogonal criteria (among accurate measured mass, retention time, and MS/MS
spectrum) to those of an authentic chemical standard analyzed under the same analytical
conditions, as proposed by the Metabolomics Standards Initiative [72]. In the absence of an
available authentic chemical standard, metabolites of interest were only considered as pu-
tatively annotated based on accurately measured masses and interpretation of the MS/MS
spectra when available as described by Aros-Calt et al. 2015 [61]. Under these conditions,
up to 51 discriminant metabolites were characterized: 30 had accurate masses, retention
times and MS/MS matching those of an authentic standard, 3 were putatively annotated
by matching their MS/MS spectra to those from the METLIN public database or showed
MS/MS spectra consistent with both the proposed structures and the spectra of structural
homologues, 1 shared accurate mass and retention time with an authentic standard, and 17
compounds were only annotated based on their accurate masses (Supplementary Table S3).

4.4. Phenotypic Assays

Cytotoxic potential of the P.a clinical isolates on eukaryotic cells was tested according
to previously described protocols [73,74], with slight modifications. Antibiotic resistance
phenotypes were tested following the recommendations of the European Committee for
Antimicrobial Susceptibility Testing 2017 criteria [75]. All phenotypic assays are detailed in
supplementary Methods.

4.5. Polarity Degreei,j

To investigate intra-host modifications of P.a phenotypic and metabolic profiles dur-
ing the course of CF chronic lung infections, an indicator, the Polarity degreei,j (Pi,j) of
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the relative differences in metabolite production between early and late isolate of each
evolutionary line infecting a patient’s airway, was computed as follows:

Pi,j =
Li,j − Ei,j

Li,j + Ei,j
; V/cm (1)

where Li,j and Ei,j stand for late and early isolates intensities for evolutionary line i, metabo-
lite j, respectively. Pi,j thus returns a value in the interval [−1,1], with positive/negative
values representing an increase/decrease in intensity of metabolite j in line i overtime.

4.6. Statistical Analyses

All statistical analyses were performed in R software version 3.3.2 (R Core Team,
Vienna, Austria). Multivariate statistical analysis, notably Hierarchical Clustering on Princi-
pal Components (HCPC, [76]) analyses, were performed using FactoMineR R package [77],
and graphical representations have been done using factoextra [78].

Most of the multivariate statistical analyses presented in this work rely on the HCPC
method published by Husson et al. [76]. Briefly, the HCPC algorithm is divided into
3 steps. First, the dimensions are reduced by a factorial method, such as a Principal
Component Analysis (PCA) for quantitative variables, a Multiple Correspondence Analysis
(MCA) for categorical data, or a Multiple Factorial Analysis (MFA) to jointly integrate
different data blocks [79]. Second, a Hierarchical Cluster Analysis (HCA, ward method,
Euclidean distances) is performed on the components to determine groups of samples or
individuals sharing similar profiles. The optimal number of clusters was calculated by
analyzing the gain in inertia provided by the addition of a new group (default parameters,
as described in [77]). Finally, a k-means partition [80] is applied to stabilize the previous
HCA classification.

4.6.1. Multiscale Integration of within-Host Adaptation of Antibiotic Resistance and
Metabolomics Profiles

In order to identify metabolites predictive of acquired antibiotic resistance, we de-
signed a multi-scale statistical workflow. First, we calculated the Pi,j representing the
within-host modifications of both metabolite intensities and antibiotic resistances between
early and late isolates of each evolutionary line. Then, we conducted a multiscale unsu-
pervised HCPC based on MFA to extract the common information from the two blocks of
metabolite and antibiotic resistance Pi,j. The output of the HCPC analysis was then used
to select variables (metabolites and antibiotic resistance phenotypes) found as statistically
associated. Finally, we built a supervised logistic model based on the selected variables, in
order to predict the acquisition of antibiotic resistance phenotypes from the modifications
of a minimum number of metabolites intensities. The best model was selected by step-by-
step forward analysis based on the Akaike information criterion and validated by internal
cross validation.

4.6.2. Definition of Bacterial Metabotypes

Variable selection of the most differentially expressed metabolites (i.e., most likely to
be associated with differential phenotype expression) was performed (151/271 putatively
annotated metabolites with a variation coefficient >0.5). Bacterial metabotypes were
defined by HCPC analysis based on MFA, with metabolite intensities spread over two
blocks, according to the method that allowed the metabolite detection (C18 or HILIC), in
order to balance the influence of each block on the final PCs.

4.6.3. Definition of Bacterial Level of Virulence

HCPC analysis was performed on the bacterial phenotypes (cytotoxicity against A549
and J774, stress induced on A549, growth speed, pigment production, and mucoidy) coded
into binary classes. Analysis of variable categories associated with each cluster allowed us
to define the bacterial level of virulence.
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27. Mielko, K.A.; Jabłoński, S.J.; Milczewska, J.; Sands, D.; Łukaszewicz, M.; Młynarz, P. Metabolomic Studies of Pseudomonas
Aeruginosa. World J. Microbiol. Biotechnol. 2019, 35, 178. [CrossRef]

28. Behrends, V.; Bell, T.J.; Liebeke, M.; Cordes-Blauert, A.; Ashraf, S.N.; Nair, C.; Zlosnik, J.E.; Williams, H.D.; Bundy, J.G. Metabolite
Profiling to Characterize Disease-Related Bacteria: Gluconate Excretion by Pseudomonas Aeruginosa Mutants and Clinical
Isolates from Cystic Fibrosis Patients. J. Biol. Chem. 2013, 288, 15098–15109. [CrossRef]

29. Borgos, S.E.F.; Skjåstad, R.; Tøndervik, A.; Aas, M.; Aasen, I.M.; Brunsvik, A.; Holten, T.; Iversen, O.J.; Ahlen, C.; Zahlsen, K. Rapid
Metabolic Profiling of Developing Pseudomonas Aeruginosa Biofilms by High-Resolution Mass Spectrometry Fingerprinting.
Ann. Microbiol. 2015, 65, 891–898. [CrossRef]

30. Walter, S.; Gudowius, P.; Boßhammer, J.; Römling, U.; Weißbrodt, H.; Schürmann, W.; Von Der Hardt, H.; Tümmler, B.
Epidemiology of Chronic Pseudomonas Aeruginosa Infections in the Airways of Lung Transplant Recipients with Cystic Fibrosis.
Thorax 1997, 52, 318–321. [CrossRef]

31. Römling, U.; Greipel, J.; Tümmler, B. Gradient of Genomic Diversity in the Pseudomonas Aeruginosa Chromosome. Mol.
Microbiol. 1995, 17, 323–332. [CrossRef]

http://doi.org/10.1378/chest.15-0676
http://doi.org/10.1016/j.jclinepi.2014.12.010
http://www.ncbi.nlm.nih.gov/pubmed/25655532
http://doi.org/10.1016/j.jpeds.2007.03.006
http://doi.org/10.1002/ppul.21311
http://doi.org/10.1186/s12890-016-0339-5
http://doi.org/10.1002/ppul.10127
http://www.ncbi.nlm.nih.gov/pubmed/12112774
http://doi.org/10.1128/CMR.00138-18
http://www.ncbi.nlm.nih.gov/pubmed/31142499
http://doi.org/10.1016/j.ijmm.2010.08.008
http://www.ncbi.nlm.nih.gov/pubmed/20943439
http://doi.org/10.1093/femsle/fnx121
http://www.ncbi.nlm.nih.gov/pubmed/28854668
http://doi.org/10.1128/CMR.00036-10
http://doi.org/10.3389/fimmu.2018.02416
http://doi.org/10.1111/j.1462-2920.2012.02840.x
http://doi.org/10.1186/s40168-019-0636-3
http://doi.org/10.1038/ng.3148
http://doi.org/10.1073/pnas.0602138103
http://doi.org/10.1073/pnas.1221466110
http://www.ncbi.nlm.nih.gov/pubmed/23610385
http://doi.org/10.1186/s12866-015-0563-9
http://www.ncbi.nlm.nih.gov/pubmed/26482905
http://doi.org/10.1128/mBio.00269-18
http://www.ncbi.nlm.nih.gov/pubmed/29636437
http://doi.org/10.1111/j.1462-2920.2012.02842.x
http://doi.org/10.3390/biom10071041
http://doi.org/10.1007/s11274-019-2739-1
http://doi.org/10.1074/jbc.M112.442814
http://doi.org/10.1007/s13213-014-0930-z
http://doi.org/10.1136/thx.52.4.318
http://doi.org/10.1111/j.1365-2958.1995.mmi_17020323.x


Metabolites 2021, 11, 63 19 of 20

32. Turner, K.H.; Wessel, A.K.; Palmer, G.C.; Murray, J.L.; Whiteley, M. Essential Genome of Pseudomonas Aeruginosa in Cystic
Fibrosis Sputum. Proc. Natl. Acad. Sci. USA 2015, 112, 4110–4115. [CrossRef] [PubMed]

33. Aros-Calt, S.; Castelli, F.A.; Lamourette, P.; Gervasi, G.; Junot, C.; Muller, B.H.; Fenaille, F. Metabolomic investigation of
Staphylococcus aureus antibiotic susceptibility by liquid chromatography coupled to high-resolution mass spectrometry. In
Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2019; Volume 1871, pp. 279–293.

34. Huang, W.; Brewer, L.K.; Jones, J.W.; Nguyen, A.T.; Marcu, A.; Wishart, D.S.; Oglesby-Sherrouse, A.G.; Kane, M.A.; Wilks, A.
PAMDB: A Comprehensive Pseudomonas Aeruginosa Metabolome Database. Nucleic Acids Res. 2018, 46, D575–D580. [CrossRef]
[PubMed]

35. Stalon, V.; Vander Wauven, C.; Momin, P.; Legrain, C. Catabolism of Arginine, Citrulline and Ornithine by Pseudomonas and
Related Bacteria. J. Gen. Microbiol. 1987, 133, 2487–2495. [CrossRef] [PubMed]

36. Harun, S.N.; Hennig, S.; Wainwright, C.; Klein, K. A Systematic Review of Studies Examining the Rate of Lung Function Decline
in Patients with Cystic Fibrosis. Paediatr. Respir. Rev. 2016, 20, 55–66. [CrossRef] [PubMed]

37. Nkam, L.; Lambert, J.; Latouche, A.; Bellis, G.; Burgel, P.R.; Hocine, M.N. A 3-Year Prognostic Score for Adults with Cystic
Fibrosis. J. Cyst. Fibros. 2017, 16, 702–708. [CrossRef]

38. Jacobs, C.; Huang, L.J.; Bartowsky, E.; Normark, S.; Park, J.T. Bacterial Cell Wall Recycling Provides Cytosolic Muropeptides as
Effectors for Beta-Lactamase Induction. EMBO J. 1994, 13, 4684–4694. [CrossRef]

39. Torrens, G.; Pérez-Gallego, M.; Moya, B.; Munar-Bestard, M.; Zamorano, L.; Cabot, G.; Blázquez, J.; Ayala, J.A.; Oliver, A.; Juan,
C. Targeting the Permeability Barrier and Peptidoglycan Recycling Pathways to Disarm Pseudomonas Aeruginosa against the
Innate Immune System. PLoS ONE 2017, 12, e0181932. [CrossRef]

40. Zamorano, L.; Reeve, T.M.; Juan, C.; Moyá, B.; Cabot, G.; Vocadlo, D.J.; Mark, B.L.; Oliver, A. AmpG Inactivation Restores
Susceptibility of Pan-β-Lactam-Resistant Pseudomonas Aeruginosa Clinical Strains. Antimicrob. Agents Chemother. 2011, 55,
1990–1996. [CrossRef]

41. Bitonti, A.J.; Kelly, S.E.; McCann, P.P. Regulation of Growth and Macromolecular Synthesis by Putrescine and Spermidine in
Pseudomonas Aeruginosa. Life Sci. 1984, 34, 1513–1520. [CrossRef]

42. Shah, P.; Swiatlo, E. A Multifaceted Role for Polyamines in Bacterial Pathogens. Mol. Microbiol. 2008, 68, 4–16. [CrossRef]
43. Carriel, D.; Garcia, P.S.; Castelli, F.; Lamourette, P.; Fenaille, F.; Brochier-Armanet, C.; Elsen, S.; Gutsche, I. A Novel Subfamily of

Bacterial AAT-Fold Basic Amino Acid Decarboxylases and Functional Characterization of Its First Representative: Pseudomonas
Aeruginosa LdcA. Genome Biol. Evol. 2018, 10, 3058–3075. [CrossRef] [PubMed]

44. Michael, A.J. Polyamine Function in Archaea and Bacteria. J. Biol. Chem. 2018, 293, 18693–18701. [CrossRef] [PubMed]
45. Lu, C.D.; Itoh, Y.; Nakada, Y.; Jiang, Y. Functional Analysis and Regulation of the Divergent SpuABCDEFGH-SpuI Operons for

Polyamine Uptake and Utilization in Pseudomonas Aeruginosa PAO1. J. Bacteriol. 2002, 184, 3765–3773. [CrossRef] [PubMed]
46. Yeung, A.T.Y.; Bains, M.; Hancock, R.E.W. The Sensor Kinase CbrA Is a Global Regulator That Modulates Metabolism, Virulence,

and Antibiotic Resistance in Pseudomonas Aeruginosa. J. Bacteriol. 2011, 193, 918–931. [CrossRef]
47. Zhou, L.; Wang, J.; Zhang, L.H. Modulation of Bacterial Type III Secretion System by a Spermidine Transporter Dependent

Signaling Pathway. PLoS ONE 2007, 2. [CrossRef]
48. Twomey, K.B.; Alston, M.; An, S.-Q.; O’Connell, O.J.; McCarthy, Y.; Swarbreck, D.; Febrer, M.; Dow, J.M.; Plant, B.J.; Ryan, R.P.

Microbiota and Metabolite Profiling Reveal Specific Alterations in Bacterial Community Structure and Environment in the Cystic
Fibrosis Airway during Exacerbation. PLoS ONE 2013, 8, e82432. [CrossRef]

49. Schneider, B.L.; Reitzer, L. Pathway and Enzyme Redundancy in Putrescine Catabolism in Escherichia Coli. J. Bacteriol. 2012, 194,
4080–4088. [CrossRef]

50. Le Gouëllec, A.; Moyne, O.; Meynet, E.; Toussaint, B.; Fauvelle, F. High-Resolution Magic Angle Spinning NMR-Based
Metabolomics Revealing Metabolic Changes in Lung of Mice Infected with P. Aeruginosa Consistent with the Degree of
Disease Severity. J. Proteome Res. 2018, 17, 3409–3417. [CrossRef]

51. Whiteson, K.; Agrawal, S.; Agrawal, A. Differential Responses of Human Dendritic Cells to Metabolites from the Oral/Airway
Microbiome. Clin. Exp. Immunol. 2017, 188, 371–379. [CrossRef]

52. Wang, J.; Wang, J.; Zhang, L.H. Immunological Blocking of Spermidine-Mediated Host–Pathogen Communication Provides
Effective Control against Pseudomonas Aeruginosa Infection. Microb. Biotechnol. 2020, 13, 87–96. [CrossRef]

53. Nguyen, A.T.; Oglesby-Sherrouse, A.G. Interactions between Pseudomonas Aeruginosa and Staphylococcus Aureus during
Co-Cultivations and Polymicrobial Infections. Appl. Microbiol. Biotechnol. 2016, 100, 6141–6148. [CrossRef] [PubMed]

54. Quinn, R.A.; Whiteson, K.; Lim, Y.W.; Salamon, P.; Bailey, B.; Mienardi, S.; Sanchez, S.E.; Blake, D.; Conrad, D.; Rohwer, F. A
Winogradsky-Based Culture System Shows an Association between Microbial Fermentation and Cystic Fibrosis Exacerbation.
ISME J. 2015, 9, 1024–1038. [CrossRef] [PubMed]

55. Pressler, T.; Bohmova, C.; Conway, S.; Dumcius, S.; Hjelte, L.; Høiby, N.; Kollberg, H.; Tümmler, B.; Vavrova, V. Chronic
Pseudomonas Aeruginosa Infection Definition: EuroCareCF Working Group Report. J. Cyst. Fibros. 2011, 10. [CrossRef]

56. Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al.
Multi-Ethnic Reference Values for Spirometry for the 3-95-Yr Age Range: The Global Lung Function 2012 Equations. Eur. Respir.
J. 2012, 40, 1324–1343. [CrossRef] [PubMed]

57. Bourlet, T.; Courcol, R.; Hermann, J.-L.; Lachaud, L.; Lamy, B.; Laudat, P.; Pangon, B.; Rémic, H.P.-L. Référentiel en Microbiologie
Médicale; Vivactis Plus Ed; SFM: Paris, France, 2007.

http://doi.org/10.1073/pnas.1419677112
http://www.ncbi.nlm.nih.gov/pubmed/25775563
http://doi.org/10.1093/nar/gkx1061
http://www.ncbi.nlm.nih.gov/pubmed/29106626
http://doi.org/10.1099/00221287-133-9-2487
http://www.ncbi.nlm.nih.gov/pubmed/3129535
http://doi.org/10.1016/j.prrv.2016.03.002
http://www.ncbi.nlm.nih.gov/pubmed/27259460
http://doi.org/10.1016/j.jcf.2017.03.004
http://doi.org/10.1002/j.1460-2075.1994.tb06792.x
http://doi.org/10.1371/journal.pone.0181932
http://doi.org/10.1128/AAC.01688-10
http://doi.org/10.1016/0024-3205(84)90605-2
http://doi.org/10.1111/j.1365-2958.2008.06126.x
http://doi.org/10.1093/gbe/evy228
http://www.ncbi.nlm.nih.gov/pubmed/30321344
http://doi.org/10.1074/jbc.TM118.005670
http://www.ncbi.nlm.nih.gov/pubmed/30254075
http://doi.org/10.1128/JB.184.14.3765-3773.2002
http://www.ncbi.nlm.nih.gov/pubmed/12081945
http://doi.org/10.1128/JB.00911-10
http://doi.org/10.1371/journal.pone.0001291
http://doi.org/10.1371/journal.pone.0082432
http://doi.org/10.1128/JB.05063-11
http://doi.org/10.1021/acs.jproteome.8b00306
http://doi.org/10.1111/cei.12943
http://doi.org/10.1111/1751-7915.13279
http://doi.org/10.1007/s00253-016-7596-3
http://www.ncbi.nlm.nih.gov/pubmed/27236810
http://doi.org/10.1038/ismej.2014.234
http://www.ncbi.nlm.nih.gov/pubmed/25514533
http://doi.org/10.1016/S1569-1993(11)60011-8
http://doi.org/10.1183/09031936.00080312
http://www.ncbi.nlm.nih.gov/pubmed/22743675


Metabolites 2021, 11, 63 20 of 20

58. Romling, U.; Wingender, J.; Muller, H.; Tummler, B. A Major Pseudomonas Aeruginosa Clone Common to Patients and Aquatic
Habitats. Appl. Environ. Microbiol. 1994, 60, 1734–1738. [CrossRef] [PubMed]

59. Lavenir, R.; Sanroma, M.; Gibert, S.; Crouzet, O.; Laurent, F.; Kravtsoff, J.; Mazoyer, M.A.; Cournoyer, B. Spatio-Temporal Analysis
of Infra-Specific Genetic Variations among a Pseudomonas Aeruginosa Water Network Hospital Population: Invasion and
Selection of Clonal Complexes. J. Appl. Microbiol. 2008, 105, 1491–1501. [CrossRef] [PubMed]

60. R core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2013.

61. Aros-Calt, S.; Muller, B.H.; Boudah, S.; Ducruix, C.; Gervasi, G.; Junot, C.; Fenaille, F. Annotation of the Staphylococcus Aureus
Metabolome Using Liquid Chromatography Coupled to High-Resolution Mass Spectrometry and Application to the Study of
Methicillin Resistance. J. Proteome Res. 2015, 14, 4863–4875. [CrossRef]

62. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling
Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [CrossRef]

63. Kuhl, C.; Tautenhahn, R.; Böttcher, C.; Larson, T.R.; Neumann, S. CAMERA: An Integrated Strategy for Compound Spectra
Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal. Chem. 2012, 84, 283–289. [CrossRef]

64. Giacomoni, F.; Le Corguillé, G.; Monsoor, M.; Landi, M.; Pericard, P.; Pétéra, M.; Duperier, C.; Tremblay-Franco, M.; Martin, J.F.;
Jacob, D.; et al. Workflow4Metabolomics: A Collaborative Research Infrastructure for Computational Metabolomics. Bioinformatics
2015, 31, 1493–1495. [CrossRef]

65. Guitton, Y.; Tremblay-Franco, M.; Le Corguillé, G.; Martin, J.F.; Pétéra, M.; Roger-Mele, P.; Delabrière, A.; Goulitquer, S.; Monsoor,
M.; Duperier, C.; et al. Create, Run, Share, Publish, and Reference Your LC–MS, FIA–MS, GC–MS, and NMR Data Analysis
Workflows with the Workflow4Metabolomics 3.0 Galaxy Online Infrastructure for Metabolomics. Int. J. Biochem. Cell Biol. 2017,
93, 89–101. [CrossRef]

66. Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution
of Complex Biological Mixtures. Application In1H NMR Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [CrossRef] [PubMed]

67. Boudah, S.; Olivier, M.F.; Aros-Calt, S.; Oliveira, L.; Fenaille, F.; Tabet, J.C.; Junot, C. Annotation of the Human Serum Metabolome
by Coupling Three Liquid Chromatography Methods to High-Resolution Mass Spectrometry. J. Chromatogr. B Anal. Technol.
Biomed. Life Sci. 2014, 966, 34–47. [CrossRef] [PubMed]

68. Roux, A.; Xu, Y.; Heilier, J.F.; Olivier, M.F.; Ezan, E.; Tabet, J.C.; Junot, C. Annotation of the Human Adult Urinary Metabolome
and Metabolite Identification Using Ultra High Performance Liquid Chromatography Coupled to a Linear Quadrupole Ion
Trap-Orbitrap Mass Spectrometer. Anal. Chem. 2012, 84, 6429–6437. [CrossRef] [PubMed]

69. Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res. 1999, 27, 29–34. [CrossRef] [PubMed]

70. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The
Human Metabolome Database. Nucleic Acids Res. 2007, 35. [CrossRef]

71. Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A
Metabolite Mass Spectral Database. Ther. Drug Monit. 2005, 27, 747–751. [CrossRef]

72. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al.
Proposed Minimum Reporting Standards for Chemical Analysis: Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef]

73. Basso, P.; Wallet, P.; Elsen, S.; Soleilhac, E.; Henry, T.; Faudry, E.; Attree, I. Multiple Pseudomonas Species Secrete Exolysin-like
Toxins and Provoke Caspase-1-Dependent Macrophage Death. Environ. Microbiol. 2017, 19, 4045–4064. [CrossRef]

74. Ngo, T.D.; Plé, S.; Thomas, A.; Barette, C.; Fortuné, A.; Bouzidi, Y.; Fauvarque, M.O.; Pereira De Freitas, R.; Francisco Hilário,
F.; Attreé, I.; et al. Chimeric Protein-Protein Interface Inhibitors Allow Efficient Inhibition of Type III Secretion Machinery and
Pseudomonas Aeruginosa Virulence. ACS Infect. Dis. 2019, 5, 1843–1854. [CrossRef]

75. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone
Diameters.Version 7.1. 2017, pp. 1–20. Available online: http://www.eucast.org (accessed on 15 January 2021).

76. Husson, F.; Lê, S.; Pagès, J. Exploratory Multivariate Analysis by Example Using R; CRC Press: Boca Raton, FL, USA, 2010;
ISBN 9781439835814.

77. Lê, S.; Josse, J.; Husson, F. FactoMine R: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [CrossRef]
78. Kassambara, A.; Mundt, F.; Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses.

BugReports. 2017, pp. 1–76. Available online: http//www.sthda.com/english/rpkgs/factoextra (accessed on 15 January 2021).
79. Kassambara, A. Practical Guide to Principal Component Methods in R; edition 1, STHDA 2017. Available online: http://www.

sthda.com/english/wiki/practical-guide-to-principal-component-methods-in-r (accessed on 15 January 2021).
80. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley

Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 1,
pp. 281–297.

http://doi.org/10.1128/AEM.60.6.1734-1738.1994
http://www.ncbi.nlm.nih.gov/pubmed/8031075
http://doi.org/10.1111/j.1365-2672.2008.03907.x
http://www.ncbi.nlm.nih.gov/pubmed/19146487
http://doi.org/10.1021/acs.jproteome.5b00697
http://doi.org/10.1021/ac051437y
http://doi.org/10.1021/ac202450g
http://doi.org/10.1093/bioinformatics/btu813
http://doi.org/10.1016/j.biocel.2017.07.002
http://doi.org/10.1021/ac051632c
http://www.ncbi.nlm.nih.gov/pubmed/16808434
http://doi.org/10.1016/j.jchromb.2014.04.025
http://www.ncbi.nlm.nih.gov/pubmed/24815365
http://doi.org/10.1021/ac300829f
http://www.ncbi.nlm.nih.gov/pubmed/22770225
http://doi.org/10.1093/nar/27.1.29
http://www.ncbi.nlm.nih.gov/pubmed/9847135
http://doi.org/10.1093/nar/gkl923
http://doi.org/10.1097/01.ftd.0000179845.53213.39
http://doi.org/10.1007/s11306-007-0082-2
http://doi.org/10.1111/1462-2920.13841
http://doi.org/10.1021/acsinfecdis.9b00154
http://www.eucast.org
http://doi.org/10.18637/jss.v025.i01
http//www.sthda.com/english/rpkgs/factoextra
http://www.sthda.com/english/wiki/practical-guide-to-principal-component-methods-in-r
http://www.sthda.com/english/wiki/practical-guide-to-principal-component-methods-in-r

	Introduction 
	Results 
	Evolutionary Relationships of P.a Clinical Isolates 
	Acquisition of P.a Metabolomic Profiles by Untargeted LC-HRMS 
	Diversity of P.a Metabolic Evolution within CF Patients’ Lungs 
	Intra-Host Metabolic Adaptation Is Associated with the Acquisition of Antibiotic Resistance 
	P.a Metabotypes Segregated by Differential Levels of Polyamines and Their Metabolites 
	Multivariate-Based Analysis of Bacterial Virulence 
	Polyamines Production Is Associated with the Level of P.a Virulence 
	High Polyamines Production By P.a Is Associated with Frequent Clinical Exacerbations 

	Discussion 
	Materials and Methods 
	Patients 
	Cohort Selection of Patients 
	Clinical Data and Respiratory Function Modelling 

	P.a Clinical Isolates 
	P.a Isolates Identification 
	Growth Conditions 
	Pulsed-Field Gel Electrophoresis Clonal Analysis 

	Metabolomics Analysis 
	Sample Preparation 
	Liquid Chromatography Coupled with High Resolution Mass Spectrometry (LC-HRMS) Analysis 
	LC-HRMS Data Processing 
	Metabolite Annotation 

	Phenotypic Assays 
	Polarity Degreei,j 
	Statistical Analyses 
	Multiscale Integration of within-Host Adaptation of Antibiotic Resistance and Metabolomics Profiles 
	Definition of Bacterial Metabotypes 
	Definition of Bacterial Level of Virulence 


	References

