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Distinguishable topology of the task-evoked functional
genome networks in HIV-1 reservoirs

Janusz Wi�sniewski,1,6 Kamil Więcek,1 Haider Ali,2,3 Krzysztof Pyrc,4 Anna Kula-P�acurar,2 Marek Wagner,5

and Heng-Chang Chen1,6,7,*
SUMMARY

HIV-1 reservoirs display a heterogeneous nature, lodging both intact and defective proviruses. To deepen
our understanding of such heterogeneous HIV-1 reservoirs and their functional implications, we inte-
grated basic concepts of graph theory to characterize the composition of HIV-1 reservoirs. Our analysis
revealed noticeable topological properties in networks, featuring immunologic signatures enriched by
genes harboring intact and defective proviruses, when comparing antiretroviral therapy (ART)-treated
HIV-1-infected individuals and elite controllers. The key variable, the rich factor, played a pivotal role in
classifying distinct topological properties in networks. The host gene expression strengthened the accu-
racy of classification between elite controllers and ART-treated patients. Markov chain modeling for the
simulation of different graph networks demonstrated the presence of an intrinsic barrier between elite
controllers and non-elite controllers. Overall, our work provides a prime example of leveraging genomic
approaches alongside mathematical tools to unravel the complexities of HIV-1 reservoirs.

INTRODUCTION

The establishment of latent HIV-1 reservoirs is a complex disease progression mechanism. It involves various types of immune cells and re-

sponses converging at the site of HIV-1 infection, aiming at restricting viral propagation. The presence of latent proviruses, causing viral

rebound upon the interruption of ART, impedes treatment efficacy. A more comprehensive understanding of the establishment of latent

HIV-1 reservoirs is essential for designing a potential functional cure against HIV-1 infections.

Notably, HIV-1 reservoirs possess a heterogeneous nature: only 2%–10% of the proviruses are genetically intact1–3; others that are genet-

ically defective harbor large deletions, sequence inversions, hypermutations, and defective splice donor and acceptor sites that prevent viral

replication.2,3 Reservoir cells harboring intact proviruses are believed to serve as the main funder of viral rebound. Although the role of defec-

tive proviruses remains elusive, the study has shown the involvement of defective proviruses in HIV-specific immunity and innate sensing,

rather than simply viral genome ‘‘junk.’’4

It is important to note that a recent study detected spontaneously active HIV-1 reservoirs, which are dominated by defective proviruses

anticipated in HIV-specific immunity.5 In addition, anothermore recent study identified a subset of latent cells associatedwith distinct features

from a pool of infected cells with latent infections.6 Remarkably, integration sites of proviruses in this subset of latent cells were prone to be in

non-genic regions and in proximity to zinc finger (ZNF) genes and heterochromatin regions.6 Such biases of integration resemble the features

used for the characterization of the reservoir harboring intact proviruses in the status of deep latency in elite controllers7 or individuals with

HIV-1 under prolonged ART, resulting from host immune selection8 (see the following paragraph). Altogether, a better understanding of the

heterogeneous composition of HIV-1 reservoirs is beneficial to deepen our knowledge of HIV-1 pathogenesis.

The concept of latent HIV-1 reservoirs has been recently refreshed and now the emphasis is placed on the diverse strengths of immune-

mediated selection forces acting on reservoir cells harboring intact and defective proviruses. This diversity results in distinct configurations of

reservoirs between each other.8–18 The impact of immune selection pressure in elite controllers appears more pronounced than in post-treat-

ment controllers.7,19 Furthermore, unique phenotypic signatures associated with reservoir cells harboring intact proviruses17,18 and distinct

transcriptomic signatures in HIV-1-infected memory CD4 T cells under ART20 have been reported. These findings underscore the specific

microenvironment of HIV-1 reservoirs, providing a fertile ground for further investigations into their configurations.
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Figure 1. Distinct enriched signatures between HIV-1-infected individuals and elite controllers

(A) A clustering heatmap illustrating immunologic signatures enriched by genes harboring intact and defective proviruses in HIV-1-infected patients and elite

controllers. Parentheses beneath the column denote the integrity of the provirus genome (intact versus defective) along with the number of enriched

signatures. The color scale depicts the magnitude of enrichment as represented by rich factors (S: signatures).

(B) A boxplot displaying the enrichment of signatures represented by rich factors in four groups. 50, 60, and 70 unique genes present in enriched signatures were

bootstrapped and repeated in the over-representation analysis 500 times.

(C) A clustering heatmap showcasing host gene expression (tpm) of genes retrieved from enriched signatures. Parentheses beneath the column indicate the

integrity of the provirus genome (intact versus defective) and the total number of retrieved genes.

(D) A boxplot, represented on a logarithmic scale, representing host gene expression (tpm) of the genes retrieved from enriched signatures. 20, 30, and 40 unique

genes were bootstrapped.

(E) A bubble plot offering insights into selected enriched signatures in HIV-1-infected patients and the complete list in elite controllers. The color scale represents

the enrichment magnitude as indicated by rich factors. Weight, calculated based on transcribed genes, highlights the difference between genes harboring intact

versus defective proviruses in ART-treated patients and elite controllers. Signature descriptions in different colors signify unique enrichments in reservoirs: Blue

(n = 5): ART-intact; Dark green (n = 7): EC-intact; Light green (n = 34): EC-defective. A Red (n = 1): Shared in reservoirs with intact and defective proviruses in elite

controllers.

(F) Grouped bar chart representing the percentage of the unique genes (light blue) and those associated with cell markers (dark blue) in enriched signatures.

(G) A clustering heatmap illustrating unique genes associated with cell markers. The color scale depicts the magnitude of enrichment as represented by rich

factors calculated from respective enriched signatures where the unique genes are present. The genes that are exclusively present in each of the four groups

were highlighted beneath the heatmap with different color codes: Red, ART-intact; Orange, ART-defective; Blue, EC-intact; Green, EC-defective.

(H) A boxplot displaying the enrichment of signatures where the unique genes are present in enriched signatures. Statistical significance in panels (B), (D), and

(H) was determined using the Wilcoxon test in R with default options; calculations were represented using boxplots, in which the median (the vertical line in the

box) of data distribution and the two whiskers were marked. Significance levels are denoted as follows: *p 0.05, **p 0.01, ***p 0.001, ****p 0.0001.

See also Figure S1 and Tables S1, S2, S3, and S4.
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Asmentioned above, HIV-1 reservoirs are heterogeneous in terms of the reservoir site, the integrity of the proviral genome, and viral repli-

cation fitness. Furthermore, the establishment of HIV-1 reservoirs is temporally dynamic. All these attributes complicate the means to pre-

cisely tag themicroenvironment of HIV-1 reservoirs. On the one hand, longitudinal biomarkers have been recently proposed to track the evo-

lution of HIV-1 reservoirs across different stages of HIV-1 infection and disease progression associated with ART.21,22 On the other hand, to

gain a better explanation of such a variety observed in HIV-1 infection and treatment, researchers have turned to mathematical models.23

Graph networks are widely used for representing types of relational data inmany aspects, including biological data. The information encoded

in the wiring patterns, i.e., topology and structures, of biological networks thus complements and somehow translates the information

received from biological data. It is not surprising that graph theoretical-based tools have also been implemented for different topics in virus

studies, e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission network24 and influenza and hepatitis diseases.25

Notably, such graph network-based analysis associated with various types of omics datasets has been applied to dissect the interplay be-

tween HIV-1 and the host.26

We previously observed that HIV-1-targeted genes with similar functions in immunity can form various gene sets, so-called ‘‘immunologic

signatures’’ present at different stages of HIV-1 infections associated with ART, implying that they may be dedicated to different tasks to

satisfy the need for immunity alongsideHIV-1 infections.27 Based on this finding, we have hypothesized that the frequency of HIV-1 integration

on host genes could serve as a proxy for enriched immunologic signatures, defining specific immune cells and proinflammatory soluble fac-

tors alongside HIV-1 infection associated with ART.27,28 Building on this hypothesis, in this current work, we further propose that HIV-1 res-

ervoirs may be represented by a network consisting of task-evoked communities and attempt to characterize the network property structured

by enriched signatures in ART-treated patients and elite controllers, distinguished by reservoirs harboring intact and defective proviruses,

respectively, at a global level of network organization. Importantly, apart from the visualization of the network topology of reservoirs, we

also performed the comparison of graph isomorphism based on the Pearson distance between graph networks. Finally, we applied the Mar-

kov chainMonte Carlo (MCMC)method and used it for the simulation of the evolution of the graph network. Altogether, this work introduced

a fresh perspective on latent HIV-1 reservoirs through topological graphs, providing a method to characterize the network topology associ-

ated with its function.

RESULTS
Different immunologic signatures enriched in antiretroviral therapy-treated patients and elite controllers

A total of 958 and 275 provirus-targeted host genes were collected respectively from HIV-1-infected individuals subjected to ART8,13,16,29–33

and elite controllers7,19 in this study (Figure S1A). After removing duplications, unique genes were assigned to four groups (ART-intact, n =

184; ART-defective, n = 678; EC-intact, n = 90; EC-defective, n = 101). We first performed the over-representation analysis using MSigDb C7

immunologic signature gene sets on these unique genes and revealed that themajority of enriched immunologic signatures differed between

reservoirs harboring intact and defective proviruses in ART-treated patients and elite controllers (Figure 1A; Tables S1, S2, S3, and S4). Given

that the sample size of the input genes varies among each study, we bootstrapped 50, 60, and 70 unique genes from each of these four groups

and repeated the over-representation analysis (Figure 1B). Rich factors27,34 were further calculated to represent the fold enrichment of en-

riched signatures (Figure 1B). The definition and calculation of rich factors are described in STARMethods. Significantly, relative to signatures

harboring defective proviruses, signatures harboring intact proviruses displayed a higher magnitude of enrichment, and the overall
iScience 27, 111222, November 15, 2024 3
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enrichment was more intense in elite controllers than in ART-treated patients irrespective of the chosen sample size (Figure 1B). The same

pattern was observed as the analysis was performed using all input genes without bootstrapping (Figure S1B). It is important to note that

even though 4872 immunologic signatures were enriched using the whole genome (rich factor: median, 1.162; mean, 1.154), rich factors

measured in these four groups showed significance compared to the control, hg38, human genome assembly GRCh38, in Figure S1B, indi-

cating that the immunologic signatures detected in this study were significantly enriched. The overlaps of enriched signatures between

different comparisons were demonstrated in Figure S1C. While an abundant number (n = 773) of signatures were enriched by genes

harboring defective proviruses in ART-treated patients, less than half (n = 239) exceeded the mean of the rich factor calculated using all en-

riched signatures in ART-treated patients (mean: 2.799). Altogether, these findings indicate that enriched signatures were influenced by

different HIV-1 reservoirs (intact versus defective) in ART-treated patients and elite controllers.

Distinct transcriptome patterns of enriched signatures between antiretroviral therapy-treated patients and elite

controllers

The involvement of a gene’s transcriptional status in the interaction between HIV-1 integration and enriched signatures remains unclear. To

tackle this question, we collected transcriptome data from three studies, separated for ART-treated patients13,20 and elite controllers7 and

calculated the mean of Transcript Per Million (tpm) to overlay it with genes retrieved from signatures enriched in four groups, respectively.

We observed inconsistencies in the genes targetedby intact or defective proviruses in ART-treated patients with a wide range of gene expres-

sion profiles (Figure 1C). However, in a few cases, gene expressionwas detectable regardless of the integrity of a provirus genome (Figure 1C).

The same pattern was observed in elite controllers (Figure 1C). It is noteworthy that our observation aligns with the previous finding that host

gene expressionpatterns are distinct amongpopulations of HIV-1 reservoir cells (CD4+ T cells).20We, once again, bootstrapped 20, 30, and 40

genes retrieved from signatures enriched in four groups, respectively, and observed that relative to genes targeted by defective proviruses,

genes harboring intact proviruses demonstrated a higher level of gene expression in both ART-treated patients and elite controllers (Fig-

ure 1D). Compared to ART-treated patients, the overall host gene expression of genes targeted by proviruses was moderate in elite control-

lers (Figures 1C and 1D) although a wide variety of gene expression in genes targeted by intact proviruses in elite controllers was observed

(Figure 1D). The same pattern was observed as the analysis was performed using all input genes without bootstrapping (Figure S1D).

We further conducted a cross-comparison based on the 20 enriched signatures harboring intact proviruses against the entire list of en-

riched signatures harboring defective proviruses in ART-treated patients (Figure 1E) and all enriched signatures in elite controllers (Figure 1E).

Subsequently, we retrieved 43 genes present in nine enriched signatures found only in reservoirs harboring intact proviruses in ART-treated

patients (Figure S1C) and performed a KEGG pathway over-representation analysis (Figure S1E). Nine enriched pathways covering

the immune system, infectious disease: viral, and cancer: overview were revealed (Figure S1E). No pathways were enriched when conducting

the same analysis with 53 genes present in the enriched signatures harboring both intact and defective proviruses. At the signature level, we

observed amoderately positive correlation (R2 = 0.134) between themean of tpm from the genes appearing in enriched signatures harboring

both intact and defective proviruses in ART-treated patients (Figure S1F). In the case of elite controllers, only one enriched signature (signa-

ture description highlighted in red) was shared between the genes targeted by intact and defective proviruses (Figure 1E). We repeated the

KEGG pathway over-representation analysis on genes retrieved from unique signatures enriched in reservoirs harboring either intact (n = 40)

or defective (n = 67) proviruses in elite controllers. We observed that only one pathway, Lysine degradation (hsa00310), was enriched in the

former case and none of the pathways was enriched in the latter case. These findings suggest that host gene expressionmay play a role in the

identification of enriched signatures in reservoirs harboring intact versus defective proviruses in both ART-treated patients and elite

controllers.

Distinct surface markers were associated with enriched signatures in antiretroviral therapy-treated patients and elite

controllers

To further strengthen the concept that enriched signatures are assigned various tasks in the course of HIV-1 infection, we dissected the func-

tionality of the genes in enriched signatures based on the CellMarker 2.0 database.35 A total of 96 (52% of the total input genes in ART-intact),

602 (88.8% of the total input genes in ART-defective), 48 (53.3% of the total input genes in EC-intact), and 73 (72.3% of the total input genes in

EC-defective) unique genes were identified in signatures enriched in the ART-intact, ART-defective, EC-intact, and EC-defective groups,

respectively (Figure 1F). Additionally, 85 (46.2% of the total input genes in ART-intact), 499 (73.6% of the total input genes in ART-defective),

39 (43.3% of the total input genes in EC-intact), 62 (61.4% of the total input genes in EC-defective) unique genes were associated with pheno-

typic cell markers (Figure 1F). We coupled these unique genes with rich factors measured from corresponding enriched signatures and

observed two major clusters separated by the reservoir cells harboring intact versus defective proviruses (Figure 1G). This observation

may imply a distinct preference for cell markers expressed on the reservoir cells harboring either intact or defective proviruses. The cell marker

profiles of reservoir cells between ART-treated patients and elite controllers were less distinguishable regardless of whether the proviruses

were intact or defective proviruses (Figure 1G). We further highlighted cell marker-associated genes unique to each group: ART-intact, 33

genes; ART-defective: 431 genes; EC-intact, 6 genes; EC-defective: 20 genes (Figure 1G). Intriguingly, several genes from the zinc finger

(ZNF) family, as well as those related to immunity, were highlighted (Figure 1G). While plotting the enrichment of rich factors of cell

marker-associated genes unique to each group (Figure 1H), we observed the same pattern shown in Figures 1B and S1B, describing that

genes targeted by intact proviruses displayed a higher magnitude of enrichment, with the overall enrichment beingmore intense in elite con-

trollers than in ART-treated patients.
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Figure 2. Characteristics of the network topology

(A) A clustering heatmap representing degree assortativity coefficients calculated based on individual networks, using Cat 1, Cat 1 and 2, Cat1 and 3, and all

attributes. The color scale illustrates the degree of assortativity.

(B) A clustering heatmap displaying the edge connectivity of all enriched signatures across four groups. The color scale denotes the magnitude of degree

connectivity. The color code annotation beneath the heatmap denotes the networks with an enriched signature.
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Figure 2. Continued

(C) Stacked bar charts represents the proportion of the top 10, 20, and 30 ranked enriched signatures possessing either the highest or lowest edge connectivity in

ART-treated patients (dark blue) versus elite controllers (light blue).

(D and E) Boxplots displaying the enrichment of signatures represented by rich factors (D) and host gene expression (tpm on a logarithmic scale) of the genes

(E) between the top 10, 20, and 30 ranked enriched signatures possessing either the highest or lowest edge connectivity. Facets at the x-axis separate the

networks constructed by Cat 1, Cat 1 and 2, Cat 1 and 3, and all attributes (from left to right); facets at the y axis separate the top 10, 20, and 30 ranked

enriched signatures (from top to bottom).

(F) Tripartite graphs illustrating interactions among enriched signatures across four networks, using Cat 1, Cat 1 and 2, Cat1 and 3, and all attributes. Signatures

marked in dark blue, light blue, dark green, and light green were enriched in reservoirs harboring intact and defective proviruses in ART-treated patients and elite

controllers, respectively. Enriched signatures (vertices in tetrapartite graphs) were linked by edges representing their correlation coefficients.

(G) A heatmap representing nominal assortativity coefficients is calculated based on the tetrapartite graphs shown in panel (F).

(H) A scatterplot representing a correlation between the network density (x-axis) and nominal assortativity coefficients (y axis) based on the tetrapartite graphs

shown in panel (F).

(I and J) A clustering heatmap displaying the appearance of cell types (column) (I) and proinflammatory soluble factors (column) (J) in the top 30 ranked enriched

signatures possessing either the highest or lowest edge connectivity (row). The color scale represents the times of occurrence of cell types (I) or proinflammatory

soluble factors (J) in the description of the top 30 ranked enriched signatures. Statistical significance in panels (D) and (E) was determined using theWilcoxon test

in R with default options; calculations were represented using boxplots, in which themedian (the vertical line in the box) of data distribution and the two whiskers

were marked. Significance levels are denoted as follows: *p 0.05, **p 0.01, ***p 0.001, ****p 0.0001.

See also Figures S2 and S3; Table S5.
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Distinct assortativity of network properties between antiretroviral therapy-treated patients and elite controllers

To explore how host gene expression and whether the spatial genome also influences the topological property comprising enriched signa-

tures in different groups, we characterized the network topology (Figure S2A), representing HIV-1 reservoirs using various combinations of

category attributes related to enriched signatures (Cat 1), host gene expression (Cat 2) and the spatial genome (Cat 3). Of note, for the

ART-defective group, we selected the signatures with the enrichment of rich factor exceeding the mean of the enrichment scale (n = 239).

With the exception of networks constructed using two and three categories of attributes in elite controllers associated with defective provi-

ruses (Figure S2A), the majority of the network architectures were represented as disconnected graphs. This indicates that, depending on the

utilization of attributes, some networks can consist of two or more subsets of enriched signatures with either low or non-correlation (Fig-

ure S2A). Relative to elite controllers, the network architecture was more assortative in ART-treated patients, especially with reservoirs

harboring intact proviruses (Figure 2A). Given such a wide range of the sample size in each group, we bootstrapped 10 enriched signatures

from each group followed by the calculation of the degree of assortativity based on a subnetwork-based graph structured by 10 enriched

signatures (Figure S2B) and observed the same pattern shown in Figure 2A. Intriguingly, the Cat 2 attribute strengthened the topology of

the network, while Cat 3 attributes failed to reinforce the network structure (Figure 2A). This suggests that Cat 1 and 2 attributes were pivotal

in determining the functional property of the network. Consistent with this finding, we observed a higher level of edge connectivity between

two adjacent enriched signatures in ART-treated patients compared to elite controllers (Figures 2B and 2C). A clear separation of two clusters

based on edge connectivity of individual enriched signatures present in the network constructed byCat 1 andCat 1 and 2 attributes versusCat

1 and 3 and all attributes implied that the presence of the spatial gnome attributes may govern the network topology in a way different from

which governed by the attribute of host gene expression (Figure 2B). We listed the vertices possessing the superior edge connectivity on the

right-hand side of Figure 2B.

While comparing the top 10, 20, and 30 ranked signatures possessing either the highest or the lowest connectedness in each network, we

observed that signatures with a lower degree of connectivity were more frequently enriched in the network identified in elite controllers (Fig-

ure 2C), whereas enriched signatures with the highest degree of connectivity happened in the network mainly identified in ART-treated pa-

tients (Figure 2C).While comparing rich factors (Figure 2D) and themean of gene expression (Figure 2E), we observed that relative to enriched

signatures possessing low connectedness, those with high connectedness demonstrated a lower magnitude of enrichment (Figure 2D). This

finding aligns with the previous observations that signatures enriched in ART-treated patients tend to display a lower degree of enrichment

(Figures 1B and S1D). However, no clear propensity of the mean of gene expression between signatures possessing the highest and lowest

connectedness was observed (Figure 2E). Overall, these findings suggest that the network architecture could be more connective in ART-

treated patients than in elite controllers.

We further examined the topological interaction between two adjacent signatures located in different networks based on bipartite graphs.

Initially, we observed a significant number of enriched signatures with a lack of correlation, particularly in the cases involving signatures

harboring intact versus defective proviruses in ART-treated patients (Figure S3A) and signatures harboring defective proviruses in ART-

treated patients versus elite controllers (Figure S3A). This observation is reflected in the larger interquartile range shown in Figure S3B

and is supported by the larger average Euclidean distance (Figure S3C). Finally, we represented tetrapartite graphs illustrating the interaction

of four network architectures (Figure 2F) and, once again, observed that all four networks were more structured and distinguishable, partic-

ularly when Cat 1 as well as Cat 1 and 2 attributes were applied, reflected by the assortativity calculated for each network (Figure 2G).

Additionally, we computed the network density and observed a positive correlation between assortativity and the network density (Fig-

ure 2H), confirming that the topology of the networks computed by Cat 1 attributes and Cat 1 and 2 attributes aremore structural than others.

In summary, these findings suggest that the structural composition of the networks differs from one another and can be influenced by attri-

butes associated with enriched signatures and host gene expression, with the impact of the spatial genome being less influential.
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Figure 3. Classification of networks between ART-treated patients and elite controllers

(A, B, C, and D) The area under the curve (AUC) of logistic regression models, constructed by bootstrapping selected numbers of predictor variables using Cat 1

(A), Cat 1 and 2 (B), Cat 1 and 3 (C), and all attributes (D), calculated to classify the networks associated with intact versus defective proviruses (top panel), networks

in ART-treated patients versus elite controllers (middle panel), and networks associated with intact versus defective proviruses, separated by ART-treated patients

versus elite controllers (bottom panel). The x-axis labels represent the number of bootstrapped predictor variables used to construct models. Each classification

iteration was repeated 1,000 times for statistical significance.

(E) A bar plot represents the ranking of predictor variables’ importance using a random forest classifier.
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Figure 3. Continued

(F) A boxplot illustrats the prediction power for classifying networks harboring intact versus defective proviruses, separated by ART-treated patients versus elite

controllers. The F1 score was calculated based on 1,000 times of individual train-test splits in models. Asterisks indicate the significance determined by two-sided

Wilcoxon rank-sum tests. Calculations from panels (A), (B), (C), (D), and (F) were represented using boxplots, in which the median (the vertical line in the box) of

data distribution and the two whiskers were marked. Significance levels are denoted as follows: *p 0.05, **p 0.01, ***p 0.001, ****p 0.0001.

See also Figure S4 and Table S5.
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Distinct cell types were associated with enriched signatures possessing the highest and the lowest edge connectedness

To elucidate whether enriched signatures that possess different degrees of connectedness were designated distinct functionalities, we

sought the appearance of immune cell types (Figure 2I) and proinflammatory soluble factors (Figure 2J) in the description of ranked top

30 enriched signatures. A clear separation of two major clusters based on the appearance of cell types in signatures with the highest

edge connectivity versus those with the lowest edge connectivity was observed (Figure 2I). In each major cluster, a subcluster was formed

between the networks structured by Cat 1 attributes and Cat 1 and 2 attributes, implying that perhaps the usage of cell types may correlate

with the network topology and a similarity was shared between the networks constructed by Cat 1 and Cat 1 and 2 attributes. In addition, we

observed the prevalence of regulatory and conventional T cells and CD4 thymocytes coupled with the signatures with the highest edge con-

nectivity, whereas the prevalence of CD8 T cells, and B cells coupled with the signatures with the lowest edge connectivity (Figure 2I). The

appearance of peripheral blood mononuclear cells (PBMCs), CD4 T cells, mast cells, macrophages, and dendritic cells (DCs) demonstrated

a minor increase in signatures with the lowest edge connectivity compared to those with the highest edge connectivity (Figure 2I). Notably,

programmed cell death protein 1 (PD-1) was observed in one enriched signature, GSE24026_PD1_LIGATION_VS_CTRL_IN_ACT_T cell_

LINE_DN, with the highest edge connectivity that is present in all networks.

No proinflammatory soluble factors were detected in signatures with the top 30 enriched signatures with the highest edge connectivity

(Figure 2J). Among those with the lowest edge connectivity, we observed that CXCR1, CXCR6, and interferon (IFN)-alpha appear in all

network properties, whereas interleukin (IL)-6 appear in the networks structured by Cat 1 attributes and Cat 1 and 2 attributes and IL-7 appear

in the networks structured by Cat 1 and 3 attributes and all attributes (Figure 2J). CXCR5, IL-4, IFN-beta, and IFN-gamma were only observed

in the network structured by Cat 1 attributes (Figure 2J). Altogether, these findings indicate that the pattern of cell types and proinflammatory

soluble factors in enriched signatures with the highest edge connectivity differ from those with the lowest edge connectivity.
Rich factor held paramount significance for classifying network properties

To identify which attributes among the three categories could better classify different properties, we assessed the area under the curve (AUC)

of receiver operating characteristic (ROC) curves using logistic regression classifiers constructed with randomly selected predictor variables

(Figures 3A–3D). All classifiers effectively distinguished intact versus defective proviruses (Figures 3A–3D, top panels namely ‘‘Provirus’’) and

properties of enriched signatures between ART-treated patients versus elite controllers (Figures 3A–3D middle panels namely ‘‘Patient’’).

AUC values increased as the number of attributes in Cat 1was added (Figures 3A–3D). However, classifierswere less effective in discriminating

when considering the combined scenario of ‘‘Provirus’’ plus ‘‘Patient’’ (Figures 3A–3D, bottom panels namely ‘‘Provirus+Patient’’), especially

when Cat 3 attributes were included. It is important to stress that although all classifiers displayed acceptable prediction power, AUC values

occasionally varied, indicating that each predictor variable possessed different propensities that could influence the network topology. We

also constructed random-forest classifiers and used them to rank the importance of predictor variables (Figure 3E). The rich factor variable

among all Cat 1 attributes, was of paramount importance in underpinning the prediction power of the models (Figure 3E), and using Cat

1 attributes alone was sufficient for accuratemodels (Figure 3F). Although the prediction power of the classifier wasmore adequate to predict

the network in ART-treated patients than elite controllers (Figure S4A), the F1 scores demonstrated the feasibility of our models applied to

both types of patients (Figures S4A and S4B). In addition, we observed that cooperation with host gene expression enhanced the robustness

of classifiers (Figure 3F). Overall, these findings suggest that Cat 1 attributes, especially the rich factor, were crucial for classifying networks

harboring intact versus defective proviruses in ART-treated patients and elite controllers.
Distinct network topology in antiretroviral therapy-treated patients in a longitudinal order versus elite controllers

Given that HIV-1 integration at a genic level is not uniform, whether the genes in functional communities are selectively targeted by HIV-1 and

respond to viral infections over time is also a question of interest. To tackle this question, we applied the same rationale, as described above,

to investigate whether the network topology of enriched signatures changes alongside HIV-1 infections associated with ART, and compare

them to that depicted in elite controllers (Figure S5A). Similar to the topology characterized in Figure S2A, the network architecture in a lon-

gitudinal order was represented as disconnected graphs (Figure S5A). The network in pretreatmentHIV-1-infected individuals strongly resem-

bled a null graph with zero degrees of assortativity (Figures 4A and S5A). We assume that this observation is likely due to the low number of

enriched signatures (n = 8). Although the degree of assortativity varied among HIV-1-infected individuals subjected to short and long periods

of ART and elite controllers when different category attributes were applied, it appeared that Cat 1 attributes were pivotal in offering a better

network topology (Figure 4A). A higher level of degree connectivity was observed in signatures enriched in ART-treated patients than in elite

controllers (Figure 4B) although the connectedness was indistinguishable among ART-treated patients at different stages of ART (Figure 4B).

The coordinates of the enriched signatures and respective statuses of HIV-1 infections are listed in Table S6. We, once again, compared the

top 10, 20, and 30 ranked signatures possessing either the highest or lowest connectedness in each network. The same as the finding
8 iScience 27, 111222, November 15, 2024
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Figure 4. Characteristics of the network topology between ART-treated patients in a longitudinal order and elite controllers

(A) A clustering heatmap representing degree assortativity coefficients based on individual networks, considering various attributes for pretreatment HIV-1-

infected individuals, patients subjected to a short and a long period of ART, and elite controllers.

(B) A clustering heatmap illustrating the edge connectivity of all enriched signatures in networks from HIV-1-infected individuals in a longitudinal order and elite

controllers. The color scale denotes the magnitude of degree connectivity. The color code annotation beneath the heatmap denotes the networks with an

enriched signature.

(C) Stacked bar charts represent the proportion of the top 10, 20, and 30 ranked enriched signatures possessing either the highest or lowest edge connectivity in

ART-treated patients (dark blue) versus elite controllers (light blue).

(D and E) Boxplots displaying the enrichment of signatures represented by rich factors (D) or host gene expression (tpm on a logarithmic scale) of the genes

(E) between the top 10, 20, and 30 ranked enriched signatures possessing either the highest or lowest edge connectivity. Facets at the x-axis separate the

networks constructed by Cat 1, Cat 1 and 2, Cat 1 and 3, and all attributes (from left to right); facets at the y axis separate the top 10, 20, and 30 ranked

enriched signatures (from top to bottom).

(F) The tetrapartite graphs illustrate the interactions among enriched signatures across four networks using different attribute combinations. Signaturesmarked in

violet, maroon, green, and deep pink were enriched in reservoirs from pretreatment HIV-1-infected individuals, patients subjected to a short and a long period of

ART, and elite controllers, respectively.

(G) A heatmap representing the degree assortativity coefficient based on tripartite graphs is shown in panel (F).

(H) A scatterplot representing a correlation between the network density (x-axis) and nominal assortativity coefficients (y axis) based on the tetrapartite graph

shown in panel (F).

(I) A bar plot ranking the importance of predictor variables using a random forest classifier.

(J) A boxplot representing the prediction power for classifying networks in HIV-1-infected individuals in a longitudinal order and in elite controllers. The F1 score

was calculated based on 1,000 times of individual train-test splits in models.
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Figure 4. Continued

(K) Schematic illustration of the Pearson distance of correlation between graph networks depicted in two distinct graph networks. Colors marked in circles

represent the status of HIV-1 infections and elite controllers: violet, pretreatment HIV-1-infected individuals; marron, patients subjected to a short of ART; green,

patients subjected to a long of ART; deep pink, elite controllers.

(L, M, N, and O) Correlograms (left panel) represent the correlation between graph networks depicted in two graph networks. Squares alongside the diagonal in

the correlogram represent the status of HIV-1 infections and elite controllers, as the same color code indicated in panel (K). The color scale represents the

distance of correlation, which was also indicated below the diagonal in each correlogram. Network plots (right panel) summarizing the correlation between

two graph networks. Networks constructed by different attribute combinations were shown in the panels (L), (M), (N), and (O), respectively. Statistical

significance in panels (D), (E), and (J) was determined using the Wilcoxon test in R with default options; calculations were represented using boxplots, in

which the median (the vertical line in the box) of data distribution and the two whiskers were marked. Significance levels are denoted as follows: *p 0.05,

**p 0.01, ***p 0.001, ****p 0.0001.

See also Figure S5 and Table S6.
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presented in Figure 2C, signatures enriched in elite controllers can only be found in those with the lowest edge connectivity (Figure 4C). The

patterns of rich factor and the mean of gene expression were also consistent with the previous observations (Figures 2D and 2E): the signa-

tures with a lower degree of connectivity demonstrated a higher magnitude of enrichment (Figure 4D); however, no clear propensity of the

mean of gene expression between signatures possessing highest and lowest connectedness was observed (Figure 4E).

We further illustrated tetrapartite graphs depicting the interaction among three networks in a longitudinal order and the network in elite

controllers (Figure 4F). Once again, we observed that Cat 1 attributes were sufficient to sustain its topology (Figures 4F and 4G). A positive

correlation was observed between assortativity and the network density in networks structured by Cat 1 attributes and Cat 1 and 2 attributes;

however, the correlation between these two measures in networks structured by Cat 1 and 3 attributes and all attributes faltered (Figure 4H).

Subsequently, we computed the importance of each variable and found, once again, that the rich factor variable was of paramount impor-

tance for ensuring robust prediction power, followed by the host gene expression variable (Figure 4I). Of note, the host gene expression var-

iable played an important role in distinguishing the networks between ART-treated patients and elite controllers (Figures 4J and S5B) and

exhibited moderate effectiveness in classifying dynamic networks between ART-treated patients at different stages of treatment and elite

controllers (Figures 4J and S5C). Overall, these findings suggest that the network architecture could be more connective in ART-treated pa-

tients than in elite controllers.
An intrinsic barrier lay between the networks of antiretroviral therapy-treated patients in a longitudinal order versus elite

controllers

Our current observations that the enriched signatures in elite controllers possess distinguishable connectedness from those in ART-treated

patients led us to hypothesize that the evolution of the graph network between elite controllers and non-elite controllers differs. To test this

hypothesis, we further computed the Pearson distance between the graph networks from reservoirs in pretreatment HIV-1-infected individ-

uals, patients subjected to short and long periods of ART and elite controllers (Figure 4K) and observed that the graph network between pa-

tients subjected to a long period of ART and elite controllers demonstrated the farthest graph distance, whereas the shortest graph distance

was measured between pretreatment HIV-1-infected individuals and patients subjected to a short period of ART irrespective to category at-

tributes used to construct the networks (Figures 4L–4O). This finding suggests that a lack in the graph isomorphism of the networks between

ART-treated patients in a longitudinal order and elite controllers.

Previous studies have reported that the host genetic background of elite controllers possesses unique polymorphism and plays a pivotal

role in determining the mechanism of elite control.36–38 Based on this concept, we assume that the network topology in non-elite controllers

should resemble that in themselves rather than that in elite controllers due to the intrinsic difference in their genetic background. To test this

assumption, we tested four scenarios under Markov assumption, representing the evolution of the networks in HIV-1 reservoirs at different

statuses of HIV-1 infections (Figure 5A). The difference across each scenario is highlighted in the status between patients subjected to a

long period of ART and elite controllers (Figure 5A): (1) scenario I: no transition in the graph networks between these two statuses, (2) scenario

II: a unidirectional trajectory is manifested from the status of elite controllers to the status of patients subjected to a long period of ART, (3)

scenario III: a unidirectional trajectory is manifested from the status of patients subjected to a long period of ART to the status of elite con-

trollers and (4) scenario IV: transition in the graph networks between these two statuses exist.

We applied MCMCmodeling39 and stimulated 10,000 randomwalks up to 10 steps in definite networks based on the Pearson correlation

between two adjacent signatures illustrated in Figure 4F, as the example result shown in Figure 5B. The probability recorded by randomwalks

simulated in definite networks was compared with those measured by random walks simulated in 100 networks constructed using labeling

mismatches between vertices and statuses of HIV-1-infected individuals (here referred to as mislabeling networks). We forced random walks

that initiate from a signature in the graph network from pretreatment HIV-1-infected individuals and recorded the probability that a path of

random walks ends at any signature in the graph network from elite controllers. Based on our simulation results we only observed the desti-

nation of random walks that ceased in the status of either elite controllers or patients subjected to a long period of ART. The probability re-

corded between definite andmislabeling networks was summarized in Figure 5C, separated by different scenarios coupled with the networks

constructed by different category attributes. We observed a decrease in the probability in definite networks compared with mislabeling net-

works in scenarios III and IV, whereas a slight increase in the probability in scenarios I and II (Figures 5B–5D). We assumed that an extremely

low probability measured in scenario II was due to our observation that the majority of randomwalks cease at the status of patients subjected
10 iScience 27, 111222, November 15, 2024



A

ART (long)ART (short)ART (pretreat) EC

Scenario I Scenario II

Scenario III Scenario VI

B
100

80
60

40
20

0

C
ou

nt

100806040200
Prob(   )

Markov
assumption

Labeling
mismatch (%) Definite (%)

0.0

12.2

75.1

50.1

14.2

0.2

47.8

20.6

Scenario I

Scenario II

Scenario III

Scenario VI

Prob(    )

C

Scenario I

Scenario II

Scenario III

Scenario VI

Scenario I

Scenario II

Scenario III

Scenario VI

5005050050

Prob(   )
DefiniteLabeling

mismatch Definite

50.1

75.1

0

12.2 14.2

0.2

47.8

20.6 53.6

81.7

0.2

13 16.8

0.5

48.2

22.7

52

80

0

12.5 18.6

0.4

48.6

23.9 55.2

83.8

0

13.2 17.5

0.4

51.3

26.2

D

Scenario I

Scenario II

Scenario III

Scenario VI 62.1

74.4

0

12.6 11.9

1.1

46.2

37.4

50050

Definite

252575

Prob(   )

Scenario I Scenario II

Scenario III Scenario VI

Labeling
mismatch

Labeling
mismatch

Figure 5. MCMC modeling the dynamics of the networks alongside HIV-1 infections in ART-treated patients and in elite controllers

(A) Schematic representation of Markov assumption that consists of four scenarios. Details were described in themain text. Colors marked in circles represent the

status of HIV-1 infections and elite controllers: violet, pretreatment HIV-1-infected individuals; marron, patients subjected to a short of ART; green, patients

subjected to a long of ART; deep pink, elite controllers.

(B) Histogram (upper panel) representing the probability (x-axis) that random walks simulated in definite networks (solid lines) versus mislabeling networks

(symmetric distributions). The probability was recorded from random walks that cease at any signature in the network of elite controllers. The color code

represents four scenarios: Red, scenario I; Black, scenario II; Green, scenario III; Yellow, scenario IV. The probability recorded from random walks simulated in

networks constructed by Cat 1 attributes was demonstrated in the table beneath the histogram.

(C) Bar charts summarizing the probability (x-axis) recorded in definite (the bars on the right) and mislabeling networks (the bars on the left). The y axis

demonstrates four scenarios. Facets separate the networks constructed by different attribute combinations.

(D) Bar charts demonstrating the probability (x-axis) recorded in definite (the bars on the right) or mislabeling networks (the bars on the left) constructed by Cat 1

attributes. The simulation of randomwalks was forced to initiate from the status of patients subjected to a short period of ART, as illustrated on the right-hand side

of the bar chart.
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to a long period of ART. A similar pattern was observed as we forced randomwalks to be initiated frompatients subjected to a short period of

ART, except the undistinguishable probabilities were observed in scenario I (Figure 5D). These findings suggest that the transition in the

graph network between elite controllers and non-elite controllers should be rare in the real world (scenario I). In addition, a low likelihood

in scenarios III and IV occurs in the real world; the probability that the graph network evolves from elite controllers into the status of patients

subjected to a long period of ART is however feasible (scenario II).

DISCUSSION

While HIV-1 latency has been the subject of extensive research for many years, our current understanding remains limited in visualizing

the precise location of HIV-1 reservoirs. In this work, we proactively employed graph-theoretical tools to define the topological network

formed by immunologic signatures enriched in ART-treated patients and elite controllers, separated by intact and defective proviruses.

Intriguingly, despite observing a substantial number of enriched signatures in reservoirs harboring defective proviruses in ART-treated

patients (n = 773), 30.9% (n = 239) and 0.91% (n = 7) of the signatures with the enrichment of rich factor exceeded the mean (2.799) and

the median (2.621) of the enrichment scale. Although it is at present not clear whether these signatures possessing minor enrichment

either confer biological importance or represent temporary background noise, this observation may suggest that reservoir cells
iScience 27, 111222, November 15, 2024 11
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harboring defective proviruses should not be excluded while attempting to gain better insight into a comprehensive understanding of

the HIV-1 reservoirs.

Indeed, themajority of proviral sequences detected, greater than 90%, are defective1–3 and their roles remain elusive. Longitudinal studies

have demonstrated that defective proviruses are subjected to different levels of immunological targeting and immune-mediated selection

depending on their transcriptional and translation competence,9,40,41 whereas proviruses that retain the ability to transcribe HIV-1 RNAs

and translate viral proteins are considered to be preferentially cleared during sustained immunological pressure.13 Notably, recent studies

have identified a subset of spontaneously active reservoirs dominated by defective proviruses.5 Such spontaneously active reservoirs that

differ from those harboring intact proviruses could maintain and shape anti-HIV CD4+ and CD8+ T cell response during ART,5 underlying

the biological importance of defective proviruses in HIV-specific immunity manifested by CD4+ and CD8+ T cells in the control of HIV-1

infections.4,5,32,40,42,43 Given that persistent defective proviruses can be detected within the first few weeks following infection,2,41 questions,

such as how ART may influence the repertoire of defective HIV proviruses and the central mechanisms used by defective proviruses against

anti-HIV immune response will urgently need to be addressed.

In this study, we observed a distinct pattern of immune cell types between enriched immunologic signatures with the highest and the

lowest edge connectivity (Figure 2I). A higher frequency of regulatory T cells (Tregs), conventional T cells, CD4+ thymocytes is associated

with enriched signatures with the highest edge connectivity, whereas CD8+ T cells and B cells are coupled with those with the lowest

edge connectivity. Although the relationship between the connectedness of enriched signatures and their functions remains unclear, the im-

mune cells that appear here have been known to play key roles in response to HIV-1 infection and could thus be targeted for therapeutic

strategies. HIV-1 infection is associated with progressive CD4+ lymphopenia and defective HIV-1-specific CD8+ responses that fail to elimi-

nate HIV-1-infected cells. Enhancing the function or frequency of CD8+ T cells could improve the body’s ability to eliminate HIV-infected cells.

Conversely, targeting Tregs, a subset of CD4+ T cells, to prevent their expansion could be beneficial, as their expansion results in immune

dysfunction, tissue fibrosis, and disease progression.44,45 CD8+ T cell responses are also crucial for controlling viral replication, as seen in elite

controllers, who mount a higher frequency CD8+ T cell responses.46–49 Additionally, broadly neutralizing monoclonal antibodies (bnAbs) are

one of the antiretroviral strategies for HIV-1 prevention and were previously cloned from HIV-1-specific memory B cells isolated from HIV-1-

infected individuals. Targeting these cells to enhance their function in patients could be a promising strategy for long-term defense. Intrigu-

ingly, Pensieroso et al. demonstrated that elite controllers have significantly lower percentages of naive and higher percentages of activated

memory B cells, respectively, compared with non-HIV-1-infected individuals and a significantly higher frequency of resting memory B cells

compared with patients subjected to ART.50

We also observed several critical surface markers, including the checkpoint marker programmed death-1, which has been previously

shown to be involved in persistent HIV-1 transcription in reservoir cells.17,51–53 Additionally, interleukin and receptor proteins, along

with ZNF genes, which are associated with repressive chromatin marks in CD4+ memory T cells and support long-term persistence

of HIV-1 integrated proviruses6,7,31 were also present in enriched immunologic signatures. Altogether, these findings suggest a linkage

between the task-evoked functional genome network and HIV-1 reservoirs. Here whether such markers are expressed on the surface or

inside of cells was not specified; a further understanding of the profound mechanisms designating functions to these immunologic sig-

natures could pave the way for a comprehensive understanding of the interplay between the host functional genome and HIV-1

reservoirs.

Graph-theoretical and network-based analyses, such as protein-protein,54,55 genetic,56 and gene regulatory57,58 interactions have been

widely applied tomine biological functions behind data. In HIV-1 research, such analyses have also been subjected to characterize the pattern

of HIV-1 transmission.59 In this study, we implemented the basic concept of graph theory and used graph-theoretical tools to depict the

network topology of HIV-1 reservoirs based on correlation coefficients between two adjacent enriched immunologic signatures coupled

with other attributes, including the transcriptome, and the spatial genome. We observed that Cat 1 attributes could be deemed as pillars

supporting the property’s topology. The rich factor variable within Cat 1 alone already demonstrated sustained predictive strength. However,

we also observed that relative to ART-treated patients, models applied to elite controllers faltered (Figure S4A), suggesting that, in elite con-

trollers, either the sample size was small or additional factors governing such HIV-1 reservoirs have not yet been identified. Although the

contribution of Cat 3 attributes was not emphasized in this work, a more detailed examination of the influence of different hierarchical 3D

genome organizations on the property’s topology will be required. It is important to stress that, depending on the utilization of attributes,

some networks are either disconnected graphs or subsets of enriched signatures with either low or non-correlation (Figures S2A and S5A).

A further investigation into understanding what is the central mechanism that different category attributes govern the network topology

andwhether such isolated enriched signatures possess additional biological functions will broaden our lens to view their core-periphery struc-

ture coupled with their biological tasks. Nevertheless, in contrast to elite controllers, the characteristics of the network architecture in ART-

treated patients include (1) a less intensemagnitude of enrichment of signatures, (2) a high degree of assortativity, and (3) high connectedness

between two adjacent vertices (Figure 6). This signifies that the network topology was more connective and structural in ART-treated patients

(Figure 6).

The limit of graph spectra is that they fail to provide a direct read-world interpretation of network architecture,60 as one of the critical

tasks is how to define a measure of the distance between graphs.61 To compensate for such restraint, in this work, we further calculated the

Pearson distance to signify the difference between two graph networks (Figures 4K–4O). The measures demonstrated that graph networks

between elite controllers and ART-treated patients were less isomorphic. This observation was further verified using the MCMC

modeling39 analysis in order to simulate the evolution of the graph network (Figure 5). Markov chain modeling analysis has been previously
12 iScience 27, 111222, November 15, 2024
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Figure 6. Proposed model of distinct network topologies between ART-treated patients and elite controllers

We hypothesize that an intrinsic barrier of the network topology that represents HIV-1 reservoirs lies between non-elite controllers (represented by ART-treated

patients in this study) and elite controllers (details in themain text). In comparison to elite controllers, the network structured by enriched immunologic signatures

in ART-treated patients is moderately enriched and exhibits a higher level of connectedness, resulting in a more assortative topology. This assortative structure is

particularly in reservoirs harboring intact proviruses in ART-treated patients.
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applied to studying HIV, including HIV/acquired immunodeficiency syndrome (HIV/AIDS) disease progression,62,63 immunological and viro-

logical states in HIV-1 infected patients,64 tracking the movement of the virus from one generation to another in a period of 20 years,65 and

the heritability of the HIV-1 reservoir size and decay under long-term suppressive ART.66 Either discrete-time62 or continuous-time63–66

Markov models embedded with multiple stages defined by virological, immunological, and clinical parameters were applied to these

studies. The major difference between our study and others is that, in this work, the Markov chain model was constructed based on graph

networks structured by immunologic signatures enriched in ART-treated patients in a longitudinal order and elite controllers; the edge

represents the Pearson correlation coefficient between two adjacent enriched signatures (vertices). Random walks were then manifested

on this directed weighted graph with assigned directions across graph networks. Despite grappling with the challenges of a limited num-

ber of integration sites retrieved from longitudinal clinical samples and elite controllers, we extrapolated our findings by simulating

random walks in graph networks (Figure 5).

Simulation results in scenario I suggest that in the real world, the transition in HIV-1 reservoirs between elite controllers and non-elite con-

trollers should be rare and perhaps the destination of network evolution has to be determined either at the early stage of HIV-1 infections or

even earlier than individuals are infected. This proposition also resonates with the current understanding that the most possible mechanisms

of elite control should be governed by the host genetic background.36–38 Simulation results in scenario II somehow reflect the clinical obser-

vation that elite controllers may experience occasional viral load ‘‘blips’’ above the level of detectability by conventional assays.67–69 This

observation highlights one arising question in elite controllers: is there any viral replication of the proviruses that are considered to be in
iScience 27, 111222, November 15, 2024 13
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the state of deep latency occurring in elite controllers? Studies indicate that an inherent difference is present between viruses in the plasma

and viruses in resting CD4+ T cells in this subject.36,47,68–71 At least one escapemutation is unveiled in the HIV-1 Gag in viruses detected in the

plasma in elite controllers possessing HLA-B*5772 rather than the proviruses in CD4+ T cells.73 Although the mechanism that governs such a

discordance remains unclear, these results show that the probability of possible viral replication in elite controllers should not be completely

negligible. Simulation results in scenarios III and IV imply that the transition in graph networks from non-elite controllers to elite controllers is

less feasible in the real world. This led us to postulate the existence of an intrinsic property barrier between these two groups of HIV-1-infected

individuals and the ramifications of such an intrinsic influence are profound and lasting. The subsequent step involves verifying the simulation

results using in vitro experiments and additional clinical datasets of HIV-1 integration as well as discerning the biological functions of individ-

ual enriched signatures in a network, with the emphasis placed on subsets of graphlets and isolated vertices. Overall, this work represents an

inaugural step in utilizing genomic approaches with graph-theoretical tools to enhance our understanding of the composition of HIV-1

reservoirs.
Limitation of the study

The major limit in this work is due to the scarcity of HIV-1 integration sites retrieved from longitudinal clinical samples of HIV-1-infected

individuals and elite controllers and the imbalance numbers of integration sites between intact and defective proviruses, perhaps

encountering an issue of a statistical flaw. It is however a part of the nature of HIV-1: a number of defective proviruses dominate intact

ones.1–3 The aftermath of a discrepancy in the sample size was rescued using the bootstrapping method while presenting the magni-

tude of enrichment as represented by rich factors in enriched signatures (Figure 1B) and the expression of the genes in enriched sig-

natures (Figure 1D). Such imbalance was noticed in graph networks that possess disproportionate vertices. In the follow-up investiga-

tion, graphlet (small induced subgraphs of a large network)-based methods61,74,75 should be implemented for further characterization of

the network topology.

Finally, given that a scarcity of the data that consist of HIV-1 integration and corresponding host transcriptomics in parallel is presently

available, in this study, we utilized RNA-seq data that was performed using cells isolated from ART-treated patients13,20 and elite controllers,7

respectively, to overlay genes that appear in enriched signatures. At this stage, we cannot verify whether these chosen RNA-seq datasets can

fairly represent gene expression of HIV-1-targeted genes retrieved in all selected studies. In addition, a variety of individual gene expression

of the genes present in the same enriched signatures was not taken into account in this work.
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package=Hmisc).

� Python 3.11.6 with pandas 2.3.1 was used to construct random forest-based classifiers (https://pandas.pydata.org/docs/).
� Python scikit-learn 1.3.2 package was used to construct random forest-based classifiers (Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR

12, pp. 2825–2830, 201).
� Any additional information required to reanalyze the data reported in this article is available from the lead contact upon request. This article reports the

original code.
ACKNOWLEDGMENTS

HCC acknowledges funding from the National Science Centre, Poland (Sonata Bis Grant UMO-2022/46/E/NZ6/00022). AKP acknowledges funding from the Na-
tional Science Centre, Poland (OPUSGrant UMO-2022/45/B/NZ3/03890). MWacknowledges funding from theNational Science Centre, Poland (Sonata BisGrant
UMO-2022/46/E/NZ6/00131).
14 iScience 27, 111222, November 15, 2024

mailto:heng-chang.chen@port.lukasiewicz.gov.pl
mailto:heng-chang.chen@port.lukasiewicz.gov.pl
http://bio-bigdata.hrbmu.edu.cn/CellMarker
http://117.50.127.228/CellMarker/
https://github.com/HCAngelC/Network_structure_of_HIV_IS
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://pandas.pydata.org/docs/


ll
OPEN ACCESS

iScience
Article
AUTHOR CONTRIBUTIONS

Conceptualization, H.-C.C.; methodology, H.-C.C., and J.W.; software, H.-C.C., and J.W.; formal analysis, H.-C.C., and J.W.; investigation, H.-C.C., J.W.,
A.K.-P., K.W., and H.A.; resources, H.-C.C.; data curation, H.-C.C., and J.W.; writing of original draft article, H.-C.C., M.W., J.W., and K.W.; writing, article
review and editing, H.-C.C., M.W., A.K.-P., and J.W.; visualization, H.-C.C., and J.W.; supervision, H.-C.C.; project administration, H.-C.C.; funding acquisi-
tion, H.-C.C.

DECLARATION OF INTERESTS

The authors declare no conflict of interest.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE
d METHOD DETAILS
B Concept of the task-evoked functional genome property of HIV-1 reservoirs and its dynamic evolution
B Acquisition and proceeding with public datasets
B MSigDb over-representation analysis
B Assignment of predictor variables in category 1 (Cat 1), category 2 (Cat 2), and category 3 (Cat 3) attributes
B Measurement of correlation coefficients of enriched immunologic signatures
B Visualization of the network architecture
B Measurement of edge connectivity of enriched immunologic signatures

d MEASUREMENT OF DEGREE AND NOMINAL ASSORTATIVITY COEFFICIENT AND EUCLIDEAN DISTANCE OF THE NETWORK ARCHITECTURE
d MEASUREMENT OF THE NETWORK DENSITY
d CLUSTERING HEATMAP
d CLASSIFICATION OF THE NETWORKS
d MEASUREMENT OF THE DISTANCE BETWEEN NETWORKS
d MARKOV CHAIN MONTE CARLO MODELING ANALYSIS
d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistics

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.111222.

Received: August 5, 2024

Revised: October 7, 2024

Accepted: October 18, 2024

Published: October 21, 2024
REFERENCES

1. Ho, Y.-C., Shan, L., Hosmane, N.N., Wang, J.,

Laskey, S.B., Rosenbloom, D.I.S., Lai, J.,
Blankson, J.N., Siliciano, J.D., and Siliciano,
R.F. (2013). Replication-competent
noninduced proviruses in the latent reservoir
increase barrier to HIV-1 cure. Cell 155,
540–551. https://doi.org/10.1016/j.cell.2013.
09.020.

2. Bruner, K.M., Murray, A.J., Pollack, R.A.,
Soliman, M.G., Laskey, S.B., Capoferri, A.A.,
Lai, J., Strain, M.C., Lada, S.M., Hoh, R., et al.
(2016). Defective proviruses rapidly
accumulate during acute HIV-1 infection. Nat.
Med. 22, 1043–1049. https://doi.org/10.1038/
nm.4156.

3. Hiener, B., Horsburgh, B.A., Eden, J.-S.,
Barton, K., Schlub, T.E., Lee, E., von
Stockenstrom, S., Odevall, L., Milush, J.M.,
Liegler, T., et al. (2017). Identification of
Genetically Intact HIV-1 Proviruses in Specific
CD4 T Cells from Effectively Treated
Participants. Cell Rep. 21, 813–822. https://
doi.org/10.1016/j.celrep.2017.09.081.

4. Imamichi, H., Smith, M., Adelsberger, J.W.,
Izumi, T., Scrimieri, F., Sherman, B.T., Rehm,
C.A., Imamichi, T., Pau, A., Catalfamo, M.,
et al. (2020). Defective HIV-1 proviruses
produce viral proteins. Proc. Natl. Acad. Sci.
USA 117, 3704–3710. https://doi.org/10.
1073/pnas.1917876117.
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Concept of the task-evoked functional genome property of HIV-1 reservoirs and its dynamic evolution

Our working hypothesis has been based on our previous findings that the HIV-1-targeted genes that share similar biological functions form

different communities, so-called ‘‘immunologic signatures’’27,28; HIV-1 integration frequency within different signatures might be used as a

proxy to define specific immune cell types and proinflammatory soluble factors alongside HIV-1 infections associated with ART.27,28 To

this extent, in this study, we hypothesize that different immunologic signatures may possess various ranges of connectedness, thereby struc-

turing a task-evoked property of a network, representing HIV-1 reservoirs (Figure 6).

We plot the ‘‘simple graph’’ to represent each network of HIV-1 reservoirs. Based on the definition of graph theory, a simple graph G is

defined by G = ðV ;EÞ, where V is a finite set of vertices, representing enriched signatures, and E is a finite set of edges, representing cor-

relation coefficients between two adjacent vertices. A detailed definition that we refer to Grinberg (2023)86 with modifications is described as

follows:

Let G = ðV ;EÞ be a simple graph.

(a) The set V is called the vertex set ofG; it is denoted by VðGÞ. One element of V represents one enriched immunologic signature; the set

V represents all enriched immunologic signatures identified within a simple graph G, representing a network of HIV-1 reservoirs. En-

riched immunologic signatures result from theMSigDb over-representation analysis83–85 detailed in the following section using HIV-1-

targeted genes.

(b) The set E is called the edge set ofG; it is denoted by EðGÞ. One element of E stands for the correlation coefficient between two adja-

cent vertices, referred to the definition (c), within a simple graph G. Each simple graph G satisfies G = ðVðGÞ;EðGÞÞ. Correlation co-

efficients are computed using the R package ‘‘Hmisc’’ (https://CRAN.R-project.org/package=Hmisc) detailed in the following section

based on the Pearson correlation.

In the case of bipartite and tetrapartite graphs, the set E covers correlation coefficients between all possible pairs of two adjacent vertices

irrespective of the four groups, ART-intact, ART-defective, EC-intact, EC-defective, assigned in this study.

(c) When i and j are two elements of V , we mark ij for fi;jg; each edge ofG thus has the form ij for two distinct elements i and j of V . Two

vertices i and j ofG are said to be adjacent if ij˛E. In this case, the edge ij is said to bridge i with j, and the vertices i and j are so-called

the endpoints of this edge. In this study, only edges calculated between two adjacent vertices are taken into account to compare the

structure of networks.

(d) Let j be a vertex ofG (that is, j˛V ). The neighbors of j are the vertex i ofG that satisfy ij˛E. In other words, the neighbors of j are the

vertices of G that are adjacent to j.

Acquisition and proceeding with public datasets

A thorough literature search was conducted on PubMed, using the keywords (((intact) OR (intact provirus) OR (intact proviruses)) AND ((HIV)

OR (HIV-1))), accessed on March 27, 2023, as previously described in Więcek and Chen (2023).28 Research articles were selected from the first
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1,000 cited papers in PubMed between 2005 toMarch 2023. For this study, we analyzed eight8,13,16,29–33 studies related to HIV-1 integration in

ART-treated patients and two7,19 studies related to elite controllers (Figure S1A). Host genes targeted by HIV-1 integration, as reported by

Jiang et al. (2020),7 were previously analyzed and documented in Chen (2023).27 Transcriptome sequencing data for ART-treated patients

were retrieved from Einkauf et al. (2022)13 (GEO: GSE144334, RNA-seq performed with ART-treated patients’ samples) and Clark et al.

(2023).20 Transcriptome sequencing data for elite controllers were retrieved from Jiang et al. (2020)7 (GEO: GSE144332, RNA-seq performed

with elite controllers’ samples). ATAC-seq (GEO:GSE144329) andHiC datasets (GEO:GSE168337) were retrieved from Jiang et al. (2020)7 and

Einkauf et al. (2022),13 respectively. The total number of provirus-targeted genes retrieved from selected studies is presented in Figure S1A

and the precise source location where data have been downloaded is provided in Deposited data in the key resources table.

MSigDb over-representation analysis

A total of 958 provirus-targeted host genes (200 genes harboring intact versus 758 genes harboring defective proviruses) and 275 provirus-

targeted host genes (111 genes harboring intact versus 164 genes harboring defective proviruses) were collected respectively from HIV-1-

infected individuals subjected to ART (eight studies)8,13,16,29–33 and elite controllers.7,19 After removing the duplicate genes, the R package

clusterProfiler (Version 4.4.1)34,76 was used to compute enriched immunologic signatures with the function enricher() and default options.

Over-representation analysis87 was performed using C7 immunologic signature gene sets from the Molecular Signatures Database

(MSigDb)83–85 as the background. Enriched signatureswithp-values (adjusted by the Benjamini-Hochbergmethod) below 0.05 were selected.

Rich factors of immunologic signatures enriched in each group and in a random control labeled ‘‘hg38’’ (Figure S1B) were calculated by

dividing GeneRatio by BgRatio with the command lines described below.27,34
>MsigDb_output_file$GeneRatio<- as.numeric(gsub(‘‘(\\d+)/(\\d+)’’, ‘‘\\1’’,MsigDb_output_file$GeneRatio, perl = T))/as.numeric(gsub(‘‘(\\d+)/(\\d+)’’, ‘‘\\2’’,

MsigDb_output_file$GeneRatio, perl = T))

# Convert GeneRatio to numerical variables.

>MsigDb_output_file$BgRatio <- as.numeric(gsub(‘‘(\\d+)/(\\d+)’’, ‘‘\\1’’, MsigDb_output_file$BgRatio, perl = T))/as.numeric(gsub(‘‘(\\d+)/(\\d+)’’, ‘‘\\2’’,

MsigDb_output_file$BgRatio, perl = T))

# Convert BgRatio to numerical variables.

>MsigDb_output_file <- MsigDb_output_file %>% dplyrmutate(rich_factor = GeneRatio/BgRatio)

# Calculate rich factors.
In Figure S1B, ‘‘hg38’’ denotes the rich factor calculated using all protein-coding genes (rich factor: median, 1.162; mean, 1.154).

Weight was demonstrated by dividing the number of the transcribed genes per enriched signature by the total number of the transcribed

genes retrieved from enriched signatures but not present in counterparts, such as genes targeted by intact proviruses rather than defective

ones in either ART-treated patients or elite controllers. The outputs of over-representation analysis for genes harboring intact and defective

proviruses in ART-treated patients and elite controllers are presented in this study and can be found in Tables S1, S2, S3, and S4. Outputs

related to longitudinal HIV-1 integration were downloaded from Chen (2023).27
Assignment of predictor variables in category 1 (Cat 1), category 2 (Cat 2), and category 3 (Cat 3) attributes

We utilized all enriched immunologic signatures from ART-intact (n = 20), EC-intact (n = 14), EC-defective (n = 36), and selected the enriched

signatures in ART-defective with rich factors over the mean (2.799) of the enrichment scale (n = 239) as the input signatures (n = 309) to illus-

trate topological properties of the network. Nine attributes: (1) rich factor, (2) weight, (3) involvement of CD4 T cells, (4) involvement of CD8

T cells, (5) involvement of B cells, (6) involvement of myeloid cells, (7) involvement of other cell types, (8) involvement of proinflammatory fac-

tors and (9) immune response labeled in immunologic signatures were used in Cat 1 attributes. Attributes (3) to (7) were constructed based on

the presence of the indicated cell type in the signature description, with a character ‘‘1’’ denoting its presence, and a character ‘‘0’’ indicating

its absence. A character ‘‘1’’ was denoted if the proinflammatory factor was present in the signature description; otherwise, a character ‘‘0’’ was

given. For immune response, a character ‘‘0’’ indicated no description in the signature description, a character ‘‘1’’ indicated down-regulation,

and a character ‘‘2’’ indicated up-regulation. Attributes (1) and (2) were numeric attributes. Cat 2 attribute referred to as Transcript Per Million

(tpm), calculated by dividing RNA sequencing raw reads7,13,20 by the length of a gene in kilobases (reads per kilobase, RPK), followed by

dividing by the sum of all RPK values divided by 1,000,000. Cat 3 attributes included data fromATAC-seq and intrachromosomeHiC followed

by high-throughput sequencing. The HiC outputs (GSM5136368, GSM5136369, and HiC_GSM5136370)13 with 10-kilobase resolution were

combined and overlaid on genes retrieved from enriched signatures in order to determine their topological distribution using the command

intersectwith default options in bedtools.88 The same pool of the gene was also overlaid on the ATAC-seq readout analyzed by Einkauf et al.

(2022)13 to identify genes within ATAC-seq coverage regions. A comprehensive list of all attributes associated with enriched signatures

harboring intact and defective proviruses in ART-treated patients and elite controllers, as well as enriched signatures obtained from longi-

tudinal HIV-1 integrations, is provided in Tables S5 and S6, respectively.
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Measurement of correlation coefficients of enriched immunologic signatures

The R package ‘‘Hmisc’’ (https://CRAN.R-project.org/package=Hmisc) was employed to calculate correlation coefficients between enriched

signatures using the function rocrr(). Subsequently, correlation matrices were transformed into data frames containing four columns. The first

two columns served as ID columns, designating two adjacent enriched signatures irrespective of the direction. The remaining columns

included the correlation coefficient and the associated p-value. To filter out weak or spurious connections, correlation coefficients with a

p-value >0.05 are excluded. Tables S5 and S6 provide the correspondence between ID numbers and the associated enriched signatures.
Visualization of the network architecture

Simple graph for individual network

We utilized the previously mentioned correlation matrix as the edge list to depict simple graphs. In this list, the correlation coefficients rep-

resenting the edge were calculated between two adjacent vertices that represent enriched signatures. The node list consisted of a series

ID for all enriched signatures, information about the integrity of a proviral genome, and the classification of HIV-1-infected individuals

(ART-treated patients versus elite controllers). It is important to note that we generated separate node lists for each property. The network

structure was then established using the function graph_from_data_frame() from the R package ‘‘igraph’’ (https://igraph.org)77 with the

following arguments: d for the edge list, vertices for the node list, and directed = FALSE to account for undirected edges in the network.

Bipartite graph for two-networks interaction

We selected two adjacent signatures enriched in distinct topological properties to illustrate their topological interactions to depict bipartite

graphs. It is important to note that a direction between two adjacent enriched signatureswas not considered for plotting bipartite graphs. The

same function and arguments from the R package ‘‘igraph’’ (https://igraph.org)77 were employed for visualizing these networks.

Tetrapartite graph for four-networks interaction

The complete edge and the node list, which includes all pairs of two adjacent enriched signatures and the corresponding correlation coef-

ficients, were used as arguments, d and vertices, respectively, in the function graph_from_data_frame() to depict these tetrapartite graphs.

Edge connectivity (Figures 2B and 4B) was calculated based on the correlation matrix resulting from the tetrapartite graph.
Measurement of edge connectivity of enriched immunologic signatures

Themeasure of edge connectivity is calculated based on the definition of the function degree() implemented in the R package ‘‘igraph’’77 with

modification. From each enriched signature across four networks (ART-intact, ART-defective, EC-intact, and EC-defective), edge connectivity

(Figures 2B and 4B) was calculated using the sum of the total number of edges per vertex based on the tetrapartite graph, representing four-

networks interaction (Figures 2F and 4F). The edge connectivity is defined by the Equation below.

EdgeConnectivity =
X

isj

sij (Equation 1)

where sij is the total number of edges from the vertex i to the next adjacent vertex j. It is important to note that correlation coefficients were

not taken into account in the calculation of edge connectivity. Edge connectivity was visualized using a cluster heatmap described in the

following section.
MEASUREMENT OF DEGREE AND NOMINAL ASSORTATIVITY COEFFICIENT AND EUCLIDEAN DISTANCE OF THE

NETWORK ARCHITECTURE

Degree and nominal assortativity coefficients were computed using the function sassortativity_degree() and assortativity_nominal() in the

R package ‘‘igraph’’.77 For Figure S2B, 10 enriched signatures in each scenario were randomly sampled with replacement to obtain degree

assortativity coefficients using thementioned function, and this process was repeated 1,000 times. Statistical tests were performedwith R with

default options. Additionally, Euclidean distance (Figure S3C) was calculated using the function dist() with the argument method for

‘‘euclidean’’ in the R package ‘‘stats’’, which is a part of R (https://www.r-project.org/).
MEASUREMENT OF THE NETWORK DENSITY

The network density is computed based on the tetrapartite graph using the mean of correlation coefficients divided by the sum of edges

retrieved from all vertices in a network.
CLUSTERING HEATMAP

The cluster heatmaps representing the magnitude of the enrichment of immunologic signatures (Figure 1A), host gene expression of the

genes retrieved from enriched signatures (Figure 1C), assortativity analysis (Figures 2A and 4A), and edge connectivity of enriched immuno-

logic signatures (Figures 2B and 4B), HIV-1-targeted genes associated with cell markers (Figure 1G), and the appearance of cell types
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(Figure 2I) and proinflammatory soluble factors (Figure 2J) in the top 30 ranked enriched signature were created using the R package

ComplexHeatmap78,79 with default options.
CLASSIFICATION OF THE NETWORKS

Logistic regression-based classification: we divided the complete dataset, containing 309 enriched signatures associated with attributes into

a training set (80% of the dataset) and a testing set (20% of the dataset) for logistic regression running on R. The logistic regression model was

fitted using the function glm() with the argument family specified as ‘‘binomial’’ in the R package ‘‘stats’’ (https://www.r-project.org/). Three

types of responses were considered: provirus (intact versus defective provirus), patient (ART-treated patients versus elite controllers), and

provirus + patient. These responses were included in an object of class ‘‘formula’’. Different numbers and combinations of the ‘‘term’’ referred

to category attributes in an object of class ‘‘formula’’ were bootstrapped with replacement and this process was repeated 1,000 times.

Receiver operating characteristic (ROC) and the area under the curve (AUC) were calculated using the functions multiclass.roc() and auc()

in the R package ‘‘pROC’’,80 respectively. The whole procedure was repeated 1,000 times for statistical robustness.

Random forest classification: Separate models were made for six classification tasks, all following the same pipeline: M1 – multiclass clas-

sification of enriched signatures harboring intact versus defective proviruses in ART-treated patients and elite controllers, M2 – binary clas-

sification of enriched signatures harboring intact versus defective proviruses in ART-treated patients, M3 – binary classification of enriched

signatures harboring intact versus defective proviruses in elite controllers, M4 – multiclass classification of immunologic signatures enriched

in pretreatment HIV-1-infected individuals, patients subjected to a short and long period of ART and elite controllers, M5 – as in M4, but

excluding elite controllers, M6 – as in M4, but excluding pretreatment HIV-1-infected individuals. The pipeline was implemented in Python

3.11.6 using pandas 2.1.3 (https://pandas.pydata.org/docs/index.html) and scikit-learn 1.3.2 packages (https://scikit-learn.org/stable/whats_

new/v1.3.html). Plots were generated using seaborn 0.13.0 package.81

First, 30% of the data was reserved for testing, ensuring class balance. Subsequently, random forest classifiers from the Python scikit-learn

package (https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html) were trained on the training set with default parameters to extract impu-

rity-based feature importance. In all cases, all Cat 1 attributes except rich factor and weight exhibited much lower importance than other at-

tributes and were thus removed from further classification.

Next, grid search cross-validation was conducted to select hyperparameters for the final random forest classifiers in each task. The tested

hyperparameter values were included: n_estimators (20, 100), criterion (gini, log_loss), max_features (sqrt, log2), min_samples_split (3, 5, 10),

min_samples_leaf (1, 4), and class_weight (None, balanced). The remaining parameters were set to default values. Given such a small size of

the datasets, especially minority classes, repeated stratified k-fold validation was performed with 10 iterations of 5 randomly selected valida-

tion splits. Themacro-averaged F1 score guidedmodel selection in multiclass tasks (M1,M4-M6), while the positive class F1 score was used in

binary classification tasks (M2 and M3).

Finally, a model evaluationwas carried out. Due to the limited size of the datasets and the presence ofminority classes, which could lead to

a strong dependence of model performance on a specific selection of samples for the test set in a single train-test split, eachmodel was inde-

pendently re-trained and evaluated on 1000 randomly generated stratified 70%: 30% splits tomitigate this bias and generate robust statistics.

To compare the impact of Cat 1, 2, and 3 attributes on classification, the following approaches were employed for each task: classification

using Cat 1 attributes, Cat 1 and 2 attributes, Cat 1 and 3 attributes, and all category attributes. Resulting distributions of F1 scores, macro-

averaged for multiclass tasks and positive class for binary tasks, were presented using kernel density estimation (KDE) and boxplots. Median

F1 scores were compared, and statistical significance was assessed using the Wilcoxon test from the Python SciPy 1.11.3 package.82 In some

cases, KDE plots displayedmultiple maxima, particularly in tasks M2 andM3 (Figures S4C and S4D), indicating binary classification tasks with

small positive classes. This phenomenon is attributed to the discrete difference in F1 score resulting from even a single positive class sample

having a different prediction. This underscores the importance of evaluatingmodels acrossmultiple independent data splits. Additionally, it is

noteworthy that the accuracy of classifying the networks in longitudinal ART-treated patients versus elite controllers improved when a small

sample size from pretreatment HIV-1-infected individuals was removed (Figure S5C).
MEASUREMENT OF THE DISTANCE BETWEEN NETWORKS

To measure the distance (D) of correlation between two distinct graph networks (Figures 4L–4O), we computed Pearson correlation coeffi-

cients (r) between two adjacent vertices and retrieved only the edges with significant p-values. The pairwise distances of signatures are

defined by the Equation below.

DistanceðDÞ = 1 � rP (Equation 2)

where rP represents Pearson correlation coefficients with significant p-values between two adjacent vertices.

To measure weighted (directed) networks the edge weight is defined by the Equation below.

WeightðWÞ = 2 � D (Equation 3)

whereD represents Pearson distance with significant p-values between two adjacent vertices, as defined in the previous Equation. The edge

weight was calculated between two adjacent vertices across independent graph networks, enabling the comparison of the graph isomor-

phism of each tetrapartite graph.
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MARKOV CHAIN MONTE CARLO MODELING ANALYSIS

The probability of progressive evolution from source to target signatures across graph networks was measured by Markov chain Monte Carlo

method39 sampling random walks on directed weighted graphs with assigned directions, where nodes represent enriched signatures. Only

the edges with statistically significant Pearson correlation between two adjacent signatures were restrained in graph networks. The edge

weights were calculated based on Pearson correlation coefficients, as described above. Four different scenarios in Markov assumption

(Figure 5A) were designed in this study. The start of a random walk was forced to be initiated from signatures in the network from either pre-

treatment HIV-1-infected individuals (Figure 5C) or patients subjected to a short period of ART (Figure 5D).

Briefly, for each walk a starting node with uniform probability from source signatures in a graph network was randomly chosen for simu-

lation and designated as the current node i. The probability of the movement alongside the out edges was calculated as follows:

Pði; jÞ = wi;j

�
deg:outi (Equation 4)

Where: i;j – out edge between current node i and node j; Pði;jÞ – probability of taking edge i; j in the next step of the walk; wi;j – weight of the

edge i; j; deg:outi – weighted out degree of node i, i.e., the sum of weights of all out edges of node i.

An out edge was then randomly chosen according to the calculated probability, and the target signature bridged by the corresponding

edge was designated the current node k. The process was repeated either a maximum of 10 steps or ceased at a signature where no edges

were encompassed. For each scenario in Markov assumption, we sampled 10,000 random walks and tracked the termination of each path of

random walks. The probability shown as percentages was calculated as follows:

PðkÞ = ðnk = 10;000Þ � 100 (Equation 5)

Where: PðkÞ – the probability of graph network evolution that terminates at the state, where a graph network consists of a target node k; nk – a

total number of random walks that terminate at the state, where a graph network consists of a target node k.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics

All statistical tests were performed using R with default options and specific details are provided in the main text and figure legends where

applicable.
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