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Abstract: In terms of drug delivery, the attractive properties of poly(L-lactic acid) (PLA) and its
aliphatic polyesters, poly(ethylene adipate) (PEAd) and poly(butylene adipate) (PBAd), render them
ideal co-formulants for the preparation of modified-release pharmaceutical formulations. Further-
more, we have previously demonstrated that by adding a “softer” aliphatic polyester onto the
macromolecular chain of PLA, i.e., PEAd or PBAd, resulting in the formation of the PLA’s copolymers
(PLA-co-PEAd and PLA-co-PBAd, in 95/5, 90/10, 75/25 and 50/50 weight ratios), the hydrolysis rate
is also severely affected, leading to improved dissolution rates of the active pharmaceutical ingredi-
ents (API). In the present report, we communicate our findings on the in vitro modified release of the
chronobiotic hormone melatonin (MLT), in aqueous media (pH 1.2 and 6.8), from poly(L-lactic acid)
and the aforementioned copolymer matrix tablets, enriched with commonly used biopolymers, such
as hydroxypropylmethylcellulose (HPMC K15), lactose monohydrate, and sodium alginate. It was
found that, depending on the composition and the relevant content of these excipients in the matrix
tablets, the release of MLT satisfied the sought targets for fast sleep onset and sleep maintenance.
These findings constitute a useful background for pursuing relevant in vivo studies on melatonin in
the future.

Keywords: melatonin; poly(L-lactic acid) (PLA); PLA-co-PEAd and PLA-co-PBAd copolymers;
dissolution; modified-release matrix tablets

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine, MLT), the pineal hormone released at
night [1,2], regulates the start of sleep in animals, including humans. It has been demon-
strated to have hypnotic properties in both animals and humans [3], and has been used
to help restore circadian rhythms that have been disarrayed by jet lag, shift work, or ag-
ing [4,5]. Melatonin can ameliorate the severity of symptoms and cellular damage caused
by SARS-CoV-2 when used as an early adjunct therapy of COVID-19 [6,7], because of its
known efficacy as an antioxidant [8,9], anti-inflammatory [10], and immunomodulator [11].
Melatonin’s physiological functions are mediated by a family of G-protein-coupled mem-
brane receptors with a high affinity for melatonin. In mammals, amphibians, and other
vertebrates, two receptor subtypes, MT1 and MT2, have been discovered and cloned [12,13],
which, when produced in host cells, display the overall pharmacological features of natural
melatonin receptors. Recently, high-resolution, room-temperature X-ray free-electron laser
(XFEL) structures of MT1 and MT2 in complex with agonists have revealed melatonin
subtype receptor insights into ligand entry and receptor selectivity [14]. Typical examples
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are Ramelteon®, which is a melatonin agonist that is commercially available for the treat-
ment of sleep initiation difficulty and insomnia symptoms [15], and agomelatine (potent
melatonin agonist), which is the only currently available antidepressant agent that does
not primarily target the monoaminergic system [16]. Tasimelteon is also licensed for the
treatment of non-24-h sleep–wake disorder [5].

In recent years, our research group has been working on innovative oral MLT delivery
systems for treating sleep onset and sleep maintenance dysfunctions [17–20]. Because
controlled release melatonin administration is known to be more therapeutically helpful
in beginning and sustaining sleep than immediate-release in senior insomniacs, we have
focused on modified vs. immediate-release tablet formulations. Moreover, the choice for
the development of modified-release MLT formulations was based on the hormone’s poor
bioavailability and short half-life [20–22]. In this report, we communicate our findings on
the in vitro modified release of MLT, in aqueous media (pH 1.2 and 6.8), from poly(L-lactic
acid) and its copolymer matrix tablets, enriched with commonly used biopolymers, such as
hydroxypropylmethylcellulose (HPMC K15), lactose monohydrate, and sodium alginate.

Due to its biocompatibility, biodegradability, and excellent physicochemical and me-
chanical qualities, poly(L-lactic acid) (PLA), a commercially accessible synthetic polymer,
finds ample use in a variety of applications, also including biomedical applications, such as
drug delivery and tissue engineering. PLA can be produced through different polymeriza-
tion techniques [23], and it comes in the following three different forms, each with its own
set of properties: the enantiomers poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), as
well as the racemate poly(DL-lactide) (PDLLA). PLA is an appealing choice for deployment
because of its versatility and processability, particularly in the field of pharmaceutical
technology [24–27]. As in the case of other aliphatic polyesters, improved performance and
tailored properties (e.g., crystallinity, mechanical performance, and degradation rates) can
be achieved indirectly by the synthesis of copolymers.

In that sense, we have recently reported the synthesis, full structural characterization,
and unique physicochemical features of PLA and its copolymers, poly(ethylene adipate)
(PEAd) and poly(butylene adipate) (PBAd) (Figure 1), used in this study [28,29]. The
addition of a “softer” aliphatic polyester onto the macromolecular chain of PLA, i.e., PEAd
or PBAd, was also found to severely affect the hydrolysis rate, thus leading to improved
dissolution rates of the active pharmaceutical ingredients (API) [30,31].
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Figure 1. Chemical structures of (a) melatonin (MLT), (b) PLA, (c) poly(ethylene adipate) (PEAd),
and (d) poly(butylene adipate) (PBAd).

In the present work, we utilized the aforementioned co-polyesters as co-formulants for
the preparation of modified-release tablet formulations, to further investigate their potential
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in melatonin’s release. Their application was, indeed, proven to be of key importance,
as MLT’s release was facilitated in all cases. As expected, the co-presence of HPMC K15,
lactose monohydrate, and sodium alginate in the matrix tablets attenuated or augmented
the MLT’s release, mainly depending on their respective content. To the best of our
knowledge, this is the first time that these particular polymeric materials have been studied
with respect to MLT’s oral delivery from matrix tablets.

2. Materials and Methods
2.1. Materials

Melatonin (Mw: 232,28, λmax: 278 nm) was purchased from Tokyo Chemical Industry
(Tokyo, Japan). The new polymers (neat PLA, PLA/PEAd [90/10], PLA/PEAd [75/25],
PLA/PBAd [90/10], and PLA/PBAd [75/25]) were kindly donated from the Laboratory of
Professor Dimitrios Bikiaris, which is part of the Laboratory of Chemistry and Technology of
Polymers and Dyes, in the Department of Chemistry of Aristotle University of Thessaloniki,
Greece. HPMC K15M was supplied from Sigma-Aldrich (Steinheim, Germany). Alginic
acid sodium salt (low viscosity) and Avicel PH 102 were obtained from Alfa Aesar GmbH
& Co. KG (Karlsruhe, Germany). Lactose monohydrate was purchased from Merck
(Darmstadt, Germany), whereas magnesium stearate was obtained from Riedel-De Haen
(Hannover, Germany). All chemicals were of reagent grade and were used in the study
without further purification.

2.2. Reclystallization of PLA, PLA-co-PEAd and PLA-co-PBAd

The requisite polymer, PLA, PLA-co-PEAd, and PLA-co-PBAd (1.45 g), in the form of
large hard chunks, were sonicated with a mixture of ethyl acetate (25 mL) and dichloromethane
(15 mL) at 35 ◦C for 30 min. The resulting clear solution was then treated dropwise with
n-pentane at ambient temperature, until an off-white solid was precipitated. The solid was
filtered in vacuo, washed with n-pentane (2 × 10 mL), and dried under vacuum in open air
to quantitatively give the respective polymer, as a white powder, which was used in this
form for the preparation of the matrix tablets.

2.3. Preparation of Melatonin Modified-Release Tablets

The matrix tablets of melatonin were prepared by blending and compressing with a
variety of excipients (Table 1). The melatonin and excipients (copolymers of PLA, HPMC,
sodium alginate, lactose monohydrate, and Avicel PH 102) were blended in a laboratory-
scale powder blender at 32 rpm for 8 min (Wab Turbula type T2F). Afterwards, the lubricant,
magnesium stearate, was added and mixing was continued for 2 more minutes. The powder
mixture was accurately weighed (200 mg), loaded on a 10 mm diameter dye, and directly
compressed using a hydraulic press (Maassen type, MP 150).

2.4. Tablet Uniformity Tests

The thickness of the tablets was measured using a Vernier caliper scale.
The hardness of the tablets was determined using an Erweka hardness tester (Erweka

type TBH28). The force applied was equal to breaking the tablet in adiametric compression.
The surface hardness of each tablet is expressed in N [32].

For the friability test, ten tablets were brushed to remove any overlying dust and were
accurately weighed. These tablets were placed into the rotating drum of the friability test
apparatus (Erweka type TA 3R, Heusenstamm, Germany). The drum was rotated at the
speed of 25 rpm for 4 min. The tablets were de-dusted again and re-weighed. The percent
friability was expressed by using the following equation:

Friability =
(Initial weight − Final weight)

Initial weight
× 100% (1)

Uncoated compressed tablets that lost less than 1% (after 100 revolutions) of their
weight were considered acceptable [32].
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Table 1. Composition of melatonin tablet formulations.

Ingredients F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

Melatonin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Neat PLA 68 34 34

PLA/PEAd
[90/10] 68 34 34

PLA/PEAd
[75/25] 68 34 34

PLA/PBAd
[90/10] 68 34 34

PLA/PBAd
[75/25] 68 34 34

HPMC K15 16 16 16 16 16 120 120 120 120 119.5 16 16 16 16 16

Sod.Alginate 78 78 78 78 78 16 16 16 16 16 8 8 8 8 8

Lactose 16 16 16 16 16 8 8 8 8 8 20 20 20 20 20

Avicel PH 102 20 20 20 20 20 20 20 20 20 20 120 120 120 120 120

Mg.Stearate 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Total 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

2.5. In Vitro Dissolution Studies

The in vitro dissolution tests were carried out in a dissolution test apparatus, USP type
II (Pharmatest, Hainerp, Germany) (paddle method, 37 ± 0.5 ◦C, 50 rpm). The experiments
were conducted in two different aqueous media; for the first 2 h, 450 mL of 0.2 M HCl
solution (pH 1.2) was used to simulate the stomach pH, and to that, 450 mL of 0.14 M
K2HPO4 solution (pH 9) was added to simulate the enteric pH (pH 6.8). Samples (5 mL)
were withdrawn at predetermined time intervals, filtered, and analyzed in a Perkin–Elmer
UV spectrophotometer (Norwalk, CT) at λmax = 278 nm.

2.6. Methods to Compare Dissolution Profiles

Graphs of % MLT release vs. time were constructed, in order to compare the dissolu-
tion profiles.

The dissolution efficiency % [D.E. (%)] [33] value was calculated using the follow-
ing equation:

D.E. (%) =

∫ t2
t1

ydt

y100(t2 − t1)
(2)

where y is the percentage of dissolved MLT, and D.E. (%) is the area under the dissolution
curve between time points t1 and t2, expressed as a percentage of the curve at maximum
dissolution y100 over the same time period.

Additionally, the values referring to time, t20%, t50% and t90%, in which 20%, 50% and
90% of MLT was released, were calculated.

The mean dissolution time (MDT) [34,35] values were calculated from the follow-
ing equation:

MDT =
ABC
W∞

(3)

where W∞ is the maximum amount of MLT dissolved, and ABC is the area between the
drug dissolution curve and its asymptote.

The in vitro release data were fitted to the Korsmeyer–Peppas equation to decipher
the dissolution kinetics:

Mt

M∞
= ktn (4)
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where Mt and M∞ refer to the absolute cumulative amount of drug released at time t
and infinite time, respectively, with k as the release rate constant and n as the diffusion
coefficient [36–38]. In the case of cylindrical tablets, n ≤ 0.45 denotes Fickian diffusion
release (case I diffusional), 0.45 < n < 0.89 is non-Fickian anomalous transport, and n = 0.89
is zero-order (case II) release kinetics.

2.7. Attenuated Total Reflectance Infrared Spectroscopy (ATR-FTIR)

Attenuated total reflectance infrared spectroscopy (ATR-IR) was conducted using
a Cary 670 infrared spectroscope (Agilent Technologies), fitted with a damping unit of
total reflection with a diamond crystal (Accessories Attenuated Total Reflectance (ATR)
diamond, model GladiATR, Pike technologies). The samples were screwed into position
using the compression tip on the diamond accessory, and the spectra were collected with a
resolution of 4 cm−1, from 4000 to 400 cm−1, as the sum of 32 scans.

2.8. X-ray Powder Diffraction (XRD)

X-ray powder diffraction (XRD) patterns of the analyzed samples were recorded using
an XRD diffractometer (Rigaku, model MiniFlex II, Chalgrove, Oxford, UK) with CuKα

radiation for crystalline phase identification (λ = 0.15405 nm for CuKα). The samples were
scanned from 5 to 45◦.

3. Results and Discussion

The results from the tablet uniformity tests were considered acceptable. In detail:
Thickness test: for all the formulations, the tablets’ diameter was 10 mm and the

thickness was 2.8 ± 0.05 mm.
Hardness test: the results revealed that the tablets’ surface hardness was in the range

of 55–100 N.
Friability test: the results from the friability test showed that the friability of the tablets

was <1% in all cases, indicating adequate tablet strength.
An ATR-FTIR analysis was performed upon all formulations in an attempt to com-

prehend the drug–polymeric matrix interactions in the solid state. A typical ATR-FTIR
spectrum collected from tablets contains a myriad of valuable information, hidden in a
family of tiny peaks. ATR-FTIR characterization is complex, mainly due to the low amount
of MLT added in the formulations (1 w/w %) and the high degree of overlapping absorption
bands of the drug and the polymeric matrix [39]. Thus, emphasis was given to the most
characteristic regions, corresponding to the C=O groups of the copolymers. In Figure 2,
the ATR-FTIR spectra of pure melatonin and selected prepared formulations are depicted.
Pure melatonin exhibits absorption bands at 3275 cm−1, 3097 cm−1, 1619 cm−1, and 1211
cm−1, which correspond to the N-H stretching vibration, the C-H aromatic stretching, the
C=C aromatic skeletal stretching vibration, and the C-O-C (C5-OCH3) stretching vibration,
respectively. In addition, the C=O stretching of the amidic carbonyl group of melatonin is
observed at 1551 cm−1 [40–42].

X-ray diffraction (XRD) was employed in order to determine the crystallinity of the
melatonin formulations. It is shown that melatonin exhibits sharp peaks at the diffraction
angles of 2θ = 16.3, 24.2, 25.0, and 26.0◦, indicating its crystalline structure (Figure S3, Sup-
plementary Section) [42,43]. Pure melatonin is a monoclinic crystal, and the typical peaks
in the range 2θ 10–30◦ denote the long-range order of its supramolecular structure [44].
Furthermore, in all the formulations’ XRD patterns, the characteristic peaks of melatonin do
not appear, suggesting that MLT is well dispersed inside the tablets and has an amorphous
form. The dissolution of drugs is significantly enhanced by amorphization, and, thus, is
highly desired in drug delivery applications, thereby denoting the therapeutic potential
of MLT formulations [45,46]. Generally, in (semi)crystalline/(semi)crystalline polymer
blends, the peak intensities recorded in the XRD patterns depend on the concentration
of each polymer, as different components crystallize separately [47]. From Figure 3, it is
observed that the peaks, corresponding to each polymeric blend, are present, with the most
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noticeable at 16.8◦, being attributed to PLA. Special allusion should be made to the F11,
F12, and F14 formulations. Specifically, the narrow peak exhibited at 19.9◦ corresponds to
the presence of lactose, while the wide peak at 22.5◦ is attributed to the increased amount
of Avicel PH 102.
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Figure 2. ATR-FTIR spectra of pure melatonin and selected prepared formulations (F1, F2, F5, F6, F7,
F9, F11, F12, and F14).

It becomes apparent from the results presented in Figure 4 that the release of mela-
tonin from the polylactic acid-based (PLA) formulation F1 reaches 47.20% at t = 120 min,
and is completed at t = 300 min. The facile release of melatonin, at the acidic medium,
is possibly due to the fact that, although the PLA’s carboxyl groups, present in the F6
tablets, remain undissociated, its free OHs, via H-bond formation with the C5-methoxyl
and C3-ethanamido groups of melatonin, enhance the solubilization. Regarding the in-
teractions between the drug and polymeric matrix, it has been previously reported, by
Pandey et al. [48], that melatonin interacts well with polymeric matrixes, such as PLA.
In our case, considerable interaction is noticed in the area of the carbonyl group of the
copolymers, where peaks from 1755 cm−1 shift towards lower wavenumbers in all the
formulations, as a result of the intermolecular hydrogen bond formation between the C=O
of PLA and the N1-H and -NH amido groups (in the non-charged resonance form) of MLT
(Figure 2) [48–50].
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The influence on melatonin’s release of the relevant quantity of HPMC K15 in the PLA-
containing tablets is as expected, since the release of the hormone from the matrices, where
HPMC K15 is present in high quantity (F6), is much lower than that from the respective
low-quantity HPMC K15-containing F11 tablets. It is well known that HPMCs, in general,
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when in contact with aqueous media, form gel layers, which delay the penetration process
of water molecules into the matrix structure [51–53].

The lower and slower release of MLT from the F6 formulation, with respect to formu-
lation F1, can also be attributed to the fact that, in F1, the amount of lactose monohydrate
is two-fold higher (F6: 8 mg vs. F6: 16 mg). Lactose, being a water-soluble substance,
leads to faster polymer chain relaxation, thus facilitating the API’s diffusion from the
hydrophilic polymeric matrix [53]. This difference in the pace of MLT’s release is even
more profound in the case of the F11 formulation. In the F11 matrix tablets, the content
of lactose monohydrate is even higher than in F6 (F11: 20 mg vs. F6: 8 mg). In addition,
because the amount of sodium alginate in the F11 tablets is more than half of that present
in formulation F6, the release of MLT from the former tablets is 54.07% at t = 120 min,
while, from the latter, it is 24.51% at t = 120 min. Sodium alginate, at the acidic dissolution
medium (0 min ≤ t ≤ 120 min), does not exist as a salt (it is converted to alginic acid), and,
as a result, the lower its quantity in the matrix systems, the higher the release of the API [54].
Moreover, MLT’s release is enhanced in the F11 tablets, compared to F1 and F6, because
of the increased amount of Avicel PH 102 in the F11 matrices (Figure S4, Supplementary
Material; the wide peak at 22.4◦ in the diffractogram is attributed to Avicel PH 102); besides
contributing to compactional strength and rapid disintegration, it facilitates the release of
the drug [55].

The release of MLT from these three formulations renders them suitable for undis-
turbed sleep maintenance. Furthermore, the formulations F1 and F11 are also suitable for
dealing with sleep-onset problems.

In general, it is well known that the composition of the copolymer can directly af-
fect several of the physicochemical material properties, such as hydrophilicity, structure,
morphology, and, most importantly in our case, the drug–polymer interactions. As an
overall observation for all the studied copolymer-based formulations, it is evident that
the release rate of MLT proceeds more slowly at pH 1.2 than at pH 6.8. This trend can
be explained as follows: when the polymer-based formulated tablet is in contact with
the buffer medium, the copolymer becomes hydrated and subsequently swells. The drug
molecules, physically entrapped within the matrix, are then also in contact with the buffer.
As a result of this hydration process, the existing drug–polymer physical interactions are
lowered, and the drug can more easily diffuse out of the swelled polymer. Now, in the
acidic medium (pH 1.2), the hydrophilic parts of the copolymer (PEAd or PBAd units)
remain protonated, thus restricting the formation of extensive H-bonding with water and
leading to reduced swelling ability, which, in turn, leads to slower diffusion of the drug
molecule and, therefore, slower release rates.

In the case of poly(ethylene adipate) (PEAd), the relevant content in the PLA matrix
tablets (F2, F3, and F13; Figure 5) does not seem to play an important role in the release
of melatonin from the respective formulations. In the former two cases, the release of the
hormone is completed at t = 240 min, and it follows the same pace. In the case of MLT’s
release from the F13 formulation, the release becomes quantitative at t = 300 min. This
relatively fast release could be attributed to the presence of free OHs and ester groups in
the PEAd structure, which act synergistically with the free OHs of PLA in the H-bond
formation between them and the C5 and C3 functionalities of the melatonin nucleus. It is
noteworthy that upon reduction of the amount of PLA/PEAd ([90/10], 33.5 mg) in half in
the F7 matrix tablets, compared to their F2 congeners (PLA/PEAd [90/10], 67 mg), MLT’s
release becomes substantially lower after t = 120 min, reaching 100% at t = 420 min. An
analogous effect is noticed in the case of the F13 formulation. It seems that in these cases, the
above H-bond interactions are minimized, as the amount of substrate (PEAd) is drastically
reduced. These arguments are also corroborated by the ATR-FTIR spectral data of the tablet
formulations, showing the existence of wide peaks at 3000–3600 cm−1, due to the combined
presence of the -NH groups of MLT, the -OH groups deriving from cellulosic excipients,
as well as any remaining free -OH from the copolymers used in the tablets (Figure 2). The
considerable interaction noticed in the area of the carbonyl group of the copolymers, where
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peaks from 1755 cm−1 shift towards lower wavenumbers in all the formulations, results, in
this case, from the intermolecular hydrogen bond formation between the N1-H and -NH
amido groups (in the non-charged mesomeric form) of the drug, and the carbonyl groups
of the copolymers. Moreover, the widening of the peak at 1619 cm−1 of the C=C aromatic
skeletal stretching is also attributed to possible drug–polymer interactions [48].
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Figure 5. In vitro % release of melatonin from formulations F1, F2, F3, F7, F8, and F13 vs. time. The
results represent the mean value (n = 3, SD < 2).

In the case of poly(butylene adipate) (PBAd)/PLA matrix systems, the relevant content
of PBAd (F4 and F5, F9 and F10; Figure 6) plays a more important role in the release profile
of melatonin. Thus, the higher the content of PBAd in the tablets (F5), the higher and
faster the release of the hormone (F5: 100% release at t = 180 min vs. F4: 100% release
at t = 300 min). An analogous trend is observed in the cases of the F9 and F10 tablets. A
plausible explanation for this would be the increased number of PBAd ester groups in the
F5 and F10 cases, with respect to the number of respective ester groups in the F4 and F9
matrix tablets.

However, the difference in the release of the hormone from (PBAd)/PLA tablets, where
PBAd is present in low (F14; Figure 7) and high amounts (F15; Figure 7), and, concurrently,
the amount of sodium alginate is very low (7 mg), is negligible.

Conversely, the difference in MLT’s release, noticed between the PBAd/PLA-containing
tablets (F14) and those including PEAd/PLA (F12), is significant, and has to do with the
discrete crystallization of these polyesters within the polymeric blend. The PLA/PEAd
blends showed characteristic peaks at 2 theta 17.5, 20.65, 21.7, and 24.86 deg of PEAd.
The PBAd/PLA blends exhibited a peak at 2 theta 21.9◦, which is the characteristic peak
corresponding to PBAd (Figure 3: XRD pattern of PEAd/PLA 90/10 and XRD pattern of
PBAd/PLA 90/10).
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Figure 6. In vitro % release of melatonin from formulations F1, F4, F5, F9, and F10 vs. time. The
results represent the mean value (n = 3, SD < 2).
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Figure 7. In vitro % release of melatonin from formulations F11, F12, F13, F14, and F15 vs. time. The
results represent the mean value (n = 3, SD < 2).

As in the cases of F1 and F11, the release of MLT from the formulations F2, F3, F11,
and, especially, F5 renders them suitable for dealing with sleep-onset problems. Conversely,
the pace of release of the hormone from F14 and F15 better suits the requisite profile for
sleep maintenance.

The kinetic release properties of the developed formulations are reported in Table 2.
In particular, the kinetics data revealed that MLT’s release followed, in most cases, [F1
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(n = 0.49), F2 (n = 0.58), F3 (n = 0.63), F4 (n = 0.52), F5 (n = 0.52), F9 (n = 0.65), F11
(n = 0.46), F12 (n = 0.60), and F13 (n = 0.53)], anomalous diffusion, whilst MLT’s release
from formulation F7 followed zero-order kinetics (n = 0.89).

Table 2. Kinetic release properties of the developed formulations.

Formulations MDT t20% t50% t90% n Mean % D.E.

F1 170.24 24 140 270 0.49 70.06

F2 127.55 22 102 177 0.58 78.90

F3 136.36 22 120 179 0.63 77.10

F4 142.20 24 142 262 0.52 69.67

F5 133.48 22 152 169 0.52 77.68

F6 192.80 81 218 299 1.21 59.44

F7 151.35 41 122 341 0.89 67.40

F8 171.82 24 162 240 0.38 69.77

F9 193.70 72 201 384 0.65 58.11

F10 158.14 30 141 219 0.42 72.67

F11 140.08 20 102 245 0.46 76.16

F12 115.05 20 82 162 0.60 81.37

F13 141.63 24 122 210 0.53 76.02

F14 208.44 100 222 400 1.09 54.25

F15 179.30 78 180 296 0.98 62.12

4. Conclusions

The results presented herein accurately demonstrate the subtle differences in the
in vitro modified release of melatonin, upon variation in the composition and relevant con-
tent of PLA, PLA-co-PEAd, and PLA-co-PBAd (95/5, 90/10, 75/25 and 50/50 weight ratios)
in the developed matrix tablets. Indicatively, the release of MLT from the formulations F6,
F7, F8, F26, and, especially, F10 renders them suitable for dealing with sleep-onset problems.
Conversely, the pace of release of the hormone from the F29 and F30 matrix tablets better
suits the requisite profile for sleep maintenance. It is possible that these observations are
due to predominant H-bonding interactions between the drug and copolymers, whereas
the swelling ability of the copolymers may have an impact on the release rates. The latter
should be further investigated in the future. The fact that the difference in copolymer
composition plays a role in MLT’s release rate demonstrates its potential for tuning the hor-
mone’s delivery. We are currently pursuing analogous studies on the release of melatonin,
using, as formulants, a variety of different block copolymers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14081504/s1, Figure S1: FT-IR spectra of the depicted
excipients used in the prepared formulations; Figure S2: FTIR spectra of neat PLA, PEAd, PBAd,
PLA/PBAd (90/10), the (75/25) copolymers and the PLA/PEAd (90/10), (75/25) copolymers; Figure
S3: XRD pattern of pure melatonin; Figure S4: XRD patterns of (a) Avicel PH 102, (b) HPMC K15,
(c) sodium alginate, (d) lactose, and (e) magnesium stearate; Figure S5: XRD pattern of neat PLA
before and after recrystallisation; Figure S6: XRD patterns of the studied (a) PLA-PEAd, and (b)
PLA-PBAd copolymers.
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