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A specific variant of neurofeedback therapy (NFT), Live Z-Score Training (LZT), can be

configured to not target specific EEG frequencies, networks, or regions of the brain,

thereby permitting implicit and flexible modulation of EEG activity. In this exploratory

analysis, the relationship between post-LZT changes in EEG activity and self-reported

symptom reduction is evaluated in a sample of patients with persistent post-concussive

symptoms (PPCS). Penalized regressions were used to identify EEG metrics associated

with changes in physical, cognitive, and affective symptoms; the predictive capacity of

EEG variables selected by the penalized regressions were subsequently validated using

linear regressionmodels. Post-treatment changes in theta/alpha ratio predicted reduction

in pain intensity and cognitive symptoms and changes in beta-related power metrics

predicted improvements in affective symptoms. No EEG changes were associated with

changes in a majority of physical symptoms. These data highlight the potential for

NFT to target specific EEG patterns to provide greater treatment precision for PPCS

patients. This exploratory analysis is intended to promote the refinement of NFT treatment

protocols to improve outcomes for patients with PPCS.

Keywords: traumatic brain injury, post-concussive symptoms, neurofeedback, EEG, lasso regression

INTRODUCTION

A ubiquitous pathophysiological consequence of mild traumatic brain injury (mTBI) is
dysfunctional neural activity (1–3). For many individuals who sustain mTBI, this neural
dysfunction and its associated cognitive, physical, and behavioral symptoms are transient and
resolve within a matter of weeks or months. However, a minority of patients–5–30%—experience
persistent post-concussive symptoms (PPCS) beyond the typical recovery period (4–6) and these
symptoms are often associated with residual neural dysfunction (7–10).

Research efforts are underway to identify and validate effective treatments to improve a range
of neurobehavioral symptoms in patients with PPCS. One promising treatment is neurofeedback
therapy (NFT), with several studies reporting that NFT reduces symptoms in patients with TBI
(11–17). NFT is a non-pharmacological treatment that uses operant conditioning to train patients
to autonomously modulate neural activity (18, 19). The general premise of NFT is that patients
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TABLE 1 | Live Z-score training EEG measurement parameters.

Frequency bands Metrics Channels

Delta (1–3Hz) Absolute power FP1

Theta (4–7Hz) Relative power F3

Alpha (8–12Hz) Power ratios C3

Alpha-1 (8–10Hz) Asymmetry* P3

Alpha-2 (10–12Hz) Phase delay* O1

Beta (12–25Hz) Coherence* F7

Beta-1 (12–15Hz) Fz

Beta-2 (15–18Hz) T3

Beta-3 (18–25Hz) T5

High Beta (15–30Hz) FP2

F4

C4

P4

O2

F8

Cz

Pz

T4

T6

*Metrics computed for each possible electrode pair.

receive positive feedback when their EEG activity achieves a
desired pattern; through this process, patients implicitly learn
to regulate their EEG activity to achieve desired behavioral
goals. There are numerous variations of NFT that target
different aspects of neural activity, including specific oscillatory
frequencies (20, 21) and/or specific networks or regions of the
brain (22, 23).

One type of NFT, Live Z-Score Training (LZT), is unique from
common variants of NFT for its real-time, continuous calculation
of Z-scores of EEG activity (24, 25). Z-scores are calculated for six
EEGmetrics in ten frequency bands over all channels included in
the EEG montage; in a 19-channel montage, LZT produces 5,700
Z-scores (Table 1). Participants receive positive feedback when
a pre-specified percentage (e.g., 60%) of all computed Z-scores
falls within a pre-specified range (e.g., ±1 SD) of the normative
mean (24, 25). Training can be configured to either target
specific EEG activity or remain agnostic to what EEG metrics
are targeted. With this latter approach, patients are trained to
normalize activity in some but not all frequency bands and/or
brain regions, as normalization of only a subset of EEG metrics
is required for reinforcement. Because any combination of Z-
scores can satisfy the criteria to receive positive feedback, there
can be substantial variability between patients in the strategies
they implicitly and flexibly choose for normalizing neural activity
(24, 25). For example, a patient who normalizes brain-wide alpha
activity and a patient who normalizes theta and beta activity
over central and parietal regions may be equally successful at
completing LZT. However, it is unknown how various strategies
for EEG normalization, when not specified and directly targeted
by NFT, correspond to symptom improvements.

Consistent with previous studies of NFT, a feasibility analysis
recently conducted in our laboratory demonstrated that LZT was
associated with symptom reduction in a sample of active duty
service members and veterans with PPCS (26). Here we report
results of an exploratory analysis of data from the feasibility
study to (1) characterize changes in resting state EEG activity
in patients with PPCS following completion of LZT and (2)
evaluate how changes in EEG activity are associated with changes
in symptomatology. Results from this analysis may be helpful to
identify EEG activity that can be targeted by NFT to customize
symptom-specific treatment in PPCS patients.

METHODS

Design
This study was approved by the Madigan Army Medical Center’s
Institutional Review Board. Here we provide a summary of study
methods; full details are provided in Hershaw et al. (26). This
study used a single-group design wherein participants received
LZT. Participants completed pre-treatment (T1), post-treatment
(T2) and follow-up (T3) evaluations that included self-report
symptom questionnaires, a full neuropsychological battery, a
physiological stress test, and resting state EEG recording. T1
evaluations were conducted no more than 4 weeks prior to the
start of LZT; T2 evaluations were conducted between 1 and 4
weeks following treatment; and T3 evaluations were conducted
between 11 and 15 weeks following treatment.

Participants
Participants were recruited from Fort Carson Army Post and
the surrounding Colorado Springs, CO area using posted
recruitment material and provider referrals. To be eligible for
study participation, individuals had to have active duty or veteran
status, be 18–50 years old, have a history of mild to moderate
TBI as defined by the American Congress of Rehabilitation
Medicine (27) 3 months to 5 years prior to enrollment, and
currently endorse post-concussive symptoms to include emotion
dysregulation. Individuals with unstable medical or psychiatric
conditions, who failed symptom validity tests, endorsed alcohol
or substance abuse, or used medications known to interfere
with EEG recordings were excluded from participation. A total
of 38 individuals met eligibility requirements and agreed to
undergo LZT.

LZT Protocol
LZT training stimuli were delivered via a video chosen by
participants from the BrainMaster BrainAvatar software system
(Bedford, OH: BrainMaster Technologies). As the video played,
EEG data were recorded using the BrainMaster Discovery 24E
amplifier using a 19-channel montage adhering to the 10–
20 international electrode placement system. EEG data were
decomposed into 10 frequency bands to obtain measures of
absolute power, relative power, and power ratios at each
electrode, and asymmetry, phase delay, and coherence for every
electrode pair (Table 1). Given every possible combination of
metrics and electrode pairs, 5,700 EEG metrics were computed
and compared continuously in real-time to a normative database
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[Applied NeuroScience BrainMaster Z-Score Dynamic Link
Library (Largo, FL: Applied Neuroscience, Inc.)] to derive Z-
scores. When participants’ EEG activity approximated normative
values (as defined by pre-specified criteria described below), they
received positive feedback in the form of visual or audio cues in
the video.

To receive positive feedback, the following three criteria must
have been met: (1) Z-scores had to fall within a “target window”
of ±0.9 standard deviations of the normative mean; (2) based
on a titrated threshold, a certain percentage of the 5,700 Z-
scores had to fall within the target window 40–60% of time;
and (3) a variable percentage of Z-scores that were outside of
the target window (“outliers”) had to move toward the target
window. The required percentage of outlier Z-scores moving
toward the target window was adjusted continuously, as needed,
such that participants received 10–15 reinforcements per minute.
The target window was held constant throughout treatment, but
the threshold for percentage of Z-scores needing to fall within
that window varied depending on performance. The duration
of each treatment session increased from 10min at the first
session to 30min by session 6 or 7. LZT treatment took place
over a period of 6 weeks. Treatment completion was defined as
completing at least 15 treatment sessions; however, participants
were encouraged to complete as many sessions as possible, up
to 20.

Self-Reported Symptom Questionnaires
Given that many functional domains can be affected in patients
with PPCS, self-report symptom questionnaires were selected to
assess a broad range of symptoms. The following symptoms were
assessed: (1) post-traumatic stress symptoms [PTSD Checklist-
Military version, PCL-M; (28)]; (2) depressive symptoms [Patient
Health Questionnaire-9, PHQ-9; (29)]; (3) neurobehavioral
symptoms [Neurobehavioral Symptom Inventory, NSI; (30)];
(4) sleep quality [Medical Outcomes Study Sleep Scale, MOS-
Sleep; (31)]; (5) pain [Chronic Pain Grade questionnaire, CPG;
(32)]; and (6) migraines [Migraine Disability Assessment Scale,
MIDAS; (33)]. The following symptom scores were derived
from these questionnaires in accordance with their respective
scoring manuals to be included in analyses: PCL-M total;
PHQ-9 total; NSI somatic subscale; NSI affective subscale;
NSI cognitive subscale; NSI vestibular subscale; MOS-Sleep
total; CPG pain intensity subscale; CPG pain-related disability
subscale; and MIDAS total. A decrease in all scores represents
symptom improvements.

Resting State EEG Data Acquisition and
Pre-processing
As part of the pre- and post-treatment evaluations, eyes open
and eyes closed resting state EEG data were recorded. Data
were recorded at a 1,000Hz sampling rate using NeuroScan
acquisition system (Victoria, Australia: Compumedics
Neuroscan) with a 64-channel montage adhering to the 10–20
international electrode placement system. Data were processed
offline using EEGlab (34). Data were downsampled to 256Hz and
a 1–100Hz bandpass filter was applied. Data were then cleaned
using the EEGlab clean_rawdata function (35), referenced to the

common average, and submitted to an independent components
analysis to identify and remove horizontal and vertical ocular
artifacts from the data. Cleaned data were then submitted to the
bandpower function in MATLAB (Version 2014b, Natick, MA:
Mathworks), whereby spectral power density is estimated using
a periodogram method.

EEG Variable Quantification
In an effort to reduce the computational burden and the risk
of committing Type 1 errors in this exploratory analysis, we
analyzed eyes open resting state data; the eyes open condition
was chosen due to its properties of having fewer ocular artifacts
(36), reduced large-amplitude alpha rhythm that is dominant
during eyes closed resting periods (36), and greater sensitivity to
neural dysfunction compared to eyes closed EEG activity (37).
Resting state EEG data was quantified to maximize fidelity to the
EEG metrics for which Z-scores were computed as part of LZT
training. The system used to record resting state EEG data had
a 64-channel montage; the system used to deliver LZT had a 19-
channel montage (see Table 1). We limited our quantification of
resting state EEG data to those channels in the 64-channel system
that were also represented in the 19-channel system; however,
channels T3, T4, T5, and T6 were included in the 19-channel
system but not the 64-channel system. As a substitute for these
channels, we included channels T7 and T8 in our quantification,
as these channels were included in the 64-channel system but not
in the 19-channel system. This resulted in 17 channels included
in the resting state EEG analysis.

As a further effort to reduce the computational burden and the
risk of committing Type 1 errors in this exploratory analysis, we
analyzed a subset of the 5,700 EEG variables that are included in
LZT training. Resting state EEG data were decomposed into the
same 10 frequency bands that were included in LZT training (see
Table 1), as well as total power (1–30Hz). We quantified absolute
power, relative power, power ratios, and asymmetry metrics.
Absolute power was measured for each of the 10 frequency
bands and total power. Relative power was measured as the
absolute power in each of the 10 frequency bands divided by total
power. Five absolute power ratios were computed: theta/beta,
theta/alpha, alpha/beta, delta/theta, and delta/alpha. The first
four ratios were selected because they are the most commonly
reported power ratios (38) and the latter ratio was selected in light
of evidence that it is related to rehabilitation following TBI (39).
All power metrics were quantified for each of the 17 channels,
resulting in 442 powermetrics. Additionally, we computed lateral
asymmetry ratios for frontal (FP2–FP1), parietal (P4–P3), and
temporal (T8–T7) regions for each of the 10 frequency bands and
total power. These asymmetry-based metrics brought the total
number of EEG variables to 475.

Statistical Analysis
For the purpose of this analysis, we limited our comparison to
pre- (T1) and post-treatment (T2) EEG metrics. EEG metrics
obtained during follow-up (T3) were not included in the analysis
because of existing evidence that changes in EEG activity
following NFT are often not sustained and may even rebound,
despite observing sustained clinical effects (40). This dissociation
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TABLE 2 | EEG variables with significant pre-post treatment difference.

Region Channel Frequency t-statistic p-value B-H

Frontal FP1 Alpha (rel) 3.27 0.003 0.003

Alpha-1 (rel) 3.5 0.002 0.002

Alpha-2 (rel) 2.19 0.038 0.040

Alpha/Beta ratio 2.49 0.020 0.023

FP2 Alpha (rel) 2.75 0.011 0.011

Alpha-1 (rel) 2.95 0.007 0.008

F3 Alpha-1 (rel) 2.21 0.036 0.037

Fz Delta (rel) −2.45 0.022 0.027

Alpha-1 (rel) 2.85 0.009 0.010

Theta/Beta ratio 2.16 0.040 0.044

Delta/Alpha ratio −2.36 0.026 0.031

F8 Alpha-1 (rel) 2.22 0.036 0.039

Theta/Alpha ratio −2.4 0.024 0.029

Delta/Alpha ratio −2.49 0.020 0.024

Central C3 Alpha-1 (rel) 2.07 0.049 0.050

Cz Delta (rel) −2.08 0.048 0.048

Alpha (rel) 2.17 0.040 0.045

Alpha-1 (rel) 2.76 0.011 0.013

C4 Theta (rel) 2.48 0.020 0.026

Alpha-1 (rel) 3.16 0.004 0.005

Theta/Beta ratio 3.21 0.004 0.006

Parietal P3 Alpha-1 (rel) 2.77 0.011 0.015

Pz Alpha-1 (rel) 2.18 0.039 0.042

P4 Delta (rel) −2.24 0.034 0.035

Alpha-1 (rel) 2.53 0.018 0.021

Theta/Beta ratio 2.55 0.017 0.019

Delta/Theta ratio −2.7 0.012 0.016

Asymmetry (P4–P3) Delta (abs) −2.09 0.047 0.047

Beta (abs) −2.35 0.027 0.032

High Beta (abs) −2.31 0.029 0.034

Temporal T8 Alpha-1 (rel) 2.61 0.015 0.018

Df, 25; rel, relative power; abs, absolute power; negative t-value indicates metric decreased between T2 and T1; B-H, Benjamini-Hochberg critical value.

Bold text indicates non-significance after applying the Benjamini-Hochberg correction.

is attributed to a homeostatic mechanism that permits “re-
normalization” of EEG activity while maintaining behavioral
gains (41, 42); thus long-term measures of EEG activity may
not validly represent the association between NFT-induced EEG
alterations and symptom resolution.

To characterize post-treatment changes in EEG power, we
compared EEG variables between T1 and T2 using paired
samples t-tests. Because of the exploratory nature of this
analysis, we report results both without a correction for multiple
comparisons [see (43), for a thorough discussion on this topic]
and with a Benjamini-Hochberg to correct for a False Discovery
Rate (FDR) of 0.05 (44).

Change scores (T2–T1) were computed for all EEG variables
(n = 475) and all symptom scores (n = 10). To identify what, if
any, changes in EEG activity predict changes in symptomatology,
a separate lasso regression was conducted for each symptom
change score with all EEG change scores entered as predictor
variables. Lasso regressions are optimal for variable selection

when there is a large number of predictor variables (e.g.,
more than the number of observations) and high levels of
multicollinearity. Lasso regression models impose a penalty,
λ, on the value of coefficients that do not contribute to the
prediction of an outcome variable, thereby shrinking to zero the
coefficients of all non-predictive variables. The optimal value of
λ is that which minimizes the lasso function in Equation 1.1.
Thus, any variable with a non-zero coefficient is a significant
predictor of the outcome. The result is a parsimonious model
that includes only unrelated variables that significantly contribute
to the prediction of the outcome. In effect, it is a solution to
the problem of overfitting when there are a large number of
predictors entered into a model.

n∑

i=1

(Yi −
∑

j

Xijβj)
2

+ λ

p∑

j=1

|βj| (1)
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TABLE 3 | Regressions on CPG intensity.

Elastic net regression Linear regression

λ α DF MSE R2 F p MSE

0.343 1 4 1.078 0.253 1.776 0.171 0.890

Selected predictors Coefficient at λ Predictors Beta 95% CI

Theta/Alpha ratio, F3 0.053 Theta/Alpha ratio, F3 0.320 −0.156 to 0.797

Theta/Alpha ratio, O1 0.097 Theta/Alpha ratio, O1 0.147 −0.346 to 0.640

Theta/Alpha ratio, F8 0.211 Theta/Alpha ratio, F8 −0.107 −0.579 to 0.364

Theta (rel), O1 0.030 Theta (rel), O1 0.287 −0.182 to 0.757

(Constant) −0.385 to 0.385

rel, relative power; abs, absolute power.

TABLE 4 | Regressions on PCL-M.

Elastic net regression Linear regression

λ α DF MSE R2 F p MSE

0.351 1 4 0.920 0.201 1.373 0.277 0.944

Selected predictors Coefficient at λ Predictors Beta 95% CI

Beta-3 (rel), F7 −0.1686 Beta-3 (rel), F7 −0.114 −0.555 to 0.327

Alpha/Beta ratio, P4 −0.0247 Alpha/Beta ratio, P4 0.148 −0.454 to 0.750

Alpha (rel), Cz −0.0204 Alpha (rel), Cz 0.055 −0.530 to 0.639

Beta-2 (abs), T7 −0.1156 Beta-2 (abs), T7 0.423* 0.004–0.842

(Constant) −0.396 to 0.396

*p < 0.05; rel, relative power; abs, absolute power.

TABLE 5 | Regressions on NSI affective.

Elastic net regression Linear regression

λ α DF MSE R2 F p MSE

0.150 1 12 0.799 0.628 1.830 0.147 0.715

Selected predictors Coefficient at λ Predictors Beta 95% CI

Delta (rel), FP1 0.0866 Delta (rel), FP1 0.064 −0.366 to 0.494

Beta-2 (rel), F3 0.0834 Beta-2 (rel), F3 0.271 −0.301 to 0.843

Beta (rel), C3 0.1116 Beta (rel), C3 −0.236 −0.866 to 0.394

High Beta (rel), C3 0.0521 High Beta (rel), C3 0.022 −0.507 to 0.552

Beta-3 (rel), F7 −0.1499 Beta-3 (rel), F7 −0.007 −0.435 to 0.421

Alpha (rel), C4 −0.0694 Alpha (rel), C4 −0.253 −0.811 to 0.306

Alpha-2 (rel), C4 −0.0554 Alpha-2 (rel), C4 0.370 −0.396 to 1.135

Delta/Theta ratio, C4 0.1485 Delta/Theta ratio, C4 −0.358 −1.077 to 0.360

Theta (rel), F8 −0.1034 Theta (rel), F8 0.123 −0.627 to 0.873

High Beta (abs), T7 0.0548 High Beta (abs), T7 0.350 −0.240 to 0.941

High Beta (rel), T7 0.0673 High Beta (rel), T7 0.236 −0.314 to 0.785

Theta/Beta ratio, T8 −0.1768 Theta/Beta ratio, T8 0.317 −0.153 to 0.786

(Constant) −0.358 to 0.358

rel, relative power; abs, absolute power.

The degree of coefficient shrinkage increases as λ, the penalty
parameter, increases for a given value of α (here, α = 1). To
determine the value of λ that would produce the optimal degree
of shrinkage, we used 10-fold cross-validation for each of the
lasso regressions, wherein values of λ were tested on 10 random
subsets of the dataset to identify the value that yielded the

smallest mean square error (MSE) of prediction. The predictor
coefficients that are non-zero at this optimal value of λ reflect the
EEG variables selected by the model as significant predictors of
the outcome. Following each lasso regression, EEG variables that
were selected by the regressions were then submitted to amultiple
linear regression on the symptom change score using the full
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TABLE 6 | Regressions on NSI cognitive.

Elastic net regression Linear regression

3 α DF MSE R2 F p MSE

0.513 1 1 1.132 0.311 10.807 0.003 0.718

Selected predictor Beta at λ Predictors Beta 95% CI

Theta/Alpha ratio, Pz 0.052 Theta/Alpha ratio, Pz 0.557* 0.207–0.907

(Constant) −0.343 to 0.343

*p < 0.05.

FIGURE 1 | Variance in post-treatment changes in pain intensity,

post-traumatic stress symptoms, affective symptoms, and cognitive

symptoms accounted for by post-treatment changes in EEG activity in specific

frequency bands and power ratios.

dataset to further validate their predictive capacity. All regression
models were tested and are reported using standardized (z-
score) variables.

RESULTS

Twenty-seven participants completed LZT treatment. One
participant was excluded from analyses for unusable resting state
EEG data. The final sample included in this exploratory analysis
consisted of 22 males and four females with a mean age of
35.54 years (SD = 7.20). The mean time since injury to study
enrollment ranged from 3 to 45months (M= 14.16, SD= 12.82).

Of the 475 EEG variables tested, 31 (6.5%) changed
significantly between T1 and T2 (Table 2); when a correction
for FDR was applied, 27 (5.7%) of these variables remained
significant. In the frontal and temporal regions, significant
differences were noted almost exclusively for alpha metrics; in
contrast, changes in additional frequency bands were observed
throughout central and parietal regions.

Descriptive statistics for symptom change scores are provided
in Supplementary Table A. Improvements in pain intensity
(Table 3) were predicted with a small margin of error by

changes in lateral frontal and occipital theta/alpha ratio and
occipital theta; 25% of the variance in pain reduction was
accounted for by these EEG metrics. Outcomes related to
emotion regulation, including PTSD-related symptoms (Table 4)
and affective symptoms (Table 5), were predicted with high
accuracy: nearly 20% of variance in changes in PTSD-related
symptoms and almost 63% of the variance in changes in
affective symptoms were explained by changes in several EEG
metrics, predominantly beta-related metrics. Improvements in
self-reported cognitive symptoms (Table 6) were predicted by
theta/alpha ratio over the medial parietal region, with these
metrics accounting for 31% of the variance in symptom
reduction. Figure 1 depicts the amount of variance in each of
these four outcomes that is accounted for by post-treatment
changes in specific frequency bands and ratios. Descriptive
statistics of change scores for all EEG variables that were
selected as predictors by the lasso regressions are provided in
Supplementary Table B.

The remaining six outcome variables tested were not predicted
by any of the 475 EEG variables entered in the LASSO
regression models (Table 7). These outcomes included pain-
related disability (CPG disability scale), somatic symptoms (NSI
somatic subscale), vestibular symptoms (NSI vestibular subscale),
sleep quality (MOS Sleep scale), depressive symptoms (PHQ-9),
and migraine (MIDAS).

DISCUSSION

In the current study, the delivery of LZT enabled us to
investigate changes in EEG activity following an NFT protocol
that is agnostic to specific EEG patterns or metrics. Given
that our approach to LZT was unrestrained in terms of
frequency bands and brain regions targeted during treatment,
we sought to describe changes in EEG activity and how
they relate to symptom improvements following LZT. The
comparison of post-treatment to pre-treatment EEG activity
revealed that patients most consistently increased frontal and
central alpha activity. Our results also showed that changes in
EEG activity differentially predict changes in specific symptoms.
Due to the exploratory nature of this analysis and large
number of comparisons, theoretical interpretations regarding
these findings should be reserved for future confirmatory
studies. However, these data generate important considerations
regarding the development and refinement of NFT protocols
for PPCS.
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TABLE 7 | Model fits for outcomes not predicted by EEG metrics.

Outcome variable Model fit

3 α DF MSE

CPG disability 0.487 1 0 1.045

NSI somatic 0.433 1 0 1.035

NSI vestibular 0.423 1 0 1.149

MOS sleep 0.535 1 0 1.015

PHQ-9 0.458 1 0 1.075

MIDAS 0.595 1 0 0.984

Our data suggest that when patients are free to implicitly
modulate any oscillatory frequencies in any regions, individuals
largely increase alpha activity brain-wide. Two-thirds of the
EEG metrics that changed significantly following treatment
were some measure of alpha activity—either relative alpha or
a ratio including alpha—across the cortex. This suggests that
modulation of alpha is implicitly favored over other frequencies
in this specific NFT protocol. Clinicians using NFT protocols
that target specific EEG patterns should consider that some
frequencies in this population may be easier to modulate than
others and accordingly adjust treatment parameters.

The predictive association observed between EEG activity and
pain intensity has been previously reported by other authors (45).
While our regressionmodel was not statistically significant (likely
due to limited power), it accounted for over 25% of the variance
in the reduction in pain intensity, suggesting that these metrics
contribute meaningfully to improving the subjective experience
of pain in patients with PPCS. It is notable that of the 475 EEG
variables entered into the model, three of the four selected as
significant predictors of pain reduction were theta/alpha ratio,
albeit in different regions. This pattern provides support for
targeting theta/alpha ratio to treat pain in patients with PPCS.
Currently, there is no evidence implicating a direct link between
theta/alpha ratio and painmodulation; however, theta/alpha ratio
is implicated in deep relaxation, hypnagogic states (46), and
mood (47), which may mediate the relationship between NFT
and pain modulation.

The predictive association between beta-related metrics and
affective symptom improvements observed in our cohort is in
agreement with extant evidence supporting the association of
theta/beta ratio and beta power with emotion regulation (48),
behavioral inhibition in emotional contexts (49), and affective
processing (50). In consideration of this body of evidence,
our results indicate that PPCS patients who report affective
symptoms and/or emotion dysregulation may benefit from NFT
that directly targets beta activity.

While it seems counterintuitive that a single EEG metric
(theta/alpha ratio over the medial parietal region) accounted
for 31% of the variance in cognitive symptom reduction,
causal relationships between theta-targeted NFT and improved
attention and working memory (51) as well as alpha-targeted
NFT and improvements in spatial reasoning, executive function,
and cognitive control, have been previously reported in non-
clinical and non-PPCS cohorts. In conjunction with this previous

evidence, our findings suggest that global cognitive improvement
in this population may also be facilitated by targeting theta and
alpha activity.

The six symptoms that were not predicted by EEG
metrics tested in this analysis represent a variety of physical
manifestations of mild TBI, including pain-related disability,
somatic, vestibular, and depressive symptoms, poor sleep, and
migraines. In contrast, we demonstrated that reduced pain
intensity was predicted by changes in EEG activity following
LZT. This dissociation suggests that NFT, while potentially
effective for reducing pain, may not be sufficient to promote
improvement for a broad range of physical symptoms for patients
with PPCS; physical symptoms in this population may be treated
more effectively using an integrative, multi-modal approach that
includes NFT (52–54).

Limitations and Future Directions
The feasibility study reported here used a single-group design;
accordingly, changes in outcomes between pre- and post-
treatment evaluations cannot be conclusively attributed to
treatment effects. Future clinical trials with a control group are
necessary to ascertain that the changes we observed are, in fact,
due to LZT. Similarly, we cannot infer a causal relationship
between changes in EEG activity and improvements in outcomes.
Our regression-based analysis can only establish that changes
in symptomatology are predicted by changes in EEG activity;
experimental studies comparing outcomes following NFT that
targets different EEG patterns may provide additional insight
into causality.

Many of the linear regressions conducted in this study
revealed high proportions of variance accounted for by
the selected EEG metrics while the overall models did not
achieve statistical significance (p < 0.05). The small sample
size of this study, in combination with the reduction in
power with increasing model complexity, likely impeded our
ability to detect significant effects. Despite these statistical
limitations, the proportions of variance explained by
several of our models is large. Additionally, the distinction
between statistical significance and clinical significance
is of critical importance when evaluating the effects of
NFT. Whereas, we highlighted the association between
changes in EEG activity and reduced symptomatology, future
research is warranted to examine the magnitude of change
in EEG activity needed to produce clinically meaningful
symptom reduction.

CONCLUSIONS

The symptoms reported in PPCS are multifaceted and variable
between patients; therefore, outcomes may be improved with
greater treatment precision. Overall, we found evidence that
changes to certain EEG metrics predict improvements in specific
self-reported symptoms; taken together with previous findings
that EEG activity in these specific frequency bands is abnormal
in PPCS patients (55–57), our data corroborate existing evidence
that these frequency bands may serve as critical targets for
treating specific symptoms of PPCS. Specifically, we found
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evidence that changes in EEG activity following LZT—and
NFT in general—are related to improvements in cognitive and
affective symptoms, but less so for physical symptoms.

Our results describe changes in specific EEG metrics that
predict reductions in specific self-reported symptoms, which
indicates that unique symptom profiles of PPCS may be
successfully targeted with individualized NFT protocols. This
report ideally will promote further hypothesis testing of NFT
for treating PPCS and promote the development and refinement
of individualized, symptom-specific NFT protocols for patients
with PPCS. Future research would benefit from stratifying
patients in accordance with their symptom profiles or other
phenotypical classifications to investigate the effects of LZT
in distinct subtypes of patients and symptom clusters. In
contrast, owing to its generalized and agnostic approach to
targeting abnormal EEG activity, LZT has merit for treating
PPCS in environments where generalized treatment is prioritized
over individualized treatment, for example, if an NFT-trained
clinician is unavailable or if specific symptoms cannot be
dissociated or validly measured; however its superiority over
more traditional and targeted forms of NFT remains to be
demonstrated and warrants clinical trials (58).
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