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Abstract: Accurately estimating fine ambient particulate matter (PM2.5) is important to assess air
quality and to support epidemiological studies. To analyze the spatiotemporal variation of PM2.5

concentrations, previous studies used different methodologies, such as statistical models or neural
networks, to estimate PM2.5. However, there is little research on full-coverage PM2.5 estimation
using a combination of ground-measured, satellite-estimated, and atmospheric chemical model
data. In this study, the linear mixed effect (LME) model, which used the aerosol optical depth
(AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), meteorological data,
normalized difference vegetation index (NDVI), and elevation data as predictors, was fitted for 2017
over Beijing–Tianjin–Hebei (BTH). The LME model was used to calibrate the PM2.5 concentration
using the nested air-quality prediction modeling system (NAQPMS) simulated with ground
measurements. The inverse variance weighting (IVW) method was used to fuse satellite-estimated
and model-calibrated PM2.5. The results showed a strong agreement with ground measurements,
with an overall coefficient (R2) of 0.78 and a root-mean-square error (RMSE) of 26.44 µg/m3 in
cross-validation (CV). The seasonal R2 values were 0.75, 0.62, 0.80, and 0.78 in the spring, summer,
autumn, and winter, respectively. The fusion results supplement the lack of satellite estimates and can
capture more detailed information than the NAQPMS model. Therefore, the results will be helpful
for pollution process analyses and health-related studies.
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1. Introduction

In recent years, China suffered from the deterioration of air quality with the development of rapid
urbanization and industrialization [1,2]. Fine particulate matter with an aerodynamic diameter less
than 2.5 µm (PM2.5) was a major component of the severe air pollution [3,4]. Many epidemiological
studies showed that PM2.5 is associated with various adverse human health effects, such as respiratory
problems and cardiovascular diseases, and can penetrate into human lungs and bronchi [5–9].
Therefore, it is urgent to achieve highly accurate estimates of PM2.5 concentrations to effectively
assess air quality and conduct health-related studies.
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Aerosol optical depth (AOD) can be retrieved from satellite remote sensing, and PM2.5 can be
estimated based on the correlation between AOD and PM2.5. Many satellite instruments, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS), the multi-angle imaging spectroradiometer
(MISR), the Medium Resolution Spectrum Imager (MERSI), and the Advanced Himawari Imager
(AHI), have set bands to retrieve AOD [10–14]. Scholars proposed and improved a variety of methods,
such as simple linear regression models, linear mixed effect (LME) models, geographical weight (GWR)
models, and machine-learning methods, to establish the relationship between ground-level PM2.5 and
AOD [15–18]. Jun Wang et al. used a simple linear model to explore the relationship between AOD and
PM2.5 in Jefferson County, Alabama, for 2002, and obtained an R value of 0.7 [19]. Lee et al. used the
LME model to estimate PM2.5 in the New England region for 2003 and obtained an R2 value of 0.92 [20].
Hu el al. developed a GWR model to explore the relationships among PM2.5, AOD, meteorological
parameters, and land-use information [21]. The results indicated that the GWR model obtained highly
accurate estimates of PM2.5. Lary et al. combined AOD, meteorological data, and PM2.5 to estimate
daily PM2.5 values from 1997 to 2014 using a machine-learning algorithm [22]. However, it was
impossible to retrieve AOD from some regions that were covered by clouds; thus, PM2.5 could not
be estimated.

Many scholars performed studies to realize ground-level PM2.5 concentration estimates with
full spatial coverage. Xiao et al. presented a multiple imputation (MI) method that combined the
multiangle implementation of atmospheric correction (MAIAC) AOD with community multiscale air
quality (CMAQ) simulations to fill in missing AOD values, and they used a two-stage statistical model
to estimate the daily ground PM2.5 concentrations in the Yangtze River Delta from 2013 to 2014 [23].
Fengchao Liang et al. combined kriging with an external drift (KED) with the Weather Research and
Forecasting model with a chemistry module (WRF-Chem) to estimate the daily spatial cover of PM2.5

in north China in 2013 [24]. Lv et al. employed a Bayesian-based statistical downscaler to estimate
the PM2.5 concentrations over the Beijing–Tianjin–Hebei (BTH) region in 2014 and fused the results
with the estimated results of atmospheric models [25]. Tao et al. developed a three-stage model by
combining ground measurements of PM2.5, satellite-derived AOD, and CMAQ data to estimate the
daily PM2.5 with a spatial resolution of 0.1◦ over China [26]. However, most studies directly use AOD
or only fill missing AOD values before fitting the model to estimate PM2.5. Several studies researched
fusing different AOD values to improve the utilization of satellite AOD before PM2.5 estimation,
as well as the use of the nested air-quality prediction modeling system (NAQPMS) for full-coverage
PM2.5 estimation.

The objective of this study was to estimate highly accurate ground-level PM2.5 with full
spatial coverage in Beijing–Tianjin–Hebei (BTH) using ground monitoring data, MODIS AOD,
and atmospheric chemical model data (NAQPMS). Firstly, MODIS dark target (DT) and deep blue (DB)
AOD data were fused using the inverse variance weighting (IVW) method to improve the utilization
of AOD. Secondly, the LME model was used to estimate PM2.5, and the cross-validation (CV) was
tested for potential overfitting. Finally, satellite-estimated and calibrated NAQPMS PM2.5 data were
fused by IVW to obtain the full-coverage spatial distribution of PM2.5 in BTH. The flowchart of this
process is shown in Figure 1.



Sensors 2019, 19, 1207 3 of 18
Sensors 2019, 19, x FOR PEER REVIEW 3 of 17 

 

 
Figure 1. Flowchart of process used to estimate fine ambient particulate matter (PM2.5). 

2. Materials and Methods 

2.1. Study Area 

The BTH region is located in northern China (Figure 2), which is one of the most economically 
developed, populated, and polluted regions in the country. Emissions, including coarse and fine 
particles, mainly come from heavy industries [27,28]. 

 
Figure 2. Study area. 

Figure 1. Flowchart of process used to estimate fine ambient particulate matter (PM2.5).

2. Materials and Methods

2.1. Study Area

The BTH region is located in northern China (Figure 2), which is one of the most economically
developed, populated, and polluted regions in the country. Emissions, including coarse and fine
particles, mainly come from heavy industries [27,28].
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According to the statistical analyses of the China Environmental Bulletin in 2015 and 2016,
BTH contained seven and six, respectively, of the top 10 cities with poor air quality among the 74
major cities in China. The annual average concentrations of PM2.5 were 77 µg/m3 and 71 µg/m3 in
2015 and 2016, respectively, and the cities with the worst pollution were Baoding (107 µg/m3) and
Hengshui (99 µg/m3). The air quality in 2017 was better than that in 2016, and the annual average
concentration of PM2.5 in 2017 was 64 µg/m3. The air quality in BTH improved in recent years, but the
air pollution problem is still severe. Therefore, it is of great significance to study the concentrations of
PM2.5, which is the primary pollutant in BTH.

2.2. Data Description

2.2.1. PM2.5 Data

The hourly PM2.5 data used in this study were collected for 2017 from China Environmental
Monitoring Center (CNEMC) sites and the Hebei Province Environmental Monitoring Center.
PM2.5 was mainly monitored using a ThermoFisher TEOM 1405F. The working principle of this
instrument is that the air is sampled at a constant flow rate (16.67 L/min), and the mass concentrations
of PM2.5 are measured by a filter dynamic measurement system and tapered element oscillatory
microbalance [29]. A total of 365 sites were investigated in the study, and the locations of all sites are
shown in Figure 2. PM2.5 values greater than 1000 µg/m3 were removed to avoid the effect of outliers,
and data with a relative humidity greater than 95% were removed because high relative humidity is
produced by rainfall, which can affect the accuracy of pollutant concentration monitoring.

2.2.2. MODIS AOD

The MODIS instrument is carried on both the Terra and Aqua satellites and has a viewing swath
width of 2330 km; moreover, this instrument can view the entire surface of the Earth every one
to two days [30]. MODIS includes 36 spectral bands (0.405–14.385 µm) with spatial resolutions
of 0.25, 0.5 and 1 km [31]. MODIS products are free to download from the official network
(http://ladsweb.nascom.nasa.gov/). In this study, MYD04L2 data were downloaded from January to
December 2017. The MODIS C6 AOD products mainly included the DT and DB algorithms [32,33].
The basic principle of the DT algorithm is that the land surface reflectances of red (0.66 µm) and
blue (0.47 µm) bands are low over dark surfaces (such as dense vegetation), and there is a fixed
linear relationship with the 2.1-µm band. However, the DT algorithm fails to retrieve AOD over
areas of high reflectivity. The DB algorithm uses a “deep blue” band to distinguish atmospheric
and surface contributions and determines the land surface reflectance according to an a priori
established surface reflectance database. This approach compensates for the inability of the DT
algorithm to retrieve AOD over the bright land surfaces. Because of the characteristics of the two
algorithms, the MODIS official website provides the C6 version of the fusion product, which is named
“AOD_550_Dark_Target_Deep_Blue_Combined”, to improve the AOD coverage. However, it is yet to
be effectively verified, and further improvements are needed in the future [34].

2.2.3. NAQPMS Data

PM2.5 simulations from the nested air-quality prediction modeling system (NAQPMS) during
2017 over the BTH region were used in this study. NAQPMS is a multiscale air-quality model
developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences. The meteorological
conditions inputted to NAQPMS are derived by the WRF model V3.5.1 [35,36]. The WRF model is a
mesoscale meteorological model that was jointly developed by the National Centers for Environmental
Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). The WRF is widely
used to simulate weather phenomena with horizontal resolutions of 1–30 km [37]. The NAQPMS
includes real-time emissions, diffusion, aerosol, dry and wet deposition, advection, gaseous phase,
aqueous phase, and heterogeneous atmospheric chemical reaction modules [38]. Vertically, the PM2.5

http://ladsweb.nascom.nasa.gov/
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simulations include 20 terrain-following layers, and the lowest layer was used in this study. To be
consistent with the spatial resolution of the MODIS AOD data, the hourly 9-km PM2.5 simulations
were resized to 10 km.

2.2.4. Auxiliary Data

Aerosol Robotic Network (AERONET) AOD products (version 3) were collected to fuse DT and
DB AOD, and the products were used to validate the fused result. The AERONET AOD includes
three levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened and quality controlled), and Level 2.0
(quality-assured) [39]. MODIS AOD data were validated by AERONET level 2.0 observed at three
AERONET stations: Beijing (116.38◦ E, 39.97◦ N), Beijing_CAMS (116.32◦ E, 39.93◦ N), and Xianghe
(116.96◦ E, 39.75◦ N). To match the AOD at the 0.550-µm band of MODIS, the AODs at 0.440 µm and
0.675 µm were selected to perform an interpolation using the Angstrom exponential [40]. The relative
humidity (RH), temperature (TMP), wind speed (WS), and boundary layer height (BLH) were collected
from the results of the NAQPMS simulations, with a spatial resolution of 9 km and a temporal
resolution of 1 h. The normalized difference vegetation index (NDVI) (MYD13A3), with a spatial
resolution of 1 km and a monthly temporal scale, was downloaded from the EOSDIS website (https:
//search.earthdata.nasa.gov). The ground elevation data came from the geospatial dataset website
(http://srtm.csi.cgiar.org/) and had a spatial resolution of 90 m. All of the obtained data were
processed at 10 km to be consistent with the spatial resolution of the MODIS AOD data.

2.3. Methods Description

2.3.1. Inverse Variance Weighting (IVW) Fusion

MYD04 AOD, including all quality flags (QA = 1, 2, 3), was used to estimate PM2.5 to improve
the coverage of satellite data. Firstly, a simple linear regression was fitted to define the relationship
between DB AOD and DT AOD, which is a method that was used with different satellite instruments
and has obtained satisfactory results [1]. The regression equations are shown below.

τDB = −0.0065 + 0.8465 × τDT, (1)

τDT = 0.0614 + 0.9674 × τDB, (2)

where τDB is DB AOD, τDT is DT AOD, and the R2 between DB and DT is 0.82. The regression equation
was used to fill any grid cell that had only one of the MODIS AODs.

After filling the missing AODs of DT (DB), the AERONET AOD was averaged to within ±30 min
of the overpass time of the satellite, and the MODIS AOD (DT and DB) was averaged within a
30-km-radius area at each AERONET station. The difference between the DT (DB) AOD and AERONET
AOD was calculated in different seasons. In addition, the variance of the difference was calculated.
A large variance indicates that the quality of the satellite AOD data is poor, and the satellite AOD data
should be given a lower weight. Conversely, if the variance is small, the satellite AOD data should be
given a higher weight [41]. Therefore, the IVW method can be expressed as Equation (3).

τf =

τDB−f
VarDBm

+
τDT−f

VarDTm
1

VarDBm
+ 1

VarDTm

, (3)

where τDB−f(τDT−f) is the DB (DT) AOD after filling the data, VarDBm(VarDTm) is the variance between
DB (DT) AOD and AERONET in season m, and τf is the IVW-fused AOD. The same procedure was
applied to fuse the satellite-estimated PM2.5 and the calibrated NAQPMS PM2.5.

https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
http://srtm.csi.cgiar.org/
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2.3.2. Model Description

The relationship between ground-level PM2.5 and AOD is affected by various factors, such as
meteorology and land surface conditions, and varies every day. A simple linear model cannot
accurately reflect this relationship. Considering the daily variations in the PM2.5–AOD relationship,
Lee et al. (2011) proposed the LME model to estimate PM2.5 [20]. Many scholars constructed the
model by adding various meteorological parameters, land-use data, population densities, and other
parameters for different regions and different times. The results of these studies suggest that added
parameters improve the accuracy of PM2.5 estimates [42].

In this study, the LME model was used to estimate PM2.5 with MODIS AOD, meteorological
factors, NDVI, and elevation, which can be expressed as Equation (4). In addition, the NAQPMS PM2.5

values were calibrated by the LME model, which is expressed as Equation (5).

PM2.5,st = (α+ωt) +
(
β1 + µ1,t

)
× AODst +

(
β2 + µ2,t

)
× TMPst +

(
β3 + µ3,t

)
× RHst

+
(
β4 + µ4,t

)
× WSst +

(
β5 + µ5,t

)
× BLHst +

(
β6 + µ6,j

)
× NDVIsj

+ β7 × ELEVs + ε,

(4)

PM2.5,st = (αNAQPMS +ωNAQPMS
t ) +

(
β

NAQPMS
1 + µNAQPMS

1,t

)
× NAQPMSst + ε, (5)

where PM2.5,st is the ground-level PM2.5 measurement (µg/m3) at site s on day t; α andωt (day-specific)
are the fixed and random intercepts, respectively; AODst represents the MODIS-fused AOD (unitless)
at site s on day t; and β1 and µ1,t (day-specific) are the fixed and random slopes for the AOD predictor,
respectively. TMPst, RHst, WSst, and BLHst are the meteorological factors that represent TMP (◦C),
RH (%), WS (m/s), and BLH (m), respectively, at site s on day t; β2 ∼ β5 and µ2,t ∼ µ5,t are the
fixed slopes and random day-specific slopes, respectively, for the meteorological predictors; NDVIsj

and ELEVs represent the NDVI (unitless) at site s in month j and the ground elevation (m) at site s,
respectively; β6 ∼ β7 and µ6,j are the fixed slopes and random month-specific slope, respectively;
and ε represents the residual error. In Equation (5), PM2.5,st is the same as that in Equation (4),
and ε represents the residual error; αNAQPMS and ω

NAQPMS
t are the fixed intercept and random

day-specific intercept, respectively; NAQPMSst is the PM2.5 concentration (µg/m3) simulated by
NAQPMS; and βNAQPMS

1 and µNAQPMS
1,t are the fixed slope and random day-specific slope, respectively,

for NAQPMS PM2.5.

2.3.3. Model Validation

To test for potential overfitting of the model, a 10-fold cross-validation (CV) method was selected
in this study. All of the samples were first split into ten folds, with approximately 10% of the total
data in each fold. In each instance of CV, one of the folds was used for testing samples, and the
remaining nine folds were used to fit the model [17]. The predicted values of the testing samples
made from the fitted model were recorded. This process was repeated ten times until all of the folds
were used. The agreements between the predicted PM2.5 concentrations from the 10-fold CV and the
measured PM2.5 concentrations were evaluated using the coefficient (R2), mean prediction error (MPE),
and root-mean-square error (RMSE).

3. Results and Discussion

3.1. Descriptive Statistics

The histograms and statistics of the variables are illustrated in Figure 3. All variables are
approximately unimodal and log-normally distributed, except for temperature, and the frequency
distribution of PM2.5 and AOD is basically consistent. The mean, minimum, and maximum PM2.5

concentrations were 55.95 µg/m3, 1 µg/m3, and 713 µg/m3, respectively. The mean, minimum,
and maximum AOD values were 0.59, 0.02, and 3.54, respectively. Both the maximum values of PM2.5
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and the maximum values of AOD were high, indicating that there was severe pollution during the
study period. The average BLH was 1138.74 m. The lower average RH (29.40%) indicated that the
atmospheric environment was relatively dry in BTH, which was related to the geographical location of
the study area. The fluctuation of WS was large, with a range of 0.25–17.5 m/s and an average WS of
4.4 m/s. The TMP had a typical seasonal variation and showed a bimodal distribution, with a range
of −17.20–41.24 ◦C. The average elevation of the monitoring sites was 141.77 m, and the standard
deviation of the elevation was 253.11 m. The variation range of the NDVI was 0.09–0.82, with an
average value of 0.28, and the NDVI was concentrated between 0.1 and 0.4.
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deviation values) of dependent and independent variables for the Moderate Resolution Imaging
Spectroradiometer (MODIS).

3.2. Validation of Fused MODIS AOD

The fused MODIS AOD produced using the IVW method was validated against the AERONET
AOD. The Spearman correlation coefficient (R), mean absolute error (MAE), RMSE, relative mean
bias (RMB), and expected error (EE) were calculated to evaluate the accuracy of the AOD fusion [39].
The EE used in this study was ±(0.03 + 0.2AODAERONET), which was the same as the EE of the DB
algorithm over land. Figure 4 shows the scatterplots and statistical parameters between the MODIS
AOD and AERONET AOD. Figure 4a shows the MYD04 AOD extracted from the MODIS office
products (“AOD_550_Dark_Target_Deep_Blue_Combined” as DT and DB), Figure 4b shows the fused
AOD produced using the IVW method at the same matched samples as DT and DB (i.e., the same
as Method I), and Figure 4c shows the fusion AOD produced using the IVW method (i.e., the same
as Method II). The fusion result of Method I outperformed that of DT and DB, with a lower RMSE
(~0.23) and MAE (~0.12), and ~69.78% of the samples fell within the EE, with 29.85% and 0.37% of the
collections being overestimated and underestimated, respectively, indicating little aerosol estimation
uncertainty (RMB = 1.25). The fusion result of Method II added 94 AOD samples, and the number
of samples with AOD > 1.0 increased significantly. Furthermore, the samples falling within the EE
decreased by 3.84%, RMSE increased by 7.7%, MAE increased by 0.02, and RMB was closer to 1
(decreased by 0.04), indicating that the fusion results were viable.
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In terms of the spatial distribution, the fusion result of Method II had higher AOD coverage than
that of DT and DB AOD on 6 September 2017, as shown in Figure 5. The DT and DB AOD had many
missing data, especially for high-value AODs, which was caused by the fusion method. Therefore,
according to the validation and spatial distribution of AOD, Method II had a high accuracy and greater
coverage, which was conducive to estimating the PM2.5 concentrations in this study.
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3.3. Model Validation

3.3.1. MODIS-AOD-Estimated PM2.5

The LME model fitting result and the CV are shown in Figure 6a,b, respectively. According to the
scatterplots of the model fitting results (Figure 6a), the LME model explained 81% of the variability
in the ground-level PM2.5 concentrations, with an R2 of 0.81. The MPE, RMSE, and slope were
14.80 µg/m3, 24.48 µg/m3, and 0.80, respectively. Compared to the model fitting results, the R2 and
slope of CV decreased by 0.03, and the MPE and RMSE increased by 1.57 and 2.21 µg/m3, respectively,
which showed that the LME model had overfitting. However, both the model fitting and CV had high
R2 values, which can indicate the relationship between AOD and PM2.5.
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The seasonal model fitting and CV results are shown in Figure 7a–h. According to Figure 7a–d,
the seasonal model fitting R2 values for spring (i.e., March, April, and May), summer (i.e., June,
July, and August), autumn (i.e., September, October, and November), and winter (i.e., December,
January, and February) were 0.80, 0.69, 0.84, and 0.81, respectively. The MPEs were 10.89, 10.04, 11.84,
and 22.18 µg/m3, respectively. The RMSEs were between 13.46 and 35.41 µg/m3, and the slopes were
between 0.67 and 0.82. The R2 of the CV in spring, summer, autumn, and winter decreased by 0.06, 0.12,
0.05, and 0.03, respectively, while the MPEs respectively increased by 1.49, 1.80, 1.40, and 1.23 µg/m3,
and the RMSEs respectively increased by 2.09, 2.34, 2.19, and 2.28 µg/m3. The model fitting and CV
results showed that the LME performed best in autumn and worst in summer. According to Figures 6
and 7, the high values (>300 µg/m3) of the PM2.5 concentrations were obviously underestimated,
which may be related to the larger uncertainty in the estimated AOD during hazy weather and dust
storms [43]. A previous study showed that large errors in AOD retrieval occur when AOD levels are
extremely high [30].

3.3.2. Calibrated NAQPMS PM2.5

To improve the accuracy of the estimated PM2.5, the NAQPMS data were calibrated using the
LME model, which is described in Section 2.3.2. The model fitting and CV of the overall data are
shown in Figure 8. The R2, MPE, and RMSE of the model fitting were 0.76, 16.54, and 27.96 µg/m3,
respectively. The CV result suggested that the model had overfitting, which was similar to the
AOD-PM2.5 model performance. The R2 decreased by 0.06, and the MPE and RMSE increased by 1.90
and 3.00 µg/m3, respectively.



Sensors 2019, 19, 1207 10 of 18

Sensors 2019, 19, x FOR PEER REVIEW 9 of 17 

 

(i.e., June, July, and August), autumn (i.e., September, October, and November), and winter (i.e., 
December, January, and February) were 0.80, 0.69, 0.84, and 0.81, respectively. The MPEs were 10.89, 
10.04, 11.84, and 22.18 μg/m3, respectively. The RMSEs were between 13.46 and 35.41 μg/m3, and 
the slopes were between 0.67 and 0.82. The R2 of the CV in spring, summer, autumn, and winter 
decreased by 0.06, 0.12, 0.05, and 0.03, respectively, while the MPEs respectively increased by 1.49, 
1.80, 1.40, and 1.23 μg/m3, and the RMSEs respectively increased by 2.09, 2.34, 2.19, and 2.28 μg/m3. 
The model fitting and CV results showed that the LME performed best in autumn and worst in 
summer. According to Figures 6 and 7, the high values (>300 μg/m3) of the PM2.5 concentrations 
were obviously underestimated, which may be related to the larger uncertainty in the estimated 
AOD during hazy weather and dust storms [43]. A previous study showed that large errors in AOD 
retrieval occur when AOD levels are extremely high [30]. 

Spring 

  
Summer 

  
Autumn 

  

Figure 7. Cont.



Sensors 2019, 19, 1207 11 of 18

Sensors 2019, 19, x FOR PEER REVIEW 10 of 17 

 

Winter 

  

Figure 7. Scatterplots between the LME model fitting (cross-validation) and ground-measured PM2.5 
in each season: (a–d) the LME model fitting results, and (e–h) the cross-validation results. The dark 
solid line represents the 1:1 line, and the red solid line represents the regression line. 

3.3.2. Calibrated NAQPMS PM2.5 

To improve the accuracy of the estimated PM2.5, the NAQPMS data were calibrated using the 
LME model, which is described in Section 2.3.2. The model fitting and CV of the overall data are 
shown in Figure 8. The R2, MPE, and RMSE of the model fitting were 0.76, 16.54, and 27.96 μg/m3, 
respectively. The CV result suggested that the model had overfitting, which was similar to the 
AOD-PM2.5 model performance. The R2 decreased by 0.06, and the MPE and RMSE increased by 
1.90 and 3.00 μg/m3, respectively. 

The scatterplots and CV for the seasonal model fitting are presented in Figure 9. The R2 values 
of model fitting in spring (MAM), summer (JJA), autumn (SON), and winter (DJF) were 0.77, 0.63, 
0.79, and 0.74, respectively. The MPEs for spring, summer, autumn, and winter were 11.73, 10.75, 
13.01, and 25.28 μg/m3, respectively, and the RMSEs were 16.81, 14.67, 19.32, and 41.16 μg/m3, 
respectively. The R2 of CV decreased by 0.06, 0.11, 0.06, and 0.06, the MPEs increased by 1.46, 1.53, 
1.93, and 2.19 μg/m3, and the RMSEs increased by 1.99, 2.07, 2.60, and 3.78 μg/m3 in spring, summer, 
autumn, and winter, respectively. Similar to the AOD-PM2.5 model fitting and CV results, the 
NAQPMS PM2.5 calibration results also showed underestimation when PM2.5 concentrations were 
high. This phenomenon can be explained as follows: during heavy pollution, haze affects the BLH, 
lowering the BLH and slowing the WS near the ground, which results in the accumulation of 
pollution. However, the air-quality model cannot adequately capture this process and, thus, causes 
underestimations [37]. 

  

Figure 7. Scatterplots between the LME model fitting (cross-validation) and ground-measured PM2.5

in each season: (a–d) the LME model fitting results, and (e–h) the cross-validation results. The dark
solid line represents the 1:1 line, and the red solid line represents the regression line.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 17 

 

  

Figure 7. Scatterplots between the LME model fitting (cross-validation) and ground-measured PM2.5 
in each season: (a–d) the LME model fitting results, and (e–h) the cross-validation results. The dark 
solid line represents the 1:1 line, and the red solid line represents the regression line. 

3.3.2. Calibrated NAQPMS PM2.5 

To improve the accuracy of the estimated PM2.5, the NAQPMS data were calibrated using the 
LME model, which is described in Section 2.3.2. The model fitting and CV of the overall data are 
shown in Figure 8. The R2, MPE, and RMSE of the model fitting were 0.76, 16.54, and 27.96 μg/m3, 
respectively. The CV result suggested that the model had overfitting, which was similar to the 
AOD-PM2.5 model performance. The R2 decreased by 0.06, and the MPE and RMSE increased by 
1.90 and 3.00 μg/m3, respectively. 

The scatterplots and CV for the seasonal model fitting are presented in Figure 9. The R2 values 
of model fitting in spring (MAM), summer (JJA), autumn (SON), and winter (DJF) were 0.77, 0.63, 
0.79, and 0.74, respectively. The MPEs for spring, summer, autumn, and winter were 11.73, 10.75, 
13.01, and 25.28 μg/m3, respectively, and the RMSEs were 16.81, 14.67, 19.32, and 41.16 μg/m3, 
respectively. The R2 of CV decreased by 0.06, 0.11, 0.06, and 0.06, the MPEs increased by 1.46, 1.53, 
1.93, and 2.19 μg/m3, and the RMSEs increased by 1.99, 2.07, 2.60, and 3.78 μg/m3 in spring, summer, 
autumn, and winter, respectively. Similar to the AOD-PM2.5 model fitting and CV results, the 
NAQPMS PM2.5 calibration results also showed underestimation when PM2.5 concentrations were 
high. This phenomenon can be explained as follows: during heavy pollution, haze affects the BLH, 
lowering the BLH and slowing the WS near the ground, which results in the accumulation of 
pollution. However, the air-quality model cannot adequately capture this process and, thus, causes 
underestimations [37]. 

  

Figure 8. Scatterplots between the LME model fitting (cross-validation) by the nested air-quality 
prediction modeling system (NAQPMS) data and ground-measured PM2.5 in each season: (a) the 

Figure 8. Scatterplots between the LME model fitting (cross-validation) by the nested air-quality
prediction modeling system (NAQPMS) data and ground-measured PM2.5 in each season: (a) the LME
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The scatterplots and CV for the seasonal model fitting are presented in Figure 9. The R2 values
of model fitting in spring (MAM), summer (JJA), autumn (SON), and winter (DJF) were 0.77, 0.63,
0.79, and 0.74, respectively. The MPEs for spring, summer, autumn, and winter were 11.73, 10.75,
13.01, and 25.28 µg/m3, respectively, and the RMSEs were 16.81, 14.67, 19.32, and 41.16 µg/m3,
respectively. The R2 of CV decreased by 0.06, 0.11, 0.06, and 0.06, the MPEs increased by 1.46,
1.53, 1.93, and 2.19 µg/m3, and the RMSEs increased by 1.99, 2.07, 2.60, and 3.78 µg/m3 in spring,
summer, autumn, and winter, respectively. Similar to the AOD-PM2.5 model fitting and CV results,
the NAQPMS PM2.5 calibration results also showed underestimation when PM2.5 concentrations
were high. This phenomenon can be explained as follows: during heavy pollution, haze affects the
BLH, lowering the BLH and slowing the WS near the ground, which results in the accumulation
of pollution. However, the air-quality model cannot adequately capture this process and, thus,
causes underestimations [37].
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3.3.3. Fused PM2.5 Validation

To make full use of the high accuracy of the satellite-estimated PM2.5 and the full coverage of
NAQPMS-calibrated PM2.5, the IVW method was used in this study. The overall and seasonal CV
results are shown in Figures 10 and 11, respectively. For the overall validation, the R2, MPE, and RMSE
values were 0.78, 16.52 and 26.44 µg/m3, which were close to the CV results of satellite-estimated
PM2.5 (R2 = 0.78, MPE = 16.37 µg/m3, and RMSE = 26.69 µg/m3) and better than the calibrated
NAQPMS PM2.5 results (R2 = 0.70, MPE = 18.44 µg/m3, and RMSE = 30.96 µg/m3). For the seasonal
validation results, the R2 values for spring, summer, autumn, and winter were 0.75, 0.62, 0.80, and 0.78,
respectively. The MPEs were 12.29, 11.48, 13.22 and 24.28 µg/m3, respectively, and the RMSEs were
17.43, 15.18, 19.09 and 37.91 µg/m3 in the spring, summer, autumn, and winter, respectively. The PM2.5

fusion results were more realistic than the satellite-estimated PM2.5 and the calibrated NAQPMS PM2.5,
except for winter. For the fusion result, the R2 values increased between 0.01 and 0.10, the MPEs
decreased between 0.02 and 1.72 µg/m3, and the RMSEs decreased between 0.20 and 2.83 µg/m3 in
spring, summer, and autumn.
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The spatiotemporal distributions of AOD-derived PM2.5 (left), calibrated PM2.5 (center), and fused
PM2.5 (right) in the BTH region are shown in Figure 12. As shown in the figure, the results
obtained by the three methods showed the same spatial distribution for concentrations of PM2.5.
The concentrations of PM2.5 were higher in the southern BTH region and lower in the northern BTH
region. Heavy pollution was concentrated in densely populated urban areas, and mountainous areas
were less polluted. According to Figure 12, the satellite-estimated PM2.5 missed some pollution
information due to incomplete coverage. For instance, a large number of pixels were missing in the
northwestern BTH region due to the influence of clouds, ice, and snow on 27 February 2017. The losses
of pixels on 1 May, 1 June, and 13 September 2017 were mainly due to the influence of clouds. Therefore,
it was impossible for the data to reflect the complete pollution process. The calibrated NAQPMS PM2.5

achieved full spatial coverage, but the results were overly smoothed, which was affected by emission
inventory and system errors. In addition, overestimation or underestimation in some regions occurred
in this study. For example, the average ground-measured PM2.5 was 56.76 µg/m3 on 27 February
2017, in Beijing, but the calibrated NAQPMS PM2.5 value in Beijing was 76.88 µg/m3. Unlike them,
the fused PM2.5 obtained a better result by considering the advantages of high accuracy, detailed
information, and full coverage. The annual mean ground-level PM2.5, fused PM2.5, satellite-estimated
PM2.5, and calibrated NAQPMS PM2.5 values at the same sites were 55.95, 55.42, 55.04 and 54.42 µg/m3,
respectively, indicating that the fused PM2.5 was best.
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4. Conclusions

MODIS AOD, ground-measured PM2.5, and NAQPMS PM2.5 were used to perform the LME
model and IVW fusion in this study; this method overcame the influences of cloud, ice, and snow and
obtained highly accurate PM2.5 estimates with full spatial coverage. Before PM2.5 estimation, the IVW
method was used to increase the coverage of AOD. According to the verification and analysis results,
the AOD fused using the IVW method had a high accuracy with a high correlation (R = 0.95) and a low
RMSE (0.28), and the coverage of AOD increased significantly. The results indicated that the AOD fused
using the IVW method was more suitable than the non-fused AOD for estimating PM2.5 concentrations.
The fused PM2.5 in this study was highly correlated with the ground-level measurements and yielded a
CV R2 of 0.78; this value was the same as the CV R2 of the satellite-estimated PM2.5 and outperformed
the CV R2 of the calibrated NAQPMS PM2.5 (CV R2 = 0.70). In addition, the PM2.5 estimation results
showed obvious seasonal differences, and the CV R2 values of each season were 0.75, 0.62, 0.80,
and 0.78. Therefore, the fusion results can supplement the lack of information on satellite-estimated
PM2.5 and capture more detailed information than the calibrated NAQPMS PM2.5. The results can be
used for analyzing pollution processes, as well as for health-related studies.
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