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Abstract

Motivation: One of the main challenges with bioinformatics software is that the size and complex-

ity of datasets necessitate trading speed for accuracy, or completeness. To combat this problem of

computational complexity, a plethora of heuristic algorithms have arisen that report a ‘good

enough’ solution to biological questions. However, in instances such as Simple Sequence Repeats

(SSRs), a ‘good enough’ solution may not accurately portray results in population genetics, phylo-

genetics and forensics, which require accurate SSRs to calculate intra- and inter-species

interactions.

Results: We present Kmer-SSR, which finds all SSRs faster than most heuristic SSR identification

algorithms in a parallelized, easy-to-use manner. The exhaustive Kmer-SSR option has 100% preci-

sion and 100% recall and accurately identifies every SSR of any specified length. To identify more

biologically pertinent SSRs, we also developed several filters that allow users to easily view a sub-

set of SSRs based on user input. Kmer-SSR, coupled with the filter options, accurately and intui-

tively identifies SSRs quickly and in a more user-friendly manner than any other SSR identification

algorithm.

Availability and implementation: The source code is freely available on GitHub at https://github.

com/ridgelab/Kmer-SSR.

Contact: perry.ridge@byu.edu

1 Introduction

Simple sequence repeats (SSRs) are short repetitive regions of DNA

where at least one base is tandemly repeated many times due to

slipped-strand mispairing and errors occurring in DNA replication,

repair, or recombination (Levinson and Gutman, 1987). For dec-

ades, SSRs have been studied to determine phenotypic differences

caused by increased copy numbers of short repetitive sequences

(Kashi and King, 2006). Moreover, SSRs account for quantitative

genetic variation and phenotypic differences without lowering spe-

cies fitness (Kashi et al., 1997). SSR concentration varies not only

between different species, but also between different chromosomes

within the same species, and cannot be explained by assessing

the nucleotide composition of sequences (Katti et al., 2001).

Because SSRs reveal characteristic functions of DNA replication,

recombination and repair, they are important in studying biolo-

gical systems interactions, as well as studying repeat expansion-

based diseases with next-generation sequencing data (Kashi and

King, 2006).

Many different approaches have been used to identify SSRs.

Here, we propose the use of k-mers. The term k-mer refers to a sub-

sequence of length ‘k’ derived from a given sequence, while k-mer

decomposition refers to all possible substrings of length ‘k’ that can

be made from a sequence. Uses for k-mer decomposition have previ-

ously been outlined in instances such as genome assembly and ma-

chine learning (Chikhi and Medvedev, 2014; Ghandi et al., 2014).

Although k-mers have been used to identify similar subsequences as

in (Han et al., 2007), to our knowledge SSR identification has never

been attempted through k-mer decomposition.
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2 Materials and methods

2.1 Overview
Kmer-SSR utilizes k-mer decomposition to provide an exhaustive or

filtered approach to finding all SSRs in a given sequence (Figs 1 and

2). Our version of k-mer decomposition works by identifying all

subsequences of length ‘k’ while tracking the start position of each

k-mer. K-mer lengths are defined by the user as the SSR period

length. Kmer-SSR minimizes the usage of random access memory

(RAM) by performing k-mer decomposition and only storing k-mers

that are the same as the preceding k-mer (SSR period length). If a

k-mer is not identical to a k-mer found k bases previously, the previ-

ously identified k-mers will be discarded and k-mer decomposition

will occur for the rest of the sequence.

2.2 Memory requirements
We used the following techniques to limit memory requirements:

1. Identify SSRs from left to right:

Kmer-SSR checks each position starting at the leftmost position

of the sequence for each SSR period size (i.e. k-mer length) given

by the user. This method allowed us to store only a single poten-

tial SSR and immediately either discard it if it was not repeated

or write it to a file if it was a valid SSR.

2. Identify SSRs with the largest period size first:

Since Kmer-SSR does not store previously identified SSRs in

memory, it is necessary to search for SSRs in a specific order, or

else risk reporting SSRs fully enclosed within larger SSRs. To

avoid this issue, we take the period sizes given by the user and

search for SSRs from the longest period size to the smallest (e.g.

if the user wants to search for 2-mers and 7-mers, we search for

all 7-mer SSRs in the sequences before we search for 2-mer

SSRs). When an SSR is discovered, an atomicity check is con-

ducted to determine if the k-mer can be broken down to a

smaller subsequence. An SSR is considered atomic if no smaller

SSRs exist inside the first period. For example, ATATATAT

would be identified as a 4-mer (ATAT) repeated twice, but

ATAT is not atomic because AT (repeated twice) occurs within

the first period. Thus, it is ignored because it is an invalid 4-mer

and, if the user requested searching for 2-mers, it would be

discovered again as a 2-mer (AT) repeated four times. If the

atomicity check fails, the SSR is not reported. When an atomic

(i.e. valid) SSR is discovered, the iterator moves just past

the SSR, minus the current period size being searched, to ensure

that overlapping SSRs are identified. For example,

ACAACAACACACACAC has ACA repeated three times start-

ing at position 0. Additionally, AC repeats five times starting at

position 6. After finding the ACA repeat, we would miss the full

AC repeat if we skipped to the end of the ACA repeat and

resumed searching from there. Only by backtracking as

described above (9–3¼6), do we find the full AC repeat. Note

that each of the nucleotides between positions 0 and 5 need not

be searched for SSRs because Kmer-SSR has already found SSRs

with larger period sizes than the current period size. In other

words, since Kmer-SSR has already found SSRs with larger

period sizes, the maximum possible overlap with the current

SSR (ACA) and an adjacent following SSR is k (which is three in

this example), removing the need to search for SSRs from the

start of a valid SSR to k bases from the end of that SSR.

3. Create a Boolean filter array:

To ensure that SSRs are unique and do not end in the same pos-

itions, we created a Boolean filter array of the same length as the

sequence being analyzed, which is initiated to false. In Cþþ, the

implementation of this array only requires one bit per position, so

the memory requirement is nominal. When an SSR is discovered,

we first ensure that at least one position in the first or last SSR

period size on either end of the SSR is false in the Boolean array.

If one position is false, we assign all values within the array that

correspond to all positions in the SSR to true. The filter allows us

to ignore completely overlapping SSRs because overlapping SSRs

will be set to ‘true’ at the positions at the ends of the SSR.

By utilizing the above-mentioned methods, we were able to limit the

amount of RAM needed to O(n), where n is the sequence length,

and the constant value is slightly more than one byte (one byte to

store each sequence base and one bit allocated in the Boolean filter

for each base).

2.3 SSR filters
Next, we implemented a comprehensive filter that allows users to

control the output of Kmer-SSR based on atomicity, cyclic dupli-

cates, enclosed SSRs, minimum SSR length and specific SSR period

sizes. Pseudocode for Kmer-SSR is in Figure 2. The following are dif-

ferent filters that are optionally applied to the output of Kmer-SSR:

1. Atomicity check:

The atomicity check ensures that the smallest period size for

each SSR is reported. For instance, if an ATAT repeats four

Fig. 1. Conceptual representation of Kmer-SSR. Although we implement some filters and tricks to speed up Kmer-SSR runtime, each SSR is identified through

kmer decomposition, which allows the identification of instances when the same SSR period occurs k bases from the previously identified SSR period
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times, it would be reported as an AT repeated eight times be-

cause AT is the smallest period size within ATAT.

2. Cyclic duplicates:

Many SSRs create equally viable SSRs with slightly different

positions reported. For instance, in the sequence ATATATA

TATATATATA, it is arguably equally valid to report the AT

repeated eight times starting at position zero as it would be to

report TA repeating eight times starting at position one. To

avoid duplicate reporting of cyclic duplicates and ensure the lon-

gest SSR is always reported, we choose and report only the left-

most SSR. So, in this instance, only the AT repeated eight times

would be reported.

3. Enclosed SSRs:

Occasionally, SSRs might be completely enclosed within other

SSRs. For example, in the sequence TAAAATTAAAATT

AAAAT, the SSR TAAAAT is repeated three times, but within

each TAAAAT there is an A that repeats four times. In this case,

we only report the longest SSR, TAAAAT, repeated three times.

4. SSR length:

We allow the user to input minimum and maximum SSR lengths

via command line options. By default, SSRs are only reported if

they are at least 16 nucleotides long.

5. Set specific period sizes:

We allow the user to input specific period sizes to be checked

(e.g. 1, 3, 5 would look for SSRs with period sizes of one, three

and five), or ranges of period sizes (e.g. 1–7 would look for SSRs

with period sizes one through seven). By default, Kmer-SSR re-

ports SSRs of period sizes one through seven. SSRs outside of the

user specified range are not reported.

6. Number of repeats:

We allow the user to input minimum and maximum numbers of

repeats via command line options. By default, SSRs must repeat

at least twice to be reported.

7. Enumerated SSRs:

If the user is interested in a very limited set of SSRs, they may

specify those via a command line option and no other SSRs will

be reported.

8. Sequence length:

The user may specify minimum and maximum bounds on the

length of an input sequence, outside of which the program will

not search or report SSRs. By default, if a sequence is less than

100 bases or more than 500 megabases, it will be ignored.

3 Results

We conducted pairwise comparisons of Kmer-SSR against the fol-

lowing SSR identification algorithms: GMATo (Wang et al., 2013),

MREPS (Kolpakov et al., 2003), PRoGeRF (Lopes et al., 2015),

QDD (Meglécz et al., 2014), SA-SSR (Pickett et al., 2016), SSR-

Fig. 2. Pseudocode for the Kmer-SSR algorithm. The function passesBooleanFilter ensures SSRs are not duplicates of previously reported SSRs. The function

passesUserFilters (function not shown) completes other user-specified options, which may include: minimum SSR length, minimum and maximum number of

periods, finding specific SSRs and sequence length bounds
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Pipeline (Miller et al., 2013), SSRIT (Temnykh et al., 2001)

and TRF (Benson, 1999). These comparisons were performed

on DNA sequences from six different species (whole genome as-

sembly unless otherwise noted): Anolis carolinensis chromosome

6 (CM000942.1), Chlamydomonas reinhardtii (assembly v5.5)

(Merchant et al., 2007), Danio rerio chromosome 25 (CM002909.1),

Dictyostelium doscoideum (GCA_0000044695.1), Physcomitrella

patens chromosome 1 (assembly v3.3) and Saccharomyces cerevisiae

(GCA_001634645.1). Table 1 displays the computational time of

each algorithm and the number of SSRs correctly identified for each

dataset (CPU Time and Real Time columns).

Because Kmer-SSR is multithreaded and robust to fasta files with

unknown nucleotides, the real time for SSR identification using

Kmer-SSR is faster than any other algorithm. Although MREPS re-

ports a faster real time identification of SSRs, the program does not

usually run with sequences containing unknown characters. With

the addition of the time necessary to make the input fasta files usable

for MREPS, it underperformed Kmer-SSR in all six datasets (Table

1, RealTime column). We found that with the exception of TRF, all

algorithms tested were 100% accurate in identifying SSRs; however,

only Kmer-SSR, MREPS and SSRIT reported all possible filtered

SSRs within the range specified for each dataset (Table 1, SSRs In

Table 1. Comparisons of all nine SSR-identification algorithms across six genomes with period sizes of 1–7 and a minimum SSR length of

16 bases

Comparison with Kmer-SSR

CPU

Time

(mm:ss)

Real

Time

(mm:ss)

SSRs

Reported

aSSRs

After

Adjustments

bSSRs

In

Range

cNumber

Correct

dNumber

Correct

& Fixed

ePercent

Correct

& Fixed

SSRs

Unique to

Software

SSRs

Unique to

Kmer-SSR

SSRs

Shared

Anolis

carolinensis

(chr 6)

GMATo 2:38 2:38 20 623 008 16 369 297 16 871 16 871 16 870 100 0 8194 10 090

Kmer-SSR 2:24 0:24 18 284 18 284 18 284 18 284 18 284 100 NA NA NA

MREPS 0:09 0:09 25 639 25 639 18 284 18 284 18 284 100 0 0 18 284

PRoGeRF 18:07 18:07 16 841 656 16 840 821 17 763 17 762 17 763 100 0 610 17 674

QDD 19:11 19:11 60 994 60 994 18 009 18 009 18 009 100 0 732 17 552

SA-SSR 338:47 33:55 18 166 18 166 18 166 18 166 18 166 100 0 442 17 842

SSR-Pipeline 611:55 611:55 19 173 282 17 301 120 18 044 18 044 18 044 100 0 913 17 371

SSRIT 1:29 1:29 87 073 74 121 18 284 18 284 18 284 100 0 0 18 284

TRF 2:09 2:09 422 851 411 644 42 157 13 872 17 307 41.05 0 1560 16 724

Chlamydomonas

reihardtii

GMATo 3:30 3:30 26 512 280 21 624 294 50 401 50 401 50 139 99 0 23 086 34 416

Kmer-SSR 3:26 0:19 57 502 57 502 57 502 57 502 57 502 100 NA NA NA

MREPS 0:14 0:14 94 875 94 875 57 502 57 502 57 502 100 0 0 57 502

PRoGeRF 37:55 37:55 8 071 102 8 020 213 32 043 31 989 32 004 100 0 25 588 31 914

QDD 8:51 8:51 216 943 216 943 55 470 55 470 55 470 100 0 3002 54 500

SA-SSR 1324:33 167:48 56 833 56 833 56 833 56 833 56 833 100 0 1214 56 288

SSR-Pipeline 632:10 632:10 26 973 434 23 032 838 56 729 56 729 56 729 100 0 1793 55 709

SSRIT 2:00 2:00 310 109 252 223 57 502 57 502 57 502 100 0 0 57 502

TRF 8:52 8:52 1 022 145 990 316 181 973 25 451 45 773 25.15 0 14 546 42 956

Danio

rerio

(chr 25)

GMATo 1:12 1:12 9 501 860 7 535 749 22 546 22 546 22 362 99 0 8463 13 636

Kmer-SSR 1:10 0:13 22 099 22 099 22 099 22 099 22 099 100 NA NA NA

MREPS 0:05 0:05 26 862 26 862 22 099 22 099 22 099 100 0 0 22 099

PRoGeRF 8:14 8:14 7 696 269 7 695 012 21 729 21 668 21 684 100 0 494 21 605

QDD 7:43 7:43 49 016 49 016 21 805 21 805 21 805 100 0 908 21 191

SA-SSR 2075:03 648:00 21 862 21 862 21 862 21 862 21 862 100 0 690 21 409

SSR-Pipeline 1958:54 1958:54 8 948 450 7 954 899 21 857 21 857 21 857 100 0 987 21 112

SSRIT 0:43 0:43 69 645 58 065 22 099 22 099 22 099 100 0 0 22 099

TRF 5:03 5:03 293 378 283 764 40 343 11 255 16 911 41.92 0 6144 15 955

Dictyostelium

doscoideum

GMATo 1:02 1:02 8 810 607 7 126 425 82 643 82 643 82 526 100 0 28 714 62 967

Kmer-SSR 1:12 0:08 91 681 91 681 91 681 91 681 91 681 100 NA NA NA

MREPS 0:05 0:05 121 835 121 835 91 681 91 681 91 681 100 0 0 91 681

PRoGeRF 11:42 11:42 4 629 786 4 604 499 60 176 60 174 60 174 100 0 31 707 59 974

QDD 3:44 3:44 171 686 171 686 88 017 88 017 88 017 100 0 5295 86 386

SA-SSR 723:31 236:01 90 700 90 700 90 700 90 700 90 700 100 0 1635 90 046

SSR-Pipeline 246:35 246:35 9 292 900 7 397 561 90 810 90 810 90 810 100 0 1759 89 922

SSRIT 0:42 0:42 265 894 202 531 91 681 91 681 91 681 100 0 0 91 681

TRF 17:30 17:30 642 904 602 301 178 902 40 772 75 742 42.34 0 18 962 72 719

Physcomitrella

patens

(chr 1)

GMATo 0:59 0:59 7 981 869 6 500 395 7739 7739 7736 100 0 3259 5528

Kmer-SSR 0:58 0:10 8 787 8 787 8787 8787 8787 100 NA NA NA

MREPS 0:04 0:04 12 885 12 885 8787 8787 8787 100 0 0 8787

PRoGeRF 7:32 7:32 6 639 989 6 639 933 8669 8668 8668 100 0 131 8656

QDD 4:29 4:29 27 774 27 774 8319 8319 8319 100 0 621 8166

SA-SSR 642:36 91:59 8719 8719 8719 8719 8719 100 0 152 8635

SSR-Pipeline 1498:06 1498:06 7 763 141 6 874 175 8720 8720 8720 100 0 253 8534

SSRIT 0:35 0:35 39 472 35 941 8787 8787 8787 100 0 0 8787

(Continued)
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Range column). Although SSRIT has a faster CPU time than Kmer-

SSR, it does not have the multithreading capabilities of Kmer-SSR,

nor does it allow for querying of SSRs other than period sizes 2–4

without directly editing the algorithm’s source code.

4 Discussion

SSR identification is important in many biological comparisons. It is

important to have 100% accuracy in SSR identification because pri-

mers often depend on the exact SSR sequence with conserved flank-

ing sequences (Robinson et al., 2004), and phenotypic variations

associated with SSRs require an accurate portrayal of a genome.

Furthermore, determining the exact SSR copy number is important

in species identification and aids in the identification of discrete fam-

ilies and individuals. Kmer-SSR fills a usability gap in SSR identifica-

tion. While many SSR identification algorithms exist, it is often

difficult to install, use and read the output from the algorithms

available. Two of the main strengths of Kmer-SSR are its usability

and the SSR filters that are easily accessible to help answer

biological questions. Installing Kmer-SSR is at least as easy to install

as other algorithms. Kmer-SSR was implemented in Cþþ. It does

not require any editing of the source code to find SSRs of different

lengths or filter overlapping SSRs, and provides a robust documenta-

tion for its command line options. Step-by-step instructions for in-

stallation and implementation of Kmer-SSR are available with the

algorithm’s source code at http://github.com/ridgelab/Kmer-SSR.

The filters available in Kmer-SSR help answer primary biological

questions. Instead of inundating a researcher with duplicate SSRs,

Kmer-SSR eliminates overlapping SSRs by only reporting the left-

most SSR in each sequence when multiple SSRs are equally valid.

Furthermore, longer SSRs are typically more biologically interesting,

so completely enclosed SSRs are not included in the output.

Importantly, these filters still allow for overlapping SSRs where at

least one period size is completely outside of the previously reported

SSR. These filters set Kmer-SSR apart from all other SSR identifica-

tion algorithms because of its ease of use as well as its utility.

As we compared other algorithms, a few difficulties arose that

made it challenging to directly compare the output from each pro-

gram. We learned that QDD does not allow the sequence header line

Table 1. (Continued)

Comparison with Kmer-SSR

CPU

Time

(mm:ss)

Real

Time

(mm:ss)

SSRs

Reported

aSSRs

After

Adjustments

bSSRs

In

Range

cNumber

Correct

dNumber

Correct

& Fixed

ePercent

Correct

& Fixed

SSRs

Unique to

Software

SSRs

Unique to

Kmer-SSR

SSRs

Shared

TRF 1:53 1:53 223 938 215 818 22 730 6132 8192 36.04 0 891 7896

Saccharyomyces

cerevisiae

GMATo 0:23 0:23 3 281 592 2 674 303 1101 1101 1101 100 0 588 887

Kmer-SSR 0:23 0:04 1475 1475 1475 1475 1475 100 NA NA NA

MREPS 0:02 0:02 2293 2293 1475 1475 1475 100 0 0 1475

PRoGeRF 3:43 3:43 1 065 515 1 065 510 492 492 492 100 0 988 487

QDD 0:47 0:47 8672 8672 1368 1368 1368 100 0 139 1336

SA-SSR 338:50 60:55 1430 1430 1430 1430 1430 100 0 57 1418

SSR-Pipeline 9:32 9:32 3 124 288 2 820 560 1427 1427 1427 100 0 73 1402

SSRIT 0:14 0:14 12 276 10 386 1475 1475 1475 100 0 0 1475

TRF 0:26 0:26 62 616 61 038 4634 755 1242 26.80 0 290 1185

Combined GMATo 9:44 9:44 76 711 216 61 830 463 181 301 181 301 180 734 100 0 72 304 127 524

Kmer-SSR 9:33 1:18 199 828 199 828 199 828 199 828 199 828 100 NA NA NA

MREPS 0:39 0:39 284 389 284 389 199 828 199 828 199 828 100 0 0 199 828

PRoGeRF 87:13 87:13 44 944 317 44 865 988 140 872 140 753 140 785 100 0 59 518 140 310

QDD 44:45 44:45 535 085 535 085 192 988 192 988 192 988 100 0 10 697 189 131

SA-SSR 5443:20 1238:38 197 710 197 710 197 710 197 710 197 710 100 0 4190 195 638

SSR-Pipeline 4957:12 4957:12 75 275 495 65 381 153 197 587 197 587 197 587 100 0 5778 194 050

SSRIT 5:43 5:43 784 469 633 267 199 828 199 828 199 828 100 0 0 199 828

TRF 35:53 35:53 2 667 832 2 564 881 470 739 98 237 165 167 35.09 0 42 393 157 435

Note: This table shows that Kmer-SSR reports all possible SSRs in reasonable runtime with more refined user control and filtering options relative to the other

softwares. We ran all comparisons on a 2.3 Ghz Intel Haswell processor. Although each algorithm was given the same amount of memory and CPUs, due to hard-

ware variability of the CPU, runtimes could vary by up to 20%. Also, MREPS required pre-processing of the fasta files, which typically added anywhere from a

few seconds to several minutes to the runtime (not depicted in the table), depending on the pre-processing approach used. Similarly, we did not include the time

required to edit SSRIT and QDD’s source code in order for their programs to function over the period sizes in these tests. SSR-Pipeline could not finish searching

for 1-mers in chromosome 6 of the Anolis carolinensis in 21 days of runtime. Accordingly, the chromosome was split into 24 approximately equal sized chunks

(i.e. approximately 3.3 Mb each) and each chunk was searched for 1-mers separately by SSR-Pipeline. The required time for each chunk was summed (approxi-

mately 5 hours) and used in place of 504 hours (21 days).
aThe SSRs After Adjustments column reflects the number of SSRs that we did not remove or alter for purposes of making the comparison simpler. SSRs that

were exact duplicates, duplicates with only the repeat number varying, duplicates that varied only by cycle (e.g. ACG versus CGA with the same number of re-

peats right next to each other), entirely surrounded by another SSR, or not atomic (e.g. ATAT repeated 2 times instead of AT repeated 8 times) were removed.

SSRs that shared the same base and overlapped were combined into one SSR (e.g. AT repeated 8 times at position 1 and AT repeated 6 times at position 11 would

be combined to AT repeated 11 times at position 1).
bThe SSRs In Range column is the number of SSRs from the previous column that were 16 nt or longer and had a period size of 1–7 (inclusive).
cThe Number Correct column is the number of SSRs In Range that were actually present in the sequence.
dThe Number Correct and Fixed is the Number Correct plus a few incorrect SSRs that we are able to fix (e.g. a program might report an AT repeated 30 times,

but it only repeated 20 times in the sequence).
eThe Percent Correct and Fixed is the percent of SSRs in Range that were correct or fixed.
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to contain the vertical bar [j] (and possibly other characters that have

special meaning in a regular expression). Also, analysis of 1-mers in

longer sequences, such as the lizard genome, exceeded 21 days in SSR-

pipeline. MREPS also required pre-splitting of the input sequence files

because the algorithm does not accept any characters besides A, T, C

and G in the sequence lines (it will accept a very limited number of

well-distributed Ns). SSRIT requires directly editing the source code

to query period sizes other than lengths two through four. Similarly,

QDD requires directly editing its source code to retrieve different

period lengths and different SSR lengths. QDD defaults to 1-mers that

must be 1 million bases long and 2-mers through 6-mers that must re-

peat at least 5 times. Furthermore, unlike some other algorithms, the

output format for Kmer-SSR is easily parsable, and can be exported

directly to an Excel spreadsheet or another tab delimited parser.

GMATO, ProGeRF, SSRIT and SA-SSR have similar output formats

(although, ProGeRF and SSRIT do not provide column headers).

MREPS and TRF are text-based reports with embedded tables. QDD

provides a semicolon-separated value report with a few fixed columns

followed by a variable number of columns thereafter depending on

the number of SSRs found in a given sequence. SSR-Pipeline provides

FASTA formatted output where the SSRs are encoded in the header

(see Table 2). MREPS, PRoGeRF and TRF attempt to identify SSRs

through heuristics. Heuristics is a common approach to achieve an ad-

equate solution to a problem that is either too computationally inten-

sive to check all possible solutions, or does not have a good approach

to calculate the exact solution (Clancey, 1985). Table 2 displays fea-

tures of each software package per each software package’s documen-

tation (Benson, 1999; Kolpakov et al., 2003; Lopes et al., 2015;

Meglécz et al., 2014; Miller et al., 2013; Pickett et al., 2016;

Temnykh et al., 2001; Wang et al., 2013).

While Kmer-SSR provides a substantially better user experience

with more filters and options than all other algorithms, Kmer-SSR

has several weaknesses. First, since Kmer-SSR is an exact algorithm,

it is not as fast as the heuristic approach of MREPS when there are

only canonical nucleotides in a sequence. Second, due to the kmer

decomposition approach used in Kmer-SSR, it is unable to identify

fuzzy repeat regions where only one or two nucleotides differ from

an exact repeat. Although not necessary for many applications,

fuzzy repeats would provide Kmer- SSR with increased functionality

that is not currently possible with the algorithm’s implementation.

Third, Kmer-SSR has no web interface.

Unlike all other algorithms, Kmer-SSR offers the convenience of

a completely exhaustive search in linear time (though with a larger

constant factor than normal). This truly exhaustive search is entirely

filter- free. As an example, that means it would report an ACG re-

peated seven times at position 1, six times at position 4, five times at

position 7, etc. This is likely not necessary for most applications.

However, with the exhaustive option, we set an upper limit for all

SSR identifications. Furthermore, since genome complexity is im-

portant in primer design and predicting recombination events

(Murray et al., 1999), the exhaustive option could be used as an

easy approach to determine the proportion of a sequence that

repeats.
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