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Atopic march refers to the phenomenon wherein the occurrence of asthma and food
allergy tends to increase after atopic dermatitis. The mechanism underlying the
progression of allergic inflammation from the skin to gastrointestinal (GI) tract and
airways has still remained elusive. Impaired skin barrier was proposed as a risk factor
for allergic sensitization. Claudin-1 protein forms tight junctions and is highly expressed in
the epithelium of the skin, airways, and GI tract, thus, the downregulation of claudin-1
expression level caused by CLDN-1 gene polymorphism can mediate common
dysregulation of epithelial barrier function in these organs, potentially leading to allergic
sensitization at various sites. Importantly, in patients with atopic dermatitis, asthma, and
food allergy, claudin-1 expression level was significantly downregulated in the skin,
bronchial and intestinal epithelium, respectively. Knockdown of claudin-1 expression
level in mouse models of atopic dermatitis and allergic asthma exacerbated allergic
inflammation, proving that downregulation of claudin-1 expression level contributes to the
pathogenesis of allergic diseases. Therefore, we hypothesized that the tight junction
dysfunction mediated by downregulation of claudin-1 expression level contributes to
atopic march. Further validation with clinical data from patients with atopic march or
mouse models of atopic march is needed. If this hypothesis can be fully confirmed,
impaired claudin-1 expression level may be a risk factor and likely a diagnostic marker for
atopic march. Claudin-1 may serve as a valuable target to slowdown or block the
progression of atopic march.
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INTRODUCTION

In the recent decades, the incidence of allergic diseases has continued to rise, affecting
approximately 20% of the world’s population (1). Epidemiological studies have revealed an
additive feature of atopic disorders, and the occurrence of food allergy (FA), allergic asthma
(AA), and allergic rhinitis (AR) tends to increase after the onset of atopic dermatitis (AD) (2). The
progression of allergic inflammation from the skin to the gastrointestinal (GI) tract, and then to
airways, is termed “atopic march”. The mechanism of atopic march has still remained elusive, and
skin barrier dysfunction was considered as a major contributor (3). It is noteworthy that other than
the skin barrier, epithelial barriers in airways and GI tract also contribute to allergic sensitization
org June 2022 | Volume 13 | Article 9274651
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process in atopic disorders (4). Tight junction proteins, including
claidin-1, play a vital role in maintaining epithelial barriers of
these organs (5). In the present study, we reviewed the
involvement of epithelial barriers and tight junction proteins in
allergic diseases, and hypothesized that claudin-1-mediated tight
junction dysfunction could contribute to atopic march.
THE ATOPIC MARCH

The atopic march refers to the developmental progression of
allergic diseases from AD to FA, and then, to AA and AR.
Proposed in 1923 by Cooke and Coca, the concept of “atopy” is
closely associated with the elevated immunoglobulin E (IgE)
production in various sites (6). Allergic conditions in the atopic
march share a type 2 response phase, promoting the generation
of allergen specific IgE. Other features of type 2 inflammation,
such as edema, production of mucus, and activation of
granulocytes were also observed in affected sites during the
atopic march (7), indicating the progression of type 2
inflammation from the skin to the GI tract and airways.

As the first manifestation during atopic march, AD is a
chronic inflammatory skin disease that occurs in infancy.
More than 60% of children with AD developed eczema in
the first 12 months of their life (8). Lesional skin of patients
with AD is characterized by erythematous scaling plaques,
eczema, xerosis and intense pruritus (9), with infiltration of
type 2 innate lymphoid cells (ILC2s), T cells, eosinophils, and
mast cells (10). The defected epithelial barrier and the
predisposition to type 2 inflammation play an important role
in the etiology of AD. For instance, the loss of functional
mutations of FLG and SPINK5, which play important roles in
skin barrier, were found to be closely associated with AD.
Polymorphisms in the genes encoding interleukin-33 (IL-33)
(11) and thymic stromal lymphopoietin (TSLP) (12), which
trigger a type 2 response, predispose to AD. Environmental
factors, such as toxins, irritants, and pollutants also contribute
to the pathogenesis of AD (13). The incidence of atopic
disorders tends to increase after the onset of AD. One recent
study showed that 36.9% of children with severe AD developed
asthma later on in their life (2), whereas the prevalence of AA
in the general population was approximately 7.9% (14).
Similarly, the incidence of FA was 40% in patients with AD
(15), compared with a rate of 10% in the general population
(16). Severe AD onset or a high serum level of IgE may
predispose to atopic march development (17).

FA generally coexists with AD in children, and it is the most
frequent cause of outpatient anaphylaxis (18). Other features of
food allergy include abdominal pain, flatulence, vomiting, and
diarrhea (19). Eosinophilic esophagitis (EoE) characterized by
the chronic eosinophilic inflammation is closely correlated with
food allergy (20). It was reported that sensitization mainly occurs
before the food intake, suggesting the role of inflamed skin in
sensitization (21). The exposure of skin to peanut dust raises the
risk of developing peanut allergy (22). It is noteworthy that the
occurrence of AA increases after the onset of FA (23). Patients
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with severe FA are at a higher risk of developing AA (24).
Therefore, it is likely that the allergic inflammation in GI tract
also contributes to the progression of atopic march.

AA and AR represent the endpoints of atopic march and
generally occur at the age of 6–7 years old after the onset of AD
(25). AA is characterized by chronic inflammation, remodeling
and obstruction of the lower airways, while AR features chronic
upper airway inflammation (26). Severe or early onset AD was
reported to be associated with a stronger sensitization to inhalant
allergens (27), which is central to the pathogenesis of AR and
AA. The risk of AA is significantly elevated in patients with AR
compared with the general population (28), suggesting the
progression from AR to AA. Environmental factors, such as
cigarettes and air pollutants were considered as determinants of
this progression (29).

The mechanism of atopic march has still remained elusive.
The defected skin barrier and increased alarmin production are
the major contributors to the atopic march.

In particular, the loss of functional mutations of FLG, which
encodes filaggrin (a protein that is indispensable for the integrity
of stratum corneum), were found to be associated with five times
increased progression from AD to FA (30). It was demonstrated
that filaggrin dysfunction contributes to the atopic march
through the increased allergen entry across an impaired skin
barrier, which causes the skin sensitization to allergens (31). In
response to the allergen entry, alarmins, such as TSLP, IL-25, and
IL-33 are secreted by keratinocytes in skin (32). Alarmins trigger
type 2 inflammation through interacting with basophils, mast
cells, eosinophils, ILC2s, and Th2 cells. The secretion of alarmins
can be amplified by the allergic inflammation, creating a positive
feedback loop (33), thereby leading to the chronic inflammation
of the skin. After entering the circulation, alarmins contribute to
the systemic type 2 inflammation in the airways (34) and GI tract
(35), and their roles in atopic march were previously verified in
animal models of AD (36).

Importantly, although filaggrin is central to the integrity of
skin barrier (37), it is absent on the bronchial or gut epithelial
cells (38). Therefore, barrier components other than filaggrin
shall be responsible for the progression of FA to AR and AA
during the atopic march. In addition, it is essential to indicate
whether the sensitization process in atopic march occurs in
epithelium of the airways and the GI tract, as the epithelial
barrier dysfunction in these organs contributes to the
development of allergic diseases (39).
THE EPITHELIAL BARRIER IN ATOPIC
DISORDERS

The epithelial barrier generally consists of epithelial cells and
interepithelial junctions. Interepithelial junctions are identified
as tight junctions, intermediary junctions, and desmosomes that
line between intercellular space following an apical order (40).
Although epithelial barriers across organs vary in composition,
they share the common role as the first line of defense against
environmental exposures, such as allergens and pollutants.
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Epithelial barrier dysfunction caused by inherited or acquired
factors contributes to the pathogenesis of AD, FA, AA, and AR.

The Epidermal Barrier
The epidermal barrier in skin is composed of keratinocytes,
junctional complexes, skin lipids, and microbiota. Keratinocytes
express structural proteins, including filaggrin, loricrin, and
hornerin, which maintain the intercellular cohesion of stratum
corneum (41). Filaggrin deficiency mediated by FLG mutation or
external irritants causes ILC2 expansion in skin, leading to AD
onset (42). Skin lipids are synthesized and secreted by
keratinocytes and sebaceous glands (43). Alteration of skin
lipids, such as shortened molecular length of ceramides and
free fatty acids, contributes to skin barrier defect in AD (44). Gut
microbiome dysbiosis in AD is characterized by Staphylococcus
aureus increase and Staphylococcus epidermidis impairment,
contributing to the disease aggravation (45).

Tight junctions of the epidermal barrier include claudins,
junctional adhesion molecules (JAMs), and zonula occludens
(ZOs) (46). They regulate epithelial permeability and paracellular
flux, preventing the entry of irritants and foreign antigens (47).
Downregulation of claudin-1, claudin-4, and claudin-23 was
reported in non-lesional skin of patients with AD (48), while
single nucleotide polymorphisms in the CLDN-1 gene encoding
claudin-1 were found to be associated with AD in several cohort
studies (49, 50), suggesting the involvement of tight junctions in
the pathogenesis of AD.

Adherens junctions in the epidermal barrier consist of
cadherins and catenins, which cooperate with desmosomes to
ensure a promising epidermal cohesion (51). Desmosomal
adhesions in the epidermis are composed of desmogleins and
corneodesmosin (52). Dysregulated desmosomal junctions
contribute to AD development by interacting with skin
microbiomes. Desmoglein-1 degradation by the cysteine
protease of Staphylococcus epidermidis found on AD lesions
contributes to exacerbation of skin damage (53). Aberrant
display of corneodesmosin on the surface of corneocytes in AD
supports colonization of Staphylococcus aureus (54), which
increases disease severity. Moreover, the deficiency of
corneodesmosin induces atopy development in peeling skin
syndrome (55).

The GI Tract Epithelial Barrier
The GI tract epithelial barrier comprises epithelial cells,
intracellular junctions, the mucosal layer, and the intestinal
microbiome (56). Cell components of this barrier vary across
sites. The oral cavity, pharynx, and esophagus are lined with
stratified squamous epithelium, containing non-keratinized
keratinocytes, while the intestine is characterized by simple
columnar epithelium lined with enteroclytes, goblet cells,
Paneth cells, and M cells (57).

Secreted by goblet cells and enterocytes, the mucosal layer is a
specific niche that contains the intestinal microbiota, protecting
the epithelial barrier through its metabolic, immune, and trophic
properties (58). The intestinal microbiota stimulates the Paneth
cells, leading to the increased synthesis of antibacterial peptides
and mucins, inhibiting the colonization of pathogenic bacteria
Frontiers in Immunology | www.frontiersin.org 3
(59). Additionally, the intestinal bacteria interact with the
mucosal immune system and are indispensable for the
maintenance of allergen tolerance by Treg cells (60). Short
chain fatty acids secreted by gut microbiota confer protective
effects against FA (61). In patients with FA, a less diverse
intestinal microbiome with fewer Bifidobacterium and
Bacteroidetes colonies could be observed before the onset of
allergy (62). The deficiency of intestinal Bifidobacterium colonies
was also found in patients with AD (63). Moreover, the intestinal
microbiome with a low diversity during early infancy was
reported to be associated with AA development at the age of 7
years old (64). It was demonstrated that the colonization of
Bifidobacterium and Lactobacillaceae in the digestive tract and a
more diverse intestinal microbiome prevent the development of
allergic diseases (65), while intestinal colonization of
Bacteroidaceae and Clostridiaceae predisposes to atopic
disorders (66).

Tight junctions of the GI tract epithelium include occludin,
claudins, ZO, JAMs, and zonulin. They are connected to the
cytoskeleton and determine the permeability and selectivity of
the epithelial layer (67). An increased intestinal permeability was
found in patients with AD (68), AA (69), and FA (70). It was
suggested that the dysregulation of claudin-1, claudin-4, claudin-
5, and claudin-8 impairs intestinal barrier integrity and leads to
the increased allergen penetration (71, 72). Moreover, the
disruption of occludin raises intestinal permeability of macro-
particles (73), which may contribute to the increased allergen
entry. Low levels of esophageal zonulin-3, claudin-1, and
claudin-7 have been detected in patients with EoE (74), a
disease that is closely associated with food allergy. The
hypoxia-inducible factor 1-alpha (HIF-1a)/claudin-1 axis was
proposed as a therapeutic target for EoE (75) due to its critical
role in maintaining barrier function.

Adherens junctions of the GI tract epithelium are made up of
cadherins and catenins (76), while the desmosomal adhesions of
the GI tract epithelium include desmogleins and desmocollins
(77). Both the desmosomes and adherens junctions contribute to
the regulation of paracellular permeability in the GI tract (78). In
tissue specimens of patients with EoE, downregulation of
desmoglein-1 was found, which could be reversed by the
corticosteroid therapy (79).

The Airway Epithelial Barrier
The airway epithelial barrier is mainly composed of ciliated cells,
goblet cells, basal cells, junctional complexes, and the mucosal
layer (80). Marked with a high number of cilia, ciliated cells
constitute the major part of airway epithelium and are
responsible for mucoci l iary clearance (81). Cil iary
dysfunctions, such as shortened cilia and reduced ciliary beat
frequency, are associated with disease severity in patients with
AA (82) and AR (83). Goblet cells are secretory cells and produce
mucus, a hydrogel gel that traps pathogens and inhaled particles
(84). MUC5AC and MUC5B are the two major components of
the mucus gel in normal airways (85). The balance between
MUC5AC and MUC5B production is critical for mucociliary
clearance and airway defense (86). In the AA pathogenesis, type
2 cytokines (e.g., IL-13 and IL-4) drive the excessive
June 2022 | Volume 13 | Article 927465
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differentiation of goblet cells from basal cells via the Notch
signaling pathway, leading to the dysregulated mucin secretion
(87). A higher ratio of MUC5AC to MUC5B was found in the
sputum of patients with AA and AR (88), and the increased
proportion of MUC5AC is associated with impaired mucociliary
clearance and airway plugging in AA development (89).

Tight junctions of the airway epithelium include occludin,
claudins, ZOs, and JAMs, which regulate the permeablity of
epithelial barrier. Reduced expression levels of claudin-18,
claudin-4, claudin-1, and ZO-1 were found in the asthmatic
bronchial epithelium (90, 91). External factors (e.g., respiratory
syncytial virus) increase the risk of AA development by
downregulating the expression levels of claudin-1 and occludin
in the airways (92), while protease containing allergens directly
cleave the tight junctions between cells, leading to barrier
dysfunction (93, 94). Besides, the asthmatic inflammation leads
to degradation of tight junctions. Co-culture with type 2
cytokines, such as IL-4 (95) and IL-13 (96), inhibits the
expression levels of occludin, ZO-1, and claudin-1 in human
primary bronchial epithelial cells, suggesting that the type 2
inflammation and the tight junction dysfunction lead to a vicious
cycle in AA.

Adherens junctions of the airway epithelium include
cadherins and catenins (97). Reduced expression levels of a-
catenin and e-cadherin were found in the airway epithelial cells
from asthmatic patients (91). Protease containing allergens from
pollens or house dust mite could downregulate the expression
level of e-cadherin in human airway epithelial cells (98).
Moreover, co-culture with IL-4 and IL-13 inhibits the
expression levels of a-catenin and e-cadherin in human
primary bronchial epithelial cells (96).
Frontiers in Immunology | www.frontiersin.org 4
Taken together, the epithelial barrier dysfunction in skin,
GI tract, and airways contributes to the development of atopic
disorders through increased allergen entry and allergic
sensitization. On the other hand, the allergic inflammation
damages the epithelial barriers, leading to a vicious circle in
allergic diseases. Such interaction may occur across different
sites, as the intestinal dysbiosis contributes to AD
development, while the systemic type 2 response in AD
damages the intestinal barrier function. Furthermore,
epithelial tight junction dysfunction contributes to the
development of atopic disorders. Particularly, we found that
the expression level of claudin-1 in epithelial cells is
commonly downregulated in allergic diseases of the skin,
lungs, and GI tract.
THE ROLE OF CLAUDIN-1 IN ATOPIC
DISORDERS

Claudin-1, a member of the claudin family, plays an important
role in barrier function, not only in skin (99), but also in airways
(100) and GI tract (101) (Figure 1). Coded by CLDN1, claudin-1
forms the tight junctions between the stratum granulosum and
stratum corneum (102). It can also be detected at high levels in
esophagus, liver, and gall bladder (103).

Mutation of CLDN1 causes a systemic disorder (104).
Missense mutation of CLDN1 is associated with neonatal
ichthyosis-sclerosing cholangitis syndrome, which has been
confirmed by several clinical observations (105). Patients with
this autosomal dominant inherited disorder could be
FIGURE 1 | Claudin-1-mediated tight junction dysfunction contributes to the atopic march. The synergic effect of CLDN-1 gene polymorphism and environmental
factors lead to common disturbance of claudin-1 in the epithelium of skin, airways and GI tract, causing tight junction dysfunction and impaired epithelial barrier
function in these organs. Entry of allergens through damaged skin barrier leads to the systemic type 2 inflammation in patients with AD, which further downregulates
the claudin-1 expression level in the GI tract and airways. This exacerbation of barrier impairment in the intestinal and airway epithelium finally leads to the
progression of allergic inflammation from skin to the GI tract and then to airways. GI, gastrointestinal; Th2 cell, Type 2 helper T cell; B cell, B lymphocyte; IgE,
immunoglobulin E; IL-4, interleukin 4; IL-5, interleukin-5; IL-13, interleukin-13. Granules, granules secreted by basophils containing mediators of inflammation.
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accompanied with ichthyosis, leucocytic vacuoles, and sclerosing
cholangitis (106), suggesting the central role of claudin-1 in both
skin and GI tract barrier function.

The reduced expression level of claudin-1 may cause
tight junction dysfunction (107), and it has been suggested
to be a key mechanism for allergic diseases of the skin (108),
airways (109), and GI tract (110). In patients with AD,
impaired skin barrier function mediated by downregulated
claudin-1 has been reported (111). In patients with AA,
bronchial claudin-1 expression level is negatively correlated
with disease severity (109). Moreover, in patients with FA, a
decreased expression level of claudin-1 has been found
in the oral mucosa (110), esophagus (112), and intestines
(113), and has been associated with the increased
p rodu c t i on o f I gE ( 1 1 3 ) , a k e y componen t f o r
allergic inflammation.

Moreover, the expression level of claudin-1 in the GI tract
(114, 115) and airways (95, 116) can be downregulated by IL-4,
IL-5, and IL-13 that present in patients with AD and FA,
suggesting the involvement of claudin-1 in the progression of
atopic inflammation to other sites.

Regarding the downregulation of claudin-1 expression level
in epithelial cells of patients with allergic diseases of the skin,
airways and GI tract, as well as the important role of claudin-1 in
epithelial barrier function, we attempted to clarify the potential
role of claudin-1 in the progression of atopic march.
STATEMENT OF HYPOTHESIS

Claudin-1-mediated tight junction dysfunction contributes to
the atopic march (Figure 1).

Specifically, the synergic effect of CLDN-1 gene
polymorphism and environmental factors, including lifestyles
(117), infections (118) or pollutants (119) mediate the
downregulation of claudin-1 in the epithelium of skin, airways,
and GI tract, causing epithelial barrier dysfunction in these
organs. Entry of allergens through damaged skin barrier leads
to the systemic type 2 inflammation in patients with AD, which
further downregulates the claudin-1 expression level in the GI
tract and airways. This exacerbation of barrier impairment in the
intestinal and airway epithelium causes increased allergen
sensitization at these sites and finally leads to the progression
of allergic inflammation from skin to the GI tract and then
to airways.
EVALUATION OF THE HYPOTHESIS

The hypothesis, “claudin-1-mediated tight junction dysfunction
contributes to atopic march”, is mainly supported by three lines
of evidence: clinical observations, animal models of allergic
diseases, and CLDN-1 knockdown studies.

Clinical observations and animal models suggested that
claudin-1 was downregulated in the skin, airway, and GI
epithelium in patients with AD, AA, and FA.
Frontiers in Immunology | www.frontiersin.org 5
In the skin lesions of patients with AD, the expression level of
caudin-1 was drastically reduced. CLDN1 expression was
negatively correlated with severity of skin inflammation, while
positively correlated with the skin barrier function and a dose-
dependent relationship was observed (120). Polymorphism of
CLDN-1 was associated with susceptibility to AD in case control
studies (121), and was responsible for the increased production
of IgE after exposure of skin to mold (122), contributing to the
allergic sensitization (123).

Moreover, in mouse models of AD, claudin-1 expression level
in skin tissue was significantly downregulated, and was
correlated with hallmarks of dermal inflammation, such as the
increased epidermal thickness, altered keratinocyte
differentiation, increased keratinocyte proliferation, and
impaired barrier function (124).

In the GI tract, small intestinal biopsy specimens of patients
with food allergy showed significant downregulation of
claudin-1 (125), whereas patients with food allergy to profilin
presented with drastically reduced claudin-1 expression level in
oral mucosa, which allowed profilin to penetrate into the oral
epithelial barrier, leading to allergic sensitization (110). The
claudin-1 expression level was significantly downregulated in
the esophagus of patients with EoE, an allergic disease
associated with food antigens (74). A food allergen challenge
induced a rapid degradation of intestinal intercellular junction
proteins, including claudin-1, in a mouse model of food allergy
(126). Downregulation of CLDN1 expression level in the GI
tract was also associated with an increased serum IgE
level (127).

Aside from the skin and GI tract, in the airway epithelium,
claudin-1 expression level was negatively correlated with asthma
severity, both in patients with asthma and in the house dust mite-
induced mouse asthmatic model. Additionally, claudin-1 expression
level was significantly downregulated in bronchial epithelial cells in
asthmatic children compared with that in healthy controls in
response to viral stimulation (92, 128). Neutrophil autophagy and
neutrophil extracellular traps could enhance asthma severity by
inducing claudin-1 degradation (129).

We analyzed the publicly available RNA-seq datasets of
epithelial tissue samples from patients with AD (GSE130588),
asthma (GSE43696), and food allergy (GSE113341). Strikingly,
the commonly significant downregulation of CLDN-1 expression
level was found in the epidermis of patients with AD
(Figure 2A), in bronchial epithelium of patients with AA
(Figure 2B), and in esophageal epithelium of patients with
EoE (Figure 2C), suggesting that claudin-1 expression level is
commonly downregulated in epithelial cells of patients with
allergic diseases of the skin, airways, and GI tract.

Studies on CLDN1 knockdown were conducted using mouse
models of AD and AA. CLDN1 knockdown in mice caused
epithelial barrier dysfunction and morphological features of AD
in the skin, including hyperkeratosis, acanthosis, and neutrophil
infiltration were mediated by an innate immune response (130).
While the increased expression level of claudin-1 in skin tissue
alleviated atopic symptoms in an AD mouse model, providing a
potential therapeutic approach for AD (131).
June 2022 | Volume 13 | Article 927465
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CLDN1 knockdown in murine lungs significantly
exacerbated the airway inflammation and the increased
airway hyperreactivity in a mouse model of asthma (109),
linking the claudin-1 downregulation directly to AA
pathogenesis through the dysregulated airway barrier
function. However, the restoration of claudin-1 expression
level in the airways significantly suppressed bronchial
hyperresponsiveness and decreased serum IgE level in an
asthmatic mouse model (132).

Upregulation of claudin-1 expression level strengthened the
epithelial barrier, lowering the risk of FA development (133).

The above-mentioned studies suggested a common
correlation between claudin-1 expression level and allergic
diseases of the skin, airways, and GI tract. Besides, a direct
pathogenetic role of claudin-1 knockdown in AD and AA was
confirmed, suggesting that downregulation of claudin-1
expression level contributes to the pathogenesis of these
allergic diseases.

However, the evidence only demonstrated separate
correlations between claudin-1 expression level and allergic
diseases of the skin, airways, and GI tract.

To demonstrate that downregulation of claudin-1 expression
level contributes to the progression of allergic inflammation from
the skin to the airways and GI tract in patients with AD, clinical
data concerning the claudin-1 expression level in the airways and
GI tract of patients with atopic march should be acquired. If a
lower claudin-1 expression level could be found in the airway
and GI tract of AD patients with atopic march than in cases
without atopic march, we can be accordingly more certain that
claudin-1 expression level contributes to the progression of
atopic march.

Organ-specific, that is, airway- and GI tract-specific claudin-
1 knockdown in mouse models of atopic march, might be
an excellent approach to prove that downregulation of claudin-
1 expression level in the airways and gut epithelial
Frontiers in Immunology | www.frontiersin.org 6
barrier accelerates atopic march, thereby contributing to
atopic march.
DISCUSSION

The concept of atopic march was proposed based on the
clinical observations that patients with AD were more
susceptible to AA and FA (134). The true nature of this
connection, however, is still controversial, with alarmins
commonly secreted by epithelial cells in various organs as
likely candidates (135).

Skin barrier dysfunction mediated by filaggrin mutation was
found to be associated with the increased allergen passage
through skin and a systemic allergic response, suggesting that
dysfunction of the skin epithelial barrier is crucial for allergic
sensitization (31). However, filaggrin is not expressed in the
airways and GI tract, restricting filaggrin-mediated sensitization
to the skin.

Importantly, the tight junctions formed by the claudins are
also essential for the integrity of the epithelial barrier (136). In
contrast to filaggrin, claudins are highly expressed in the
epithelium of airways and GI tract, thus, the downregulation of
claudins could mediate a common dysregulation of the epithelial
barrier function in these organs, potentially leading to allergic
sensitization at various sites.

In addition, in patients with AD, AA, and FA, claudin-1
expression level is significantly downregulated in the epidermis,
bronchial epithelium, and GI tract, respectively.

Knockdown of claudin-1 expression level in the mouse
models of AD (130) and AA (109) significantly exacerbated
allergic inflammation, while the upregulation of claudin-1
expression level restored epithelial barrier function and
decreased the severity of allergic diseases in these mouse
models (131, 133), proving that downregulation of claudin-1
B CA

FIGURE 2 | CLDN-1 expression level in the epithelial tissue of patients with allergic diseases. CLDN-1 expression level was downregulated in the epithelium of skin,
airways, and GI tract in patients with AD, asthma, and EoE, respectively. (A) CLDN-1 mRNA expression in lesional skin of AD patients (n=52) and healthy controls
(n = 20). (B) CLDN-1 mRNA expression in bronchial epithelium of patients with severe asthma (n = 31) and healthy controls (n = 17). (C) CLDN-1 mRNA expression
in esophageal epithelium of patients with EoE (n = 4) and healthy controls (n = 5). * P < 0.05; **** P < 0.0001 by Mann-Whitney U test. Error bars indicate SEM. AD,
atopic dermatitis; EoE, eosinophilic esophagitis.
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expression level contributes to the pathogenesis of
allergic inflammation.

Furthermore, the epithelial claudin-1 expression level in GI
tract (114) and airways (128, 137) can be downregulated by the
systemic type 2 inflammation in patients with AD and FA. This
downregulation of claudin-1 expression level causes epithelial
barrier dysfunction, increased allergen entry and allergen
sensitization in GI tract and airways, and may lead to the
development of FA and AA, suggesting the role of claudin-1
expression level in the progression of atopic march.

Therefore, our hypothesis that downregulation of claudin-1
expression level contributes to the atopic march is well supported
with separate evidence concerning each of the involved allergic
diseases. To further validate the hypothesis, evidence of
downregulation of claudin-1 expression level in the airways
and GI tract from patients with atopic march is needed.
Airway- and GI tract-specific knockdown of CLDN1 in a
mouse model of atopic march can also be a great approach to
prove our hypothesis.

If the hypothesis that the tight junction dysfunction caused by
downregulation of claudin-1 expression level contributes to the
atopic march can be fully confirmed, impaired CLDN1
expression level may be a risk factor and likely a diagnostic
marker for atopic march. Claudin-1 may be a valuable target to
slowdown or even block the progression of atopic march.
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3. Čepelak I, Dodig S, Pavić I. Filaggrin and Atopic March. Biochemia Medica
(2019) 29(2):020501. doi: 10.11613/bm.2019.020501

4. Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective
Epithelial Barriers in Allergic Lung Disease and Asthma Development.
J Asthma Allergy (2022) 15:487–504. doi: 10.2147/JAA.S324080

5. Wang Ms J, Kang Ms X, Huang Ms ZQ, Shen Ms L, Luo Md Q, Li Ms MY,
et al. Protease-Activated Receptor-2 Decreased Zonula Occlidens-1 and
Claudin-1 Expression and Induced Epithelial Barrier Dysfunction in
Allergic Rhinitis. Am J Rhinol Allergy (2021) 35(1):26–35. doi: 10.1177/
1945892420932486

6. Hill DA, Spergel JM. The Atopic March: Critical Evidence and Clinical
Relevance. Ann Allergy Asthma Immunol (2018) 120(2):131–7. doi: 10.1016/
j.anai.2017.10.037
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